1
|
He H, Zeng N, Du E, Guo Y, Li D, Liao R, Ma H. A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien. ACTA ACUST UNITED AC 2013. [DOI: 10.1515/plm-2012-0052] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBy conducting both the experiments on samples containing well-aligned fibers and Monte Carlo simulations based on the sphere cylinder scattering model (SCSM), we present a Mueller matrix transformation (MMT) method for quantitatively characterizing the properties of anisotropic scattering media. We obtained a set of parameters by fitting the Mueller matrix elements to trigonometric curves in polar coordinates. These new parameters can be expressed as analytical functions of the Mueller matrix elements and display simple relationships to the structural and optical properties of the anisotropic scattering media, such as the anisotropy, the direction of the fibers, and the sizes of the scatterers. Experimental results on biological tissues show that these new parameters can be used in biomedical research. However, further studies are still necessary to correlate the MMT parameters to pathological features.
Collapse
|
|
12 |
86 |
2
|
Sun M, He H, Zeng N, Du E, Guo Y, Liu S, Wu J, He Y, Ma H. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. BIOMEDICAL OPTICS EXPRESS 2014; 5:4223-34. [PMID: 25574434 PMCID: PMC4285144 DOI: 10.1364/boe.5.004223] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 05/18/2023]
Abstract
Mueller matrices can be used as a powerful tool to probe qualitatively the microstructures of biological tissues. Certain transformation processes can provide new sets of parameters which are functions of the Mueller matrix elements but represent more explicitly the characteristic features of the sample. In this paper, we take the backscattering Mueller matrices of a group of tissues with distinctive structural properties. Using both experiments and Monte Carlo simulations, we demonstrate qualitatively the characteristic features of Mueller matrices corresponding to different structural and optical properties. We also calculate two sets of transformed polarization parameters using the Mueller matrix transformation (MMT) and Mueller matrix polar decomposition (MMPD) techniques. We demonstrate that the new parameters can separate the effects due to sample orientation and present quantitatively certain characteristic features of these tissues. Finally, we apply the transformed polarization parameters to the unstained human cervix cancerous tissues. Preliminary results show that the transformed polarization parameters can provide characteristic information to distinguish the cancerous and healthy tissues.
Collapse
|
research-article |
11 |
85 |
3
|
Du E, He H, Zeng N, Sun M, Guo Y, Wu J, Liu S, Ma H. Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:76013. [PMID: 25027001 DOI: 10.1117/1.jbo.19.7.076013] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/26/2014] [Indexed: 05/02/2023]
Abstract
Polarization measurements allow one to enhance the imaging contrast of superficial tissues and obtain new polarization sensitive parameters for better descriptions of the micro- and macro- structural and optical properties of complex tissues. Since the majority of cancers originate in the epithelial layer, probing the morphological and pathological changes in the superficial tissues using an expended parameter set with improved contrast will assist in early clinical detection of cancers. We carry out Mueller matrix imaging on different cancerous tissues to look for cancer specific features. Using proper scattering models and Monte Carlo simulations, we examine the relationship between the microstructures of the samples, which are represented by the parameters of the scattering model and the characteristic features of the Mueller matrix. This study gives new clues on the contrast mechanisms of polarization sensitive measurements for different cancers and may provide new diagnostic techniques for clinical applications.
Collapse
|
|
11 |
82 |
4
|
Du E, Ha S, Diez-Silva M, Dao M, Suresh S, Chandrakasan AP. Electric impedance microflow cytometry for characterization of cell disease states. LAB ON A CHIP 2013; 13:3903-3909. [PMID: 23925122 PMCID: PMC3830000 DOI: 10.1039/c3lc50540e] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The electrical properties of biological cells have connections to their pathological states. Here we present an electric impedance microflow cytometry (EIMC) platform for the characterization of disease states of single cells. This platform entails a microfluidic device for a label-free and non-invasive cell-counting assay through electric impedance sensing. We identified a dimensionless offset parameter δ obtained as a linear combination of a normalized phase shift and a normalized magnitude shift in electric impedance to differentiate cells on the basis of their pathological states. This paper discusses a representative case study on red blood cells (RBCs) invaded by the malaria parasite Plasmodium falciparum. Invasion by P. falciparum induces physical and biochemical changes on the host cells throughout a 48-h multi-stage life cycle within the RBC. As a consequence, it also induces progressive changes in electrical properties of the host cells. We demonstrate that the EIMC system in combination with data analysis involving the new offset parameter allows differentiation of P. falciparum infected RBCs from uninfected RBCs as well as among different P. falciparum intraerythrocytic asexual stages including the ring stage. The representative results provided here also point to the potential of the proposed experimental and analysis platform as a valuable tool for non-invasive diagnostics of a wide variety of disease states and for cell separation.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
64 |
5
|
Du E, Dao M, Suresh S. Quantitative Biomechanics of Healthy and Diseased Human Red Blood Cells using Dielectrophoresis in a Microfluidic System. EXTREME MECHANICS LETTERS 2014; 1:35-41. [PMID: 26029737 PMCID: PMC4445737 DOI: 10.1016/j.eml.2014.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present an experimental method to quantitatively characterize the mechanical properties of a large number of biological cells by introducing controlled deformation through dielectrophoresis in a microfluidic device. We demonstrate the capability of this technique by determining the force versus deformation characteristics of healthy human red blood cells (RBCs) and RBCs infected in vitro with Plasmodium falciparum malaria parasites. These experiments clearly distinguish uninfected and healthy RBCs from infected ones, and the mechanical signatures extracted from these tests are in agreement with data from other independent methods. The method developed here thus provides a potentially helpful tool to characterize quickly and effectively the isolated biomechanical response of cells in a large population, for probing the pathological states of cells, disease diagnostics, and drug efficacy assays.
Collapse
|
research-article |
11 |
61 |
6
|
Du E, de Vries W, Liu X, Fang J, Galloway JN, Jiang Y. Spatial boundary of urban 'acid islands' in southern China. Sci Rep 2015. [PMID: 26211880 PMCID: PMC4515822 DOI: 10.1038/srep12625] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Elevated emissions of sulfur dioxide, nitrogen oxides and ammonia in China have resulted in high levels of sulfur and nitrogen deposition, being contributors to soil acidification, especially in and near large cities. However, knowledge gaps still exist in the way that large cities shape spatial patterns of acid deposition. Here, we assessed the patterns of pH, sulfate, nitrate and ammonium in bulk precipitation and throughfall in southern China's forests by synthesizing data from published literature. Concentrations and fluxes of sulfate, nitrate and ammonium in bulk precipitation and throughfall exhibited a power-law increase with a closer distance to the nearest large cities, and accordingly pH showed a logarithmic decline. Our findings indicate the occurrence of urban 'acid islands' with a critical radius of approximately 70 km in southern China, receiving potential acid loads of more than 2 keq ha(-1) yr(-1). These urban acid islands covered an area of 0.70 million km(2), accounting for nearly 30% of the land area in southern China. Despite a significant capacity to neutralize acids in precipitation, our analysis highlights a substantial contribution of ammonium to potential acid load. Our results suggest a joint control on emissions of multiple acid precursors from urban areas in southern China.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
45 |
7
|
|
|
19 |
43 |
8
|
Mosavati B, Oleinikov AV, Du E. Development of an Organ-on-a-Chip-Device for Study of Placental Pathologies. Int J Mol Sci 2020; 21:E8755. [PMID: 33228194 PMCID: PMC7699553 DOI: 10.3390/ijms21228755] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
The human placenta plays a key role in reproduction and serves as a major interface for maternofetal exchange of nutrients. Study of human placenta pathology presents a great experimental challenge because it is not easily accessible. In this paper, a 3D placenta-on-a-chip model is developed by bioengineering techniques to simulate the placental interface between maternal and fetal blood in vitro. In this model, trophoblasts cells and human umbilical vein endothelial cells are cultured on the opposite sides of a porous polycarbonate membrane, which is sandwiched between two microfluidic channels. Glucose diffusion across this barrier is analyzed under shear flow conditions. Meanwhile, a numerical model of the 3D placenta-on-a-chip model is developed. Numerical results of concentration distributions and the convection-diffusion mass transport is compared to the results obtained from the experiments for validation. Finally, effects of flow rate and membrane porosity on glucose diffusion across the placental barrier are studied using the validated numerical model. The placental model developed here provides a potentially helpful tool to study a variety of other processes at the maternal-fetal interface, for example, effects of drugs or infections like malaria on transport of various substances across the placental barrier.
Collapse
|
research-article |
5 |
40 |
9
|
Li X, Du E, Lei H, Tang YH, Dao M, Suresh S, Karniadakis GE. Patient-specific blood rheology in sickle-cell anaemia. Interface Focus 2016; 6:20150065. [PMID: 26855752 DOI: 10.1098/rsfs.2015.0065] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sickle-cell anaemia (SCA) is an inherited blood disorder exhibiting heterogeneous cell morphology and abnormal rheology, especially under hypoxic conditions. By using a multiscale red blood cell (RBC) model with parameters derived from patient-specific data, we present a mesoscopic computational study of the haemodynamic and rheological characteristics of blood from SCA patients with hydroxyurea (HU) treatment (on-HU) and those without HU treatment (off-HU). We determine the shear viscosity of blood in health as well as in different states of disease. Our results suggest that treatment with HU improves or worsens the rheological characteristics of blood in SCA depending on the degree of hypoxia. However, on-HU groups always have higher levels of haematocrit-to-viscosity ratio (HVR) than off-HU groups, indicating that HU can indeed improve the oxygen transport potential of blood. Our patient-specific computational simulations suggest that the HVR level, rather than the shear viscosity of sickle RBC suspensions, may be a more reliable indicator in assessing the response to HU treatment.
Collapse
|
Journal Article |
9 |
39 |
10
|
He H, Sun M, Zeng N, Du E, Liu S, Guo Y, Wu J, He Y, Ma H. Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:106007. [PMID: 25321399 DOI: 10.1117/1.jbo.19.10.106007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/25/2014] [Indexed: 05/18/2023]
Abstract
Polarization measurements are sensitive to the microstructure of tissues and can be used to detect pathological changes. Many tissues contain anisotropic fibrous structures. We obtain the local orientation of aligned fibrous scatterers using different groups of the backscattering Mueller matrix elements. Experiments on concentrically well-aligned silk fibers and unstained human papillary thyroid carcinoma tissues show that the m22 , m33 , m23 , and m32 elements have better contrast but higher degeneracy for the extraction of orientation angles. The m12 and m13 elements show lower contrast, but allow us to determine the orientation angle for the fibrous scatterers along all directions. Moreover, Monte Carlo simulations based on the sphere-cylinder scattering model indicate that the oblique incidence of the illumination beam introduces some errors in the orientation angles obtained by both methods. Mapping the local orientation of anisotropic tissues may not only provide information on pathological changes, but can also give new leads to reduce the orientation dependence of polarization measurements.
Collapse
|
|
11 |
36 |
11
|
Qiang Y, Liu J, Dao M, Du E. In vitro assay for single-cell characterization of impaired deformability in red blood cells under recurrent episodes of hypoxia. LAB ON A CHIP 2021; 21:3458-3470. [PMID: 34378625 PMCID: PMC8440480 DOI: 10.1039/d1lc00598g] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Red blood cells (RBCs) are subjected to recurrent changes in shear stress and oxygen tension during blood circulation. The cyclic shear stress has been identified as an important factor that alone can weaken cell mechanical deformability. The effects of cyclic hypoxia on cellular biomechanics have yet to be fully investigated. As the oxygen affinity of hemoglobin plays a key role in the biological function and mechanical performance of RBCs, the repeated transitions of hemoglobin between its R (high oxygen tension) and T (low oxygen tension) states may impact their mechanical behavior. The present study focuses on developing a novel microfluidic-based assay for characterization of the effects of cyclic hypoxia on cell biomechanics. The capability of this assay is demonstrated by a longitudinal study of individual RBCs in health and sickle cell disease subjected to cyclic hypoxia conditions of various durations and levels of low oxygen tension. The viscoelastic properties of cell membranes are extracted from tensile stretching and relaxation processes of RBCs induced by the electrodeformation technique. Results demonstrate that cyclic hypoxia alone can significantly reduce cell deformability, similar to the fatigue damage accumulated through cyclic mechanical loading. RBCs affected by sickle cell disease are less deformable (significantly higher membrane shear modulus and viscosity) than normal RBCs. The fatigue resistance of sickle RBCs to the cyclic hypoxia challenge is significantly inferior to that of normal RBCs, and this trend is more significant in mature erythrocytes of sickle cells. When the oxygen affinity of sickle hemoglobin is enhanced by anti-sickling drug treatment of 5-hydroxymethyl-2-furfural (5-HMF), sickle RBCs show ameliorated resistance to fatigue damage induced by cyclic hypoxia. These results indicate an important biophysical mechanism underlying RBC senescence in which the cyclic hypoxia challenge alone can lead to mechanical degradation of the RBC membrane. We envision that the application of this assay can be further extended to RBCs in other blood diseases and other cell types.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
31 |
12
|
Zhang T, Du E, Liu Y, Cheng J, Zhang Z, Xu Y, Qi S, Chen Y. Anticancer Effects of Zinc Oxide Nanoparticles Through Altering the Methylation Status of Histone on Bladder Cancer Cells. Int J Nanomedicine 2020; 15:1457-1468. [PMID: 32184598 PMCID: PMC7062395 DOI: 10.2147/ijn.s228839] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Zinc oxide nanoparticles (nZnO) have been widely used in the medicine field. Numerous mechanistic studies for nZnO’s anticancer effects are merely performed under high concentration exposure. However, possible anticancer mechanisms of epigenetic dysregulation induced by low doses of nZnO are unclear. Methods nZnO were characterized and bladder cancer T24 cells were treated with nZnO for 48 hrs at different exposure concentrations. Cell cycle, apoptosis, cell migration and invasion were determined. We performed qRT-PCR, Western blot and chromatin immunoprecipitation to detect the mRNA and protein levels of signaling pathway cascades for histone modification. Results In this study, we investigated the potential anticancer effects and mechanisms of nZnO on histone modifications in bladder cancer T24 cells upon low-dose exposure. Our findings showed that low concentrations of nZnO resulted in cell cycle arrest at S phase, facilitated cellular late apoptosis, repressed cell invasion and migration after 48 hrs exposure. These anticancer effects could be attributed to increased RUNX3 levels resulting from reduced H3K27me3 occupancy on the RUNX3 promoter, as well as decreased contents of histone methyltransferase EZH2 and the trimethylation of histone H3K27. Our findings reveal that nZnO are able to enter into the cytoplasm and nucleus of T24 cells. Additionally, both particles and ions from nZnO may jointly contribute to the alteration of histone methylation. Moreover, sublethal nZnO-conducted anticancer effects and epigenetic mechanisms were not associated with oxidative stress or DNA damage. Conclusion We reveal a novel epigenetic mechanism for anticancer effects of nZnO in bladder cancer cells under low-dose exposure. This study will provide experimental basis for the toxicology and cancer therapy of nanomaterials.
Collapse
|
Journal Article |
5 |
31 |
13
|
Jiang X, Chen Y, Du E, Yang K, Zhang Z, Qi S, Xu Y. GATA3-driven expression of miR-503 inhibits prostate cancer progression by repressing ZNF217 expression. Cell Signal 2016; 28:1216-1224. [PMID: 27267060 DOI: 10.1016/j.cellsig.2016.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022]
Abstract
Although increasing evidence demonstrated that deregulation of mircoRNA-503 (miRNA-503) contributes to tumorigenesis, little is known about the biological role and intrinsic regulatory mechanisms of miR-503 in prostate cancer (PCa). In present study, we found that miR-503 was significantly downregulated in advanced PCa tissues and cell lines. Downregulation of miR-503 was strongly associated with aggressive clinical-pathological features and poor prognosis in PCa patients. Ectopic expression of miR-503 significantly inhibited tumor cells growth, cell migration and invasion in vitro and in vivo. Mechanistic studies revealed that ZNF217 was a direct target downstream target of miR-503. Knockdown of ZNF217 mimicked the tumor-suppressive effects of miR-503 overexpression on PCa invasion, whereas ZNF217 overexpression attenuated the tumor-suppressive function of miR-503. Subsequently, miR-503 further modulated the activation of ZNF217-downstream epithelial-mesenchymal transition (EMT) genes. Besides, we also found that GATA3 directly increased miR-503 expression and thus decreased ZNF217 expression, indicating the involvement of GATA3/miR-503/ZNF217 signaling in EMT process. Collectively, our results demonstrated that GATA3-driven expression of miR-503 inhibits PCa progression by repressing ZNF217 expression, and also implicated the potential application of miR-503 in PCa therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
31 |
14
|
Sun M, He H, Zeng N, Du E, Guo Y, Peng C, He Y, Ma H. Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters. APPLIED OPTICS 2014; 53:2949-55. [PMID: 24922012 DOI: 10.1364/ao.53.002949] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Polarization parameters contain rich information on the micro- and macro-structure of scattering media. However, many of these parameters are sensitive to the spatial orientation of anisotropic media, and may not effectively reveal the microstructural information. In this paper, we take polarization images of different textile samples at different azimuth angles. The results demonstrate that the rotation insensitive polarization parameters from rotating linear polarization imaging and Mueller matrix transformation methods can be used to distinguish the characteristic features of different textile samples. Further examinations using both experiments and Monte Carlo simulations reveal that the residue rotation dependence in these polarization parameters is due to the oblique incidence illumination. This study shows that such rotation independent parameters are potentially capable of quantitatively classifying anisotropic samples, such as textiles or biological tissues.
Collapse
|
|
11 |
29 |
15
|
Liu J, Qiang Y, Alvarez O, Du E. Electrical impedance microflow cytometry with oxygen control for detection of sickle cells. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2392-2398. [PMID: 29731543 PMCID: PMC5929988 DOI: 10.1016/j.snb.2017.08.163] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polymerization of intracellular sickle hemoglobin induced by low oxygen tension has been recognized as a primary determinant of the pathophysiologic manifestations in sickle cell disease. Existing flow cytometry techniques for detection of sickle cells are typically based on fluorescence markers or cellular morphological analysis. Using microfluidics and electrical impedance spectroscopy, we develop a new, label-free flow cytometry for non-invasive measurement of single cells under controlled oxygen level. We demonstrate the capability of this new technique by determining the electrical impedance differential of normal red blood cells obtained from a healthy donor and sickle cells obtained from three sickle cell patients, under normoxic and hypoxic conditions and at three different electrical frequencies, 156 kHz, 500 kHz and 3 MHz. Under normoxia, normal cells and sickle cells can be separated completely using electrical impedance at 156 kHz and 500 kHz but not at 3 MHz. Sickle cells, intra-patient and inter-patient show significantly different electrical impedance between normoxia and hypoxia at all three frequencies. This study shows a proof of concept that electrical impedance signal can be used as an indicator of the disease state of a red blood cell as well as the cell sickling events in sickle cell disease. Electrical impedance-based microflow cytometry with oxygen control is a new method that can be potentially used for sickle cell disease diagnosis and monitoring.
Collapse
|
research-article |
7 |
28 |
16
|
Qiang Y, Liu J, Du E. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis. Acta Biomater 2017; 57:352-362. [PMID: 28526627 DOI: 10.1016/j.actbio.2017.05.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/27/2022]
Abstract
Erythrocytes must undergo severe deformation to pass through narrow capillaries and submicronic splenic slits for several hundred thousand times in their normal lifespan. Studies of erythrocyte biomechanics have been mainly focused on cell deformability and rheology measured from a single application of stress and mostly under a static or quasi-static state using classical biomechanical techniques, such as optical tweezers and micropipette aspiration. Dynamic behavior of erythrocytes in response to cyclic stresses that contributes to the membrane failure in blood circulation is not fully understood. This paper presents a new experimental method for dynamic fatigue analysis of erythrocytes, using amplitude modulated electrokinetic force field in a microfluidic platform. We demonstrate the capability of this new technique using a low cycle fatigue analysis of normal human erythrocytes and ATP-depleted erythrocytes. Cyclic tensile stresses are generated to induce repeated uniaxial stretching and extensional recovery of single erythrocytes. Results of morphological and biomechanical parameters of individually tracked erythrocytes show strong correlations with the number of the loading cycles. Under a same strength of electric field, after 180 stress cycles, for normal erythrocytes, maximum stretch ratio decreases from 3.80 to 2.86, characteristic time of cellular extensional recovery increases from 0.16s to 0.37s, membrane shear viscosity increases from 1.0(µN/m)s to 1.6(µN/m)s. Membrane deformation in a small number of erythrocytes becomes irreversible after large deformation for about 200 cyclic loads. ATP-depleted cells show similar trends in decreased deformation and increased characteristic time with the loading cycles. These results show proof of concept of the new microfluidics technique for dynamic fatigue analysis of human erythrocytes. STATEMENT OF SIGNIFICANCE Red blood cells (RBCs) experience a tremendous number of deformation in blood circulation before losing their mechanical deformability and eventually being degraded in the reticuloendothelial system. Prior efforts in RBC biomechanics have mostly focused on a single-application of stress, or quasi-static loading through physical contact to deform cell membranes, thus with limited capabilities in probing cellular dynamic responses to cyclic stresses. We present a unique electrokinetic microfluidic system for the study of dynamic fatigue behavior of RBCs subjected to cyclic loads. Our work shows quantitatively how the cyclic stretching loads cause membrane mechanical degradation and irreversibly deformed cells. This new technique can be useful to identify biomechanical markers for prediction of the mechanical stability and residual lifespan of circulating RBCs.
Collapse
|
|
8 |
28 |
17
|
An J, Zhang X, Qin J, Wan Y, Hu Y, Liu T, Li J, Dong W, Du E, Pan C, Zeng W. The histone methyltransferase ESET is required for the survival of spermatogonial stem/progenitor cells in mice. Cell Death Dis 2014; 5:e1196. [PMID: 24763053 PMCID: PMC4001319 DOI: 10.1038/cddis.2014.171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/22/2022]
Abstract
Self-renewal and differentiation of spermatogonial stem cells (SSCs) are the foundation of spermatogenesis throughout a male's life. SSC transplantation will be a valuable solution for young male patients to preserve their fertility. As SSCs in the collected testis tissue from the patients are very limited, it is necessary to expansion the SSCs in vitro. Previous studies suggested that histone methyltransferase ERG-associated protein with SET domain (ESET) represses gene expression and is essential for the maintenance of the pool of embryonic stem cells and neurons. The objective of this study was to determine the role of ESET in SSCs using in vitrocell culture and germ cell transplantation. Cell transplantation assay showed that knockdown of ESET reduced the number of seminiferous tubules with spermatogenesis when compared with that of the control. Knockdown of ESET also upregulated the expression of apoptosis-associated genes (such as P53, Caspase9, Apaf1), whereas inhibited the expression of apoptosis-suppressing genes (such as Bcl2l1, X-linked inhibitor of apoptosis protein). In addition, suppression of ESET led to increase in expression of Caspase9 and activation of Caspase3 (P17) as well as cleavage of poly (ADP-ribose) polymerase. Among the five ESET-targeting genes (Cox4i2, spermatogenesis and oogenesis Specific Basic Helix-Loop-Helix 2, Nobox, Foxn1 and Dazl) examined by ChIP assay, Cox4i2 was found to regulate SSC apoptosis by the rescue experiment. BSP analyses further showed that DNA methylation in the promoter loci of Cox4i2was influenced by ESET, indicating that ESET also regulated gene expression through DNA methylation in addition to histone methylation. In conclusion, we found that ESET regulated SSC apoptosis by suppressing of Cox4i2 expression through histone H3 lysine 9 tri-methylation and DNA methylation. The results obtained will provide unique insights that would broaden the research on SSC biology and contribute to the treatment of male infertility.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
26 |
18
|
Yao B, Zhao J, Li Y, Li H, Hu Z, Pan P, Zhang Y, Du E, Liu R, Xu Y. Elf5 inhibits TGF-β-driven epithelial-mesenchymal transition in prostate cancer by repressing SMAD3 activation. Prostate 2015; 75:872-82. [PMID: 25728398 DOI: 10.1002/pros.22970] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/02/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) has been associated with the acquisition of migration, invasiveness, and metastasis traits. During tumor progression, EMT can be induced by transforming growth factor-β (TGF-β) signal that epithelial cells receive from their microenvironment. However, the master regulatory controls on TGF-β-EMT axis are not understood. METHODS The protein expression in human specimens was measured by immunohistochemical staining. E74-like factor 5 (Elf5) was silenced by short interfering RNAs in LNCaP cells and stably overexpressed by HA-tagged Elf5 cDNAs in 22Rv1 cells. These cells were used to study migration and anchorage-independent growth. RESULTS Our data reveal that Elf5 results in the failure of mesenchymal morphogenesis, upregulation of EMT markers, spheres formation, and migration in the presence of TGF-β. Furthermore, Elf5 blocks TGF-β signaling, through decreasing drosophila mothers against decapentaplegic protein (SMAD3) activation by binding to it, one of the major effector of TGF-β-induced EMT. Moreover, Elf5 can serve as a prognostic marker of metastasis-free survival in patients with TGF-β-positive prostate cancer. CONCLUSIONS Elf5 expression is inversely correlated with EMT. Elf5 inhibits TGF-β-driven EMT via repressing SMAD3 phosphorylation in prostate cancer cells. In addition, Elf5 can be used as a biomarker of metastasis-free survival in patients with TGF-β-positive prostate cancer.
Collapse
|
|
10 |
26 |
19
|
Guo Y, Zeng N, He H, Yun T, Du E, Liao R, He Y, Ma H. A study on forward scattering Mueller matrix decomposition in anisotropic medium. OPTICS EXPRESS 2013; 21:18361-70. [PMID: 23938708 DOI: 10.1364/oe.21.018361] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this work, we apply Mueller matrix polar decomposition (MMPD) method in a forward scattering configuration on anisotropic scattering samples and look for the physics origin of depolarization and retardance. Using Monte Carlo simulations on the sphere-cylinder birefringence model (SCBM), and forward scattering experiments on samples containing polystyrene microspheres, well-aligned glass fibers and polyacrylamide, we examine in detail the relationship between the MMPD parameters and the microscopic structure of the samples. The results show that the spherical scatterers and birefringent medium contribute to depolarization and retardance respectively, but the cylindrical scatterers contribute to both. Retardance due to the cylindrical scatterers changes with their density, size and order of alignment. Total retardance is a simple sum of both contributions when cylinders are in parallel to the extraordinary axis of birefringence.
Collapse
|
|
12 |
26 |
20
|
Qu Y, Zhang C, Du E, Wang A, Yang Y, Guo J, Wang A, Zhang Z, Xu Y. Pim-3 is a Critical Risk Factor in Development and Prognosis of Prostate Cancer. Med Sci Monit 2016; 22:4254-4260. [PMID: 27826135 PMCID: PMC5108370 DOI: 10.12659/msm.898223] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Pim-3 kinase is a highly homologous serine/threonine kinase that is overexpressed in hematological malignancies and solid tumors. Few studies have been conducted to define the role of Pim-3 in solid tumors, especially in prostate cancer. The aim of this study was to define the role of Pim-3 in development and prognosis of prostate cancer. MATERIAL AND METHODS We collected specimens from 160 patients with prostate cancer, as well as 100 patients with benign prostatic hyperplasia. Realtime polymerase chain reaction was used for the assessment of Pim-3 expression at the RNA level and Western blot was used to quantify the Pim-3 protein synthesis in 3 different cell lines. RESULTS We found that Pim-3 mRNA expression in prostate cancer tissue was significantly higher than that in benign prostatic hyperplasia tissue (p<0.05). Accordingly, the protein level expression of Pim-3 in prostate cancer cell lines was also significantly higher than that in control cells. In addition, the expression status of Pim-3 mRNA was significantly associated with pathological parameters such as pre-surgery prostate specific antigen, Gleason score, pathological stage, and lymphoid metastasis. High expression of Pim-3 also significantly decreased the survival rate of patients after surgery. CONCLUSIONS Pim-3 expression is an important risk factor for prostate cancer; we are the first team to report Pim-3 as a valuable biomarker in Chinese.
Collapse
|
Journal Article |
9 |
24 |
21
|
Pokroy R, Desai UR, Du E, Li Y, Edwards P. Bevacizumab prior to vitrectomy for diabetic traction retinal detachment. Eye (Lond) 2011; 25:989-97. [PMID: 21738230 DOI: 10.1038/eye.2011.149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To assess the efficacy and safety of preoperative intravitreal bevacizumab (IVB) before vitrectomy for diabetic tractional retinal detachment (TRD). METHODS Using ICD-9 codes, we located all patients with diabetic TRD who underwent 3-port 20-gauge vitrectomy primarily performed by one surgeon between January 2004 and January 2009. Eyes receiving IVB were compared with those not. The following outcomes were compared: visual acuity (VA), duration of surgery, and complication rates. RESULTS A total of 99 eyes of 90 patients were included in the analysis. In all, 34 patients received IVB on an average of 11.5 (range, 3-30) days previtrectomy. Age was 46.5 and 51.6 in the IVB and non-IVB groups, respectively. VA was improved significantly in both groups: from 20/617 to 20/62 in the IVB group, and from 20/443 to 20/86 in the non-IVB group (P=0.11 between groups). Operating time and postoperative complications (glaucoma, RD, and revitrectomy rate) were similar in both groups. On comparing IVB and non-IVB eyes in younger patients (≤ 40), operating time was shorter (P=0.02) and a trend to better VA in the IVB group was seen. CONCLUSIONS Preoperative IVB may be a useful adjunct to vitrectomy for severe PDR complicated by TRD, particularly in younger diabetics.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
22 |
22
|
Jiang X, An Z, Lu C, Chen Y, Du E, Qi S, Yang K, Zhang Z, Xu Y. The protective role of Nrf2-Gadd45b against antimony-induced oxidative stress and apoptosis in HEK293 cells. Toxicol Lett 2016; 256:11-8. [PMID: 27208483 DOI: 10.1016/j.toxlet.2016.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
Antimony (Sb) is one of the most prevalent heavy metals and frequently causes biological toxicity. However, the specific mechanisms by which Sb elicits its toxic effects remains to be fully elucidated. In this study, we found antimony trioxide (Sb2O3) caused a dose-dependent cytotoxicity against HEK293 cells, and Sb2O3-induced excessive reactive oxygen species (ROS) was closely correlated with increased cell apoptosis. Mechanistic investigation manifested that nuclear factor NF-E2-related factor 2 (Nrf2) expression and nuclear translocation were significantly induced under Sb2O3 treatment in HEK293 cells, and Nrf2 knockdown aggregated Sb2O3-induced cell apoptosis. Moreover, elevated Gadd45b expression actives the phosphorylation of MAPKs upon Sb2O3 exposure, whereas Gadd45b knockdown diminished Sb2O3-induced activation of MAPKs and promoted cell apoptosis. In the meantime, however, the antioxidant N-acetylcysteine (NAC) was found to ameliorate Nrf2 expression and nuclear translocation as well as Gadd45b expression and MAPKs activation by repressing Sb2O3-induced ROS production. More importantly, we found Gadd45b was transcriptionally enhanced by Nrf2 through binding to three canonical antioxidant response elements (AREs) within its promoter region. Either Sb2O3 or TBHQ (a selective Nrf2 activator) treatment, Gadd45b expression was significantly increased by luciferase assay. Nrf2 inhibition greatly diminished Gadd45b expression due to reduced binding of Nrf2 in Gadd45b promoter under Sb2O3 treatment. To summarize, this study demonstrated the Nrf2-Gadd45b signaling axis exhibited a protective role in Sb-induced cell apoptosis.
Collapse
|
Journal Article |
9 |
22 |
23
|
Chen Y, Wang M, Zhang T, Du E, Liu Y, Qi S, Xu Y, Zhang Z. Autophagic effects and mechanisms of silver nanoparticles in renal cells under low dose exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:71-77. [PMID: 30248563 DOI: 10.1016/j.ecoenv.2018.09.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
With the advancement of nanotechnology and unique properties, silver nanoparticles (AgNPs) have been generally used in our work and life. However, the concerns on nanosafety have not been thoroughly understood. Although mounting studies have documented AgNPs-mediated autophagy under toxic dose, very few studies have been made to reveal the mechanisms of AgNPs-induced autophagy at non-toxic concentrations. Here, we investigated AgNPs-mediated biological effects on autophagy in renal cells under sublethal exposure. Sublethal AgNPs resulted in increase of LC3II level and accumulation of autophagy related genes in HEK293T and A498 cells, which demonstrated AgNPs could activate autophagy at lower concentrations. Mechanistic investigation manifested that AMPK-mTOR signaling was enrolled in AgNPs-induced autophagy process rather than PI3K/AKT/mTOR signaling. In addition, P62 was elevated in AgNPs-treated cells in an mTOR-independent manner. We further uncovered that sublethal AgNPs exposure impaired the integrity and protease activities of lysosome. Together, our results revealed the mechanism by which AgNPs induced autophagy in renal cells under sublethal concentration.
Collapse
|
|
7 |
20 |
24
|
Du E, Lu C, Sheng F, Li C, Li H, Ding N, Chen Y, Zhang T, Yang K, Xu Y. Analysis of potential genes associated with primary cilia in bladder cancer. Cancer Manag Res 2018; 10:3047-3056. [PMID: 30214299 PMCID: PMC6124455 DOI: 10.2147/cmar.s175419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Dysfunction of primary cilia (PC), which could influence cell cycle and modulate cilia-related signaling transduction, has been reported in several cancers. However, there is no evidence of their function in bladder cancer (BLCA). This study was performed to investigate the presence of PC in BLCA and to explore the potential molecular mechanisms underlying the PC in BLCA. Patients and methods The presence of PC was assessed in BLCA and adjacent non-cancerous tissues. The gene expression dataset GSE52519 was employed to obtain differentially expressed genes (DEGs) associated with PC. The mRNA expression of the DEGs were confirmed by Gene Expression Profiling Interactive Analysis. The DEGs properties and pathways were analyzed by Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Genomatix software was used to predict putative transcription factor binding sites (TFBS) in the promoter region of DEGs, and the transcription factors were achieved according to the shared TFBS, which were supported by the ChIP-Sequence data. Results PC were found to be reduced in BLCA tissue samples in this study. Seven DEGs were observed to be associated with PC, and gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that these DEGs exhibited the properties and functions of PC, and that the Hedgehog signaling pathway probably participated in the pathogenesis and progression of BLCA. The mRNA expression of the seven DEGs in 404 BLCA and 28 normal tissue samples were analyzed, and five DEGs including CENPF, STIL, AURKA, STK39 and OSR1 were identified. Five TFBS including CREB, E2FF, EBOX, ETSF and HOXF in the promoter region of five DEGs were calculated and the transcription factors were obtained according to the shared TFBS. Conclusion PC were found to be reduced in BLCA, and the potential molecular mechanisms of PC in BLCA helped to provide novel diagnosis and therapeutic targets for BLCA.
Collapse
|
Journal Article |
7 |
19 |
25
|
Liu J, Qiang Y, Alvarez O, Du E. Electrical Impedance Characterization of Erythrocyte Response to Cyclic Hypoxia in Sickle Cell Disease. ACS Sens 2019; 4:1783-1790. [PMID: 31083931 PMCID: PMC7255762 DOI: 10.1021/acssensors.9b00263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell sickling is the process in which intracellular polymerization of deoxygenated sickle hemoglobin (HbS) leads to distorted, rigid cells, resulting in abnormal blood rheology and painful vaso-occlusion. Current methods for detection of this process mainly rely on optical microscopy of cellular morphology and measurements of cell deformability and blood rheology. As electrical impedance of cells is a sensitive indicator of changes in cellular structure and biophysical characteristics, it can be a promising marker for characterization of abnormal blood rheology and a means more convenient than optics to be integrated into point-of-care devices. In this work, a microfluidics-based electrical impedance sensor has been developed for characterizing the dynamic cell sickling-unsickling processes in sickle blood. The sensor is capable of measuring the continuous variation in the sickle cell suspension due to cyclic hypoxia-induced intracellular HbS polymerization and depolymerization. Simultaneous microscopic imaging of cell morphological change shows the reliability and repeatability of the electrical impedance-based measurements of cell sickling and unsickling processes. Strong correlation is found between the electrical impedance measurement and patients' hematological parameters such as levels of HbS and fetal hemoglobin. The combination of electrical impedance measurement and on-chip hypoxia control provides a promising method for rapid assessment of the dynamic processes of cell sickling and unsickling in patients with sickle cell disease.
Collapse
|
research-article |
6 |
19 |