1
|
Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 2009; 89:535-606. [PMID: 19342614 DOI: 10.1152/physrev.00042.2006] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct stressful stimuli.
Collapse
|
Review |
16 |
363 |
2
|
Sabban EL, Kvetnanský R. Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends Neurosci 2001; 24:91-8. [PMID: 11164939 DOI: 10.1016/s0166-2236(00)01687-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stress triggers important adaptive responses that enable an organism to cope with a changing environment. However, when prolonged or repeated, stress can be extremely harmful. The release of catecholamines is a key initial event in responses to stressors and is followed by an increase in the expression of genes that encode catecholamine-synthesizing enzymes. This process is mediated by transcriptional mechanisms in the adrenal medulla and the locus coeruleus. The persistence of transcriptional activation depends on the duration and repetition of the stress. Recent work has begun to identify the various transcription factors that are associated with brief or intermediate duration of a single or repeated stress. These studies suggest that dynamic interplay is involved in converting the transient increases in the rate of transcription into prolonged (potentially adaptive or maladaptive) changes in gene expression.
Collapse
|
Review |
24 |
209 |
3
|
Kvetnanský R, Pacák K, Fukuhara K, Viskupic E, Hiremagalur B, Nankova B, Goldstein DS, Sabban EL, Kopin IJ. Sympathoadrenal system in stress. Interaction with the hypothalamic-pituitary-adrenocortical system. Ann N Y Acad Sci 1995; 771:131-58. [PMID: 8597393 DOI: 10.1111/j.1749-6632.1995.tb44676.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exposure of an organism to any of a variety of stressors markedly activates the sympathoadrenal and hypothalamic-pituitary-adrenocortical systems. Interactions of these major stress systems occur at several levels in the periphery and the brain. In the present study, we used sham-operated or adrenalectomized cortisol-treated conscious rats to examine glucocorticoid effects on indices of CA release, metabolism, and synthesis, and on CA biosynthetic enzyme activities and gene expression at baseline and during immobilization stress (IMO). Adrenalectomy (ADX) stimulated basal and stress-induced increments in norepinephrine release, reuptake, metabolism, turnover, and biosynthesis. Loss of adrenomedullary hormones after ADX did not appear to contribute to these increments. Cortisol treatment reversed the ADX effects on CA indices and suppressed catecholaminergic responses to IMO in intact rats. These results suggest that endogenous glucocorticoids restrain responses of catecholamine turnover, synthesis, release, reuptake, and metabolism during stress. In contrast, in intact rats, continuous administration of cortisol lasting for 7 days exaggerated the IMO-induced increases in plasma CA levels. Inhibition of DOPA conversion to dopamine elevated plasma DOPA levels in chronically cortisol-treated stressed rats compared to saline-treated ones, suggesting a cortisol-induced increase in tyrosine hydroxylation. Stress increases TH and PNMT activities and mRNA levels in the adrenal medulla. Hypophysectomy reduced adrenal PNMT but not TH mRNA levels in control and IMO rats. Pretreatment of hypophysectomized animals with ACTH fully restored the control and IMO-induced adrenal PNMT mRNA levels and augmented PNMT but not TH mRNA responses in intact rats. Long-term cortisol administration to intact rats also elevated adrenal PNMT but not TH mRNA levels. The results indicate a suppressive effect of endogenous glucocorticoids and a stimulatory effect of chronically elevated glucocorticoid levels on sympathoadrenal activity during stress. The results also suggest that a nonneuronal, nonpituitary factor contributes to TH gene expression during some forms of stress, whereas pituitary-adrenocortical factors play the essential role in the regulation of PNMT gene expression.
Collapse
|
Review |
30 |
115 |
4
|
Nankova B, Kvetnanský R, McMahon A, Viskupic E, Hiremagalur B, Frankle G, Fukuhara K, Kopin IJ, Sabban EL. Induction of tyrosine hydroxylase gene expression by a nonneuronal nonpituitary-mediated mechanism in immobilization stress. Proc Natl Acad Sci U S A 1994; 91:5937-41. [PMID: 7912437 PMCID: PMC44112 DOI: 10.1073/pnas.91.13.5937] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stress stimulates the sympathoadrenal system, causing activation of the catecholamine biosynthetic enzymes. Here we examine the changes of gene expression of tyrosine hydroxylase (TH; EC 1.14.16.2), the initial enzyme of catecholamine biosynthesis, with stress. A single immobilization of rats led to a large transient elevation in TH mRNA and a small elevation in TH immunoreactive protein and activity. Repeated daily immobilizations triggered more sustained changes in TH mRNA levels. After two immobilizations, the levels remained elevated even 3 days later. The rise in TH mRNA was followed by increased immunoreactive protein but only a small elevation in activity. With seven repeated immobilizations, the animals did not appear to adapt and still manifested a further rise in TH mRNA. TH activity was markedly elevated and returned to control levels 7 days after the immobilization. The rise in TH mRNA with a single immobilization occurred even in adrenals of hypophysectomized rats that underwent splanchnic nerve section. Immobilization for 30 min was sufficient to increase TH mRNA. The effect was abolished by the transcriptional inhibitor actinomycin D. Mobility gel-shift assays revealed increased binding of c-Fos and c-Jun to the AP-1 transcription factor site after a single immobilization, and the binding was not further elevated with repeated stress. This study shows that a single immobilization can activate TH gene expression by a nonneuronal nonpituitary-mediated pathway associated with increased binding of AP-1 transcription factors.
Collapse
|
research-article |
31 |
96 |
5
|
Serova L, Rivkin M, Nakashima A, Sabban EL. Estradiol stimulates gene expression of norepinephrine biosynthetic enzymes in rat locus coeruleus. Neuroendocrinology 2002; 75:193-200. [PMID: 11914591 DOI: 10.1159/000048237] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gender-specific differences in susceptibility to a number of disorders related to catecholaminergic systems, including depression and hypertension, have been postulated to be mediated, at least in part, by estrogens. In this study, we examined if estrogens may regulate gene expression of norepinephrine biosynthetic enzymes. Administration of five injections of 15 or 40 microg/kg estradiol benzoate to ovariectomized (OVX) female rats elicited a dose-dependent elevation in mRNA levels of tyrosine hydroxylase (TH) in locus coeruleus, to as great as 3-fold over control. Dopamine beta-hydroxylase (DBH) mRNA levels were also similarly increased. To examine the mechanism, PC12 cells were cotransfected with luciferase reporter constructs under control of DBH or TH promoters [pDBH/Luc(-2,236/+21) or pTH/Luc(-272/+27 or -773/+27)] with an expression vector for estradiol receptor alpha. The cells were treated with 17beta-estradiol (E(2)) for 12-36 h. E(2) triggered a several fold increase in luciferase activity under control of the DBH promoter in a dose-dependent fashion. Omission of estrogen receptor alpha or addition of the estrogen receptor antagonist ICI 182,780 prevented the DBH promoter-driven increase in luciferase. When E(2) was given with 0.2 mM CPT-cAMP, reporter activity with pDBH/Luc(-2,236/+21) was increased greater than with either treatment alone. In contrast, addition of E(2) to cells transfected with pTH/Luc(-272/+27) elicited no change in basal luciferase activity nor in the response to 0.2 mM CPT-cAMP. These findings are the first to reveal that estrogen can stimulate DBH gene expression. Differing mechanisms may underlie the regulation of TH and DBH gene expression by estrogens.
Collapse
|
|
23 |
90 |
6
|
Serova LI, Laukova M, Alaluf LG, Pucillo L, Sabban EL. Intranasal neuropeptide Y reverses anxiety and depressive-like behavior impaired by single prolonged stress PTSD model. Eur Neuropsychopharmacol 2014; 24:142-7. [PMID: 24326087 DOI: 10.1016/j.euroneuro.2013.11.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/07/2013] [Accepted: 11/17/2013] [Indexed: 01/06/2023]
Abstract
PTSD is a debilitating neuropsychiatric disorder and many patients do not respond sufficiently to current treatments. Neuropeptide Y (NPY) is suggested to provide resilience to the development of PTSD and co-morbid depression. Injections of NPY to the rodent brain are anxiolytic. Recently we showed that intranasal delivery of NPY to rats before or immediately after exposure to single prolonged stress (SPS) animal model of PTSD prevented development of many biochemical and behavioral symptoms of PTSD, indicating its prophylactic potential. Here, we investigated whether intranasal NPY might provide benefits once symptoms have already developed. One week after exposure to SPS stressors, animals were given intranasal NPY or vehicle and tested on elevated plus maze 2h or 2 days later. The NPY treated rats had lower anxiety-like behavior than vehicle treated rats as indicated by more entries into open arms and fewer into closed arms, lower anxiety index, higher risk assessment and unprotected head dips and reduced grooming time. Their anxiety index was similar to that of unstressed controls. On most of these variables there was no effect of time interval and rats displayed similar overall changes 2h or 2 days after the infusion. Moreover, intranasal NPY led to reduced depressive-like behavior, assessed by forced swim test. Thus, intranasal NPY reversed several behavioral impairments triggered by the traumatic stress of SPS and has potential for non-invasive PTSD therapeutic intervention.
Collapse
|
|
11 |
83 |
7
|
Enman NM, Sabban EL, McGonigle P, Van Bockstaele EJ. Targeting the Neuropeptide Y System in Stress-related Psychiatric Disorders. Neurobiol Stress 2015; 1:33-43. [PMID: 25506604 PMCID: PMC4260418 DOI: 10.1016/j.ynstr.2014.09.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Repeated, extreme, or traumatic stressors can elicit pathological effects leading to many negative physical and psychological outcomes. Stressors can precipitate the onset of psychiatric diseases, or exacerbate pre-existing disorders including various anxiety and mood disorders. As stressors can negatively impact human psychiatric health, it is essential to identify neurochemicals that may confer protection from the negative sequelae of repeated or extreme stress exposure. Elucidating the neurobiological underpinnings of stress resilience will enhance our ability to promote resilience to, or recovery from, stress-related psychiatric disease. Herein, we will review the evidence for neuropeptide Y as an endogenous mediator of resilience and its potential relevance for the treatment of stress-related psychiatric diseases.
Overview of neuropeptide Y and receptor subtypes in the central nervous system. Alterations of neuropeptide Y in human stress-related psychiatric disorders. Evidence for neuropeptide Y in resilience to stress-related emotionality in rodent behavioral models. Pharmacotherapeutic implications for neuropeptide Y in the treatment of stress-related psychiatric disorders.
Collapse
|
Journal Article |
10 |
82 |
8
|
McMahon A, Kvetnanský R, Fukuhara K, Weise VK, Kopin IJ, Sabban EL. Regulation of Tyrosine Hydroxylase and Dopamine ?-Hydroxylase mRNA Levels in Rat Adrenals by a Single and Repeated Immobilization Stress. J Neurochem 1992; 58:2124-30. [PMID: 1349344 DOI: 10.1111/j.1471-4159.1992.tb10954.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adrenal catecholamines are known to mediate many of the physiological consequences of the "fight or flight" response to stress. However, the mechanisms by which the long-term responses to repeated stress are mediated are less well understood and possibly involve alterations in gene expression. In this study the effects of a single and repeated immobilization stress on mRNA levels of the adrenal catecholamine biosynthetic enzymes, tyrosine hydroxylase and dopamine beta-hydroxylase, were examined. A repeated 2-hr daily immobilization for 7 consecutive days markedly elevated both tyrosine hydroxylase and dopamine beta-hydroxylase mRNA levels (about six- and fourfold, respectively). In contrast, tyrosine hydroxylase but not dopamine beta-hydroxylase mRNA levels were elevated immediately following a single immobilization. The elevation in tyrosine hydroxylase mRNA with a single immobilization was as high as with seven daily repeated immobilizations. This elevation was not sustained and returned toward control values 24 hr later. Both tyrosine hydroxylase and dopamine beta-hydroxylase mRNA levels were elevated immediately following two daily immobilizations to levels similar to those observed after seven immobilizations and were maintained 24 hr later. The results indicate that both tyrosine hydroxylase and dopamine beta-hydroxylase mRNA levels are elevated by stress; however, the mechanism and/or timing of their regulation are not identical.
Collapse
|
|
33 |
75 |
9
|
McMahon A, Sabban EL. Regulation of Expression of Dopamine β-Hydroxylase in PC12 Cells by Glucocorticoids and Cyclic AMP Analogues. J Neurochem 2006; 59:2040-7. [PMID: 1359011 DOI: 10.1111/j.1471-4159.1992.tb10092.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulation of catecholamine biosynthesis is crucial in the adaptation to various physiological conditions, such as stress, and in several disorders, including hypertension and depression. In this study we have found that in PC12 cells, the mRNA levels of dopamine beta-hydroxylase (DBH), the enzyme that catalyzes the formation of norepinephrine from dopamine, can be regulated by glucocorticoids and cyclic AMP (cAMP) analogues. Treatment with dexamethasone increased DBH mRNA levels by 6 h. with maximal elevation (four- to fivefold) obtained after 1 day of exposure, and these levels were maintained for up to 4 days. DBH mRNA levels were also elevated on treatment of PC12 cells with 8-bromo cAMP for 8 h to 1 day. The response to 8-bromo cAMP, however, was bimodal, because DBH mRNA levels declined below control values on treatment for > 1 day. In combined treatments with 8-bromo cAMP and dexamethasone, the cAMP effect was dominant. To begin to characterize the regulation of DBH mRNA, genomic clones for rat DBH were isolated, and 1 kb of the 5' flanking region was sequenced. Several putative regulatory elements, which may be involved in cAMP and glucocorticoid regulation, were identified, including two adjacent cAMP response elements, another element that can also bind members of the ATF/CREB family of transcription factors, a NF-kappa B-like sequence, several AP-2 sites, and three core glucocorticoid receptor binding sequences.
Collapse
|
|
19 |
73 |
10
|
McMahon A, Geertman R, Sabban EL. Rat dopamine beta-hydroxylase: molecular cloning and characterization of the cDNA and regulation of the mRNA by reserpine. J Neurosci Res 1990; 25:395-404. [PMID: 2325165 DOI: 10.1002/jnr.490250317] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A number of cDNA clones for rat dopamine beta-hydroxylase (DBH) were isolated from a rat pheochromocytoma tumor cDNA library. The 2445 nucleotide sequence revealed a single open reading frame of 1860 nucleotides and a 3' untranslated region containing two polyadenylation addition signals. The cDNA coded for a 620 amino acid protein of 69,883 daltons. Six potential glycosylation sites and one potential phosphorylation site were identified. Amino acid residues likely to be involved in the active site of DBH and in copper ligand binding were identified. The N-terminal 42 amino acids appeared to constitute a typical but unusually long signal sequence. Hydropathy analysis indicated that this N-terminal region contained the only extensive hydrophobic domain and thus constituted the only obvious potential membrane attachment site. Northern analysis detected two mRNA species of 2.5 and 2.7 kb. The relative abundance of the 2.7 vs. 2.5 kb mRNAs was differentially regulated in PC12 cells and adrenals. DBH mRNA levels were induced in vivo in rat adrenals upon treatment with reserpine.
Collapse
|
|
35 |
73 |
11
|
Maharjan S, Serova L, Sabban EL. Transcriptional regulation of tyrosine hydroxylase by estrogen: opposite effects with estrogen receptors alpha and beta and interactions with cyclic AMP. J Neurochem 2005; 93:1502-14. [PMID: 15935066 DOI: 10.1111/j.1471-4159.2005.03142.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Reported effects of estrogen administration on tyrosine hydroxylase (TH) gene expression are confusing. Therefore, we studied the mechanism of regulation of TH transcription by estrogen with different estradiol receptor (ER) subtypes. PC12 cells, transiently co-transfected with expression vector for ERalpha or ERbeta, and luciferase gene under control of the TH promoter, were treated with 17 beta-estradiol (E2). E2 doubled luciferase activity with ERalpha; however, it was decreased with ERbeta. Mapping the TH promoter showed that the putative half estrogen response element (ERE) motif at - 675, as well as the activation protein 1 motif at - 205, were not required for response to E2 with either ER. The specificity protein 1/early growth response gene 1 (Egr 1) motif was required for the E2-elicited response with ERbeta, but not with ERalpha. Deletion of the cyclic AMP/Ca2+ response element (CRE/CaRE) nearly abolished E2-triggered responses with either ER. Further analysis revealed an imperfect canonical putative ERE overlapping with CRE/CaRE and Nurr1 response element. Oligonucleotides spanning this ERE displayed binding to ER, Cyclic AMP Response Element Binding Protein (CREB) and other proteins. Moreover, E2 attenuated the increase in TH transcription seen with cyclic AMP analogs. Thus, TH is transcriptionally regulated by estradiol in opposite directions depending on ER subtype. The overlapping ERE and CRE/CaRE may integrate interactions elicited by various regulators of TH transcription including cAMP and estrogens.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
70 |
12
|
Serova LI, Maharjan S, Huang A, Sun D, Kaley G, Sabban EL. Response of tyrosine hydroxylase and GTP cyclohydrolase I gene expression to estrogen in brain catecholaminergic regions varies with mode of administration. Brain Res 2004; 1015:1-8. [PMID: 15223360 DOI: 10.1016/j.brainres.2004.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2004] [Indexed: 11/19/2022]
Abstract
The effect of different dose, mode and duration of estradiol administration was examined in the different brain catecholaminergic areas in ovariectomized (OVX) female rats. We determined changes in mRNA levels of tyrosine hydroxylase (TH), rate-limiting enzyme in catecholamine (CA) biosynthesis of GTP cyclohydrolase I (GTPCH), rate-limiting enzyme in biosynthesis as well as of tetrahydrobiopterin (BH4), and concentration of BH4, which is an essential cofactor for TH, tryptophan hydroxylase and nitric oxide synthase. Short-term administration of estradiol benzoate (EB) by five injections of 15 or 40 microg/kg 12 h apart led to increase in TH and GTPCH mRNA levels in dopaminergic and noradrenergic cell bodies of the ventral tegmental area (VTA), substantia nigra (SN), locus coeruleus (LC) and the nucleus of solitary tract (NTS) depending on dose of administration. Estrogen-elicited alterations in BH4 concentrations were mostly correlated with changes in GTPCH mRNA levels, except in SN. Long-term administration of estradiol by injections (EB: 25 microg/kg, 16 injections 26 h apart; 50 microg/kg, 16 injections 48 h apart) or pellets (0.1 mg 17 beta-estradiol, 14 days) were not very effective in modulating mRNA levels for both genes in most locations except the NTS. Long-term injections of EB elevated GTPCH mRNA levels throughout the NTS and in microvessels. Administration of estradiol by pellets led to decline of TH mRNA in rostral-medial and elevation in caudal parts of the NTS. Thus, estradiol has a complex and differential effect on TH and GTPCH gene expression in a tissue specific manner and depends on the mode of administration.
Collapse
|
Comparative Study |
21 |
69 |
13
|
Chamas F, Serova L, Sabban EL. Tryptophan hydroxylase mRNA levels are elevated by repeated immobilization stress in rat raphe nuclei but not in pineal gland. Neurosci Lett 1999; 267:157-60. [PMID: 10381000 DOI: 10.1016/s0304-3940(99)00340-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Repeated stress triggers a wide range of adaptive changes in the central nervous system including the elevation of serotonin (5-HT) metabolism and an increased susceptibility to affective disorders. To begin to examine whether these changes are mediated by alterations in gene expression for tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, we quantitated its mRNA levels by competitive reverse transcription-polymerase chain reaction (RT-PCR). Repeated immobilization stress (2 h, 7 days) elicited a six- or ten-fold rise in TPH mRNA in median raphe nucleus (MRN) and dorsal raphe nucleus (DRN), respectively, without significantly altering TPH mRNA levels in the pineal gland. In contrast, there was little change in mRNA levels for GTP cyclohydrolase I (GTPCH), the rate limiting enzyme in synthesis of the tetrahydrobiopterin (BH4), the obligate cofactor for TPH. This is the first study to reveal stress-elicited activation of TPH gene expression.
Collapse
|
|
26 |
64 |
14
|
Laukova M, Alaluf LG, Serova LI, Arango V, Sabban EL. Early intervention with intranasal NPY prevents single prolonged stress-triggered impairments in hypothalamus and ventral hippocampus in male rats. Endocrinology 2014; 155:3920-33. [PMID: 25057792 DOI: 10.1210/en.2014-1192] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intranasal administration of neuropeptide Y (NPY) is a promising treatment strategy to reduce traumatic stress-induced neuropsychiatric symptoms of posttraumatic stress disorder (PTSD). We evaluated the potential of intranasal NPY to prevent dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, a core neuroendocrine feature of PTSD. Rats were exposed to single prolonged stress (SPS), a PTSD animal model, and infused intranasally with vehicle or NPY immediately after SPS stressors. After 7 days undisturbed, hypothalamus and hippocampus, 2 structures regulating the HPA axis activity, were examined for changes in glucocorticoid receptor (GR) and CRH expression. Plasma ACTH and corticosterone, and hypothalamic CRH mRNA, were significantly higher in the vehicle but not NPY-treated group, compared with unstressed controls. Although total GR levels were not altered in hypothalamus, a significant decrease of GR phosphorylated on Ser232 and increased FK506-binding protein 5 mRNA were observed with the vehicle but not in animals infused with intranasal NPY. In contrast, in the ventral hippocampus, only vehicle-treated animals demonstrated elevated GR protein expression and increased GR phosphorylation on Ser232, specifically in the nuclear fraction. Additionally, SPS-induced increase of CRH mRNA in the ventral hippocampus was accompanied by apparent decrease of CRH peptide particularly in the CA3 subfield, both prevented by NPY. The results show that early intervention with intranasal NPY can prevent traumatic stress-triggered dysregulation of the HPA axis likely by restoring HPA axis proper negative feedback inhibition via GR. Thus, intranasal NPY has a potential as a noninvasive therapy to prevent negative effects of traumatic stress.
Collapse
|
|
11 |
63 |
15
|
Milsted A, Serova L, Sabban EL, Dunphy G, Turner ME, Ely DL. Regulation of tyrosine hydroxylase gene transcription by Sry. Neurosci Lett 2005; 369:203-7. [PMID: 15464265 DOI: 10.1016/j.neulet.2004.07.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 07/20/2004] [Indexed: 11/25/2022]
Abstract
Testes determining factor Sry is encoded by the Sry locus on the Y chromosome and may be involved in the regulation of blood pressure. Here we tested the hypothesis that Sry regulates transcription of tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines. Sry was found to be expressed in catecholaminergic regions, in male but not female rats. Co-transfection of PC12 cells with expression vector for Sry and the reporter construct [p5'TH(-773/+27)/Luc], containing 773 of the proximal nucleotides of the TH promoter directing luciferase reporter activity, led to elevation of reporter activity. The reporter activity of a shorter construct [p5'TH(-272/+27)/Luc] lacking putative Sry sites also responded to Sry. However, mutation of the AP1 site in the TH promoter greatly reduced induction by Sry, indicating that the regulation is primarily at this motif. The remaining, significantly increased expression with the mutated TH promoter construct may reflect Sry function at other sites in addition to the AP1 motif. These results reveal that Sry can regulate TH transcription and suggest that this may be one of the mechanisms of Sry mediated regulation of catecholamine biosynthesis in catecholaminergic neurons in males.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
62 |
16
|
Chamas FM, Underwood MD, Arango V, Serova L, Kassir SA, Mann JJ, Sabban EL. Immobilization stress elevates tryptophan hydroxylase mRNA and protein in the rat raphe nuclei. Biol Psychiatry 2004; 55:278-83. [PMID: 14744469 DOI: 10.1016/s0006-3223(03)00788-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Stress triggers adaptive and maladaptive changes in the central nervous system, including activation of the hypothalamic-pituitary-adrenal axis, and can trigger mood disorders and posttraumatic stress disorder. We examined the effect of immobilization stress (IMO) on gene expression of tryptophan hydroxylase (TPH), the rate-limiting enzyme in serotonin biosynthesis, and the role of cortisol in that response. METHODS Regular and adrenalectomized Sprague-Dawley rats were exposed to various repetitions of IMO. Tryptophan hydroxylase messenger ribonucleic acid (mRNA) was determined by competitive reverse transcriptase polymerase chain reaction, and TPH protein was examined by immunoblot and immunocytochemistry. RESULTS Elevation of TPH mRNA by IMO was tissue-specific and dose-dependent. A single IMO elicited a threefold rise in TPH mRNA in median raphe nucleus (MRN), but repeated (3x) IMOs were needed for similar response in dorsal raphe nucleus (DRN). Repeated daily IMO, up to 7 days, triggered a robust induction (6-10-fold) in TPH mRNA, accompanied by corresponding rise in TPH protein levels in raphe nuclei but not in the pineal gland. The rise in TPH immunoreactivity was widespread throughout the DRN and MRN. Bilateral adrenalectomy did not prevent the IMO-triggered increase in TPH immunoreactive protein in the raphe nuclei. CONCLUSIONS This study reveals adrenal glucocorticoid-independent induction of TPH gene expression in raphe nuclei in response to immobilization stress.
Collapse
|
|
21 |
62 |
17
|
Nankova B, Kvetnansky R, Hiremagalur B, Sabban B, Rusnak M, Sabban EL. Immobilization stress elevates gene expression for catecholamine biosynthetic enzymes and some neuropeptides in rat sympathetic ganglia: effects of adrenocorticotropin and glucocorticoids. Endocrinology 1996; 137:5597-604. [PMID: 8940389 DOI: 10.1210/endo.137.12.8940389] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sympathetic ganglia are the major contributors to the stress-elicited rise in circulating norepinephrine, enkephalins, and neuropeptide Y. Here we examined the effect of immobilization stress and treatment with ACTH and glucocorticoids on messenger RNA (mRNA) levels for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), preproneuropeptide Y (pre-NPY), and proenkephalin in rat superior cervical ganglia (SCG) and in stellate ganglia. Our results show a severalfold increase in the relative abundance of TH and NPY mRNAs in response to a single immobilization. Repeated stress elevated expression of all the genes studied and increased TH immunoreactivity in both ganglia. The effect of stress was more pronounced in SCG. Prolonged cortisol administration failed to alter the mRNA levels of TH, DBH, and NPY in control animals but attenuated the response to stress. In contrast, TH and DBH mRNA levels in the SCG, but not in adrenal medulla, were elevated by ACTH administration, similar to the levels attained after immobilization. The results revealed that the regulation of gene expression in response to immobilization stress in sympathetic neurons differs from the regulation in adrenal medulla. The study implicates hormonal involvement in the stress-induced changes in TH, DBH, NPY, and proenkephalin gene expression in sympathetic ganglia.
Collapse
|
|
29 |
60 |
18
|
Hafko R, Villapol S, Nostramo R, Symes A, Sabban EL, Inagami T, Saavedra JM. Commercially available angiotensin II At₂ receptor antibodies are nonspecific. PLoS One 2013; 8:e69234. [PMID: 23840911 PMCID: PMC3698141 DOI: 10.1371/journal.pone.0069234] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/06/2013] [Indexed: 12/31/2022] Open
Abstract
Commercially available angiotensin II At₂ receptor antibodies are widely employed for receptor localization and quantification, but they have not been adequately validated. In this study, we characterized three commercially available At₂ receptor antibodies: 2818-1 from Epitomics, sc-9040 from Santa Cruz Biotechnology, Inc., and AAR-012 from Alomone Labs. Using western blot analysis the immunostaining patterns observed were different for every antibody tested, and in most cases consisted of multiple immunoreactive bands. Identical immunoreactive patterns were present in wild-type and At₂ receptor knockout mice not expressing the target protein. In the mouse brain, immunocytochemical studies revealed very different cellular immunoreactivity for each antibody tested. While the 2818-1 antibody reacted only with endothelial cells in small parenchymal arteries, the sc-9040 antibody reacted only with ependymal cells lining the cerebral ventricles, and the AAR-012 antibody reacted only with multiple neuronal cell bodies in the cerebral cortex. Moreover, the immunoreactivities were identical in brain tissue from wild-type or At₂ receptor knockout mice. Furthermore, in both mice and rat tissue extracts, there was no correlation between the observed immunoreactivity and the presence or absence of At₂ receptor binding or gene expression. We conclude that none of these commercially available At₂ receptor antibodies tested met the criteria for specificity. In the absence of full antibody characterization, competitive radioligand binding and determination of mRNA expression remain the only reliable approaches to study At₂ receptor expression.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
60 |
19
|
Serova LI, Nankova BB, Feng Z, Hong JS, Hutt M, Sabban EL. Heightened transcription for enzymes involved in norepinephrine biosynthesis in the rat locus coeruleus by immobilization stress. Biol Psychiatry 1999; 45:853-62. [PMID: 10202573 DOI: 10.1016/s0006-3223(98)90360-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The locus coeruleus (LC), a target for CRH neurons, is critically involved in responses to stress. Various physiological stresses increase norepinephrine turnover, tyrosine hydroxylase (TH) enzymatic activity, protein and mRNA levels in LC cell bodies and terminals; however, the effect of stress on other enzymes involved in norepinephrine biosynthesis in the LC is unknown. METHODS Rats were exposed to single (2 hour) or repeated (2 hour daily) immobilization stress (IMO). Recombinant rat dopamine b-hydroxylase (DBH) cDNA was expressed in E. coli and used to generate antisera for immunohistochemistry and immunoblots in LC. Northern blots were used to assess changes in mRNA levels for TH, DBH, and GTP cyclohydrolase I (GTPCH) in the LC in response to the stress. Conditions were found to isolate nuclei from LC and to use them for run-on assays of transcription. RESULTS Repeated stress elevated the DBH immunoreactive protein levels in LC. Parallel increases in TH, DBH and GTPCH mRNA levels of about 300% to 400% over control levels were observed with single IMO, and remained at similar levels after repeated IMO. This effect was transcriptionally mediated, and even 30 min of a single IMO significantly increased the relative rate of transcription. CONCLUSIONS This study is the first to reveal transcriptional activation of the genes encoding catecholamine biosynthetic enzymes in the LC by stress. In addition to TH, changes in DBH and GTPCH gene expression may also contribute to the development of stress-triggered affective disorders.
Collapse
|
|
26 |
59 |
20
|
Sabban EL, Alaluf LG, Serova LI. Potential of neuropeptide Y for preventing or treating post-traumatic stress disorder. Neuropeptides 2016; 56:19-24. [PMID: 26617395 DOI: 10.1016/j.npep.2015.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
There is extensive evidence that NPY in the brain can modulate the responses to stress and play a critical role in resistance to, or recovery from, harmful effects of stress. Development of PTSD and comorbid depression following exposure to traumatic stress are associated with low NPY. This review discusses putative mechanisms for NPY's anti-stress actions. Recent preclinical data indicating potential for intranasal delivery of NPY to brain as a promising non-invasive strategy to prevent a variety of neuroendocrine, molecular and behavioral impairments in PTSD model are summarized.
Collapse
|
Review |
9 |
56 |
21
|
Hebert MA, Serova LI, Sabban EL. Single and repeated immobilization stress differentially trigger induction and phosphorylation of several transcription factors and mitogen-activated protein kinases in the rat locus coeruleus. J Neurochem 2005; 95:484-98. [PMID: 16190871 DOI: 10.1111/j.1471-4159.2005.03386.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The locus coeruleus (LC) is a critical stress-responsive location that mediates many of the responses to stress. We used immunoblotting and immunohistochemistry to investigate changes in induction and phosphorylation of several transcription factors and kinases in the LC that may mediate the stress-triggered induction of tyrosine hydroxylase (TH) transcription. Rats were exposed to single or repeated immobilization stress (IMO) for brief (5 min), intermediate (30 min) or sustained (2 h) duration. Single IMO elicited rapid induction of c-Fos and phosphorylation of cyclic AMP response element-binding protein (CREB) without changing the expression of early growth response (Egr)1, Fos-related antigen (Fra)-2 or phosphorylated activating transcription factor-2. Repeated IMO triggered increased phosphorylation and levels of CREB along with transient induction of c-Fos and increased Fra-2 expression. Several mitogen-activated protein kinases were activated by repeated IMO, shown by increased phosphorylation of p38, c-Jun N-terminal kinase (JNK)1/2/3 and extracellular signal-regulated kinase (ERK1/2). ERK1 was the major isoform expressed, and ERK2 the predominant isoform phosphorylated. Repeated IMO elicited hyperphosphorylation of ERK1/2 selectively in TH immunoreactive neurons, with substantial nuclear localization. These distinct alterations in transcriptional pathways following repeated compared with single stress may be involved in mediating long-lasting neuronal remodeling and are implicated in the mechanisms by which acute beneficial responses to stress are converted into prolonged adaptive or maladaptive responses.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
56 |
22
|
Sabban EL, Greene LA, Goldstein M. Mechanism of biosynthesis of soluble and membrane-bound forms of dopamine beta-hydroxylase in PC12 pheochromocytoma cells. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32251-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
42 |
53 |
23
|
Hiremagalur B, Sabban EL. Nicotine elicits changes in expression of adrenal catecholamine biosynthetic enzymes, neuropeptide Y and immediate early genes by injection but not continuous administration. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 32:109-15. [PMID: 7494448 DOI: 10.1016/0169-328x(95)00068-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nicotine, a major pharmacologically active component of tobacco smoke, is generally believed to be one of the factors responsible for the deleterious consequences of cigarette smoking. Nicotine activates the sympathoadrenal system and increases the synthesis and release of catecholamines into circulation. In this study we show that single and repeated injections of nicotine increase the expression of tyrosine hydroxylase (TH), a rate limiting enzyme in the catecholamine biosynthetic pathway. These treatments also regulated the expression of dopamine beta-hydroxylase (DBH) and neuropeptide Y (NPY) in rat adrenals. The effect of nicotine on several transcription factors in the adrenal medulla was examined. Nicotine administration by injection increased the phosphorylation of CREB and induced c-Fos protein without affecting members of the jun family. In contrast to the results with injections, continuous infusion via osmotic pumps did not affect any of these parameters. These data indicate that activation of several transcription factors and increased expression of TH, DBH, and NPY is dependent on the mode of nicotine administration.
Collapse
|
Comparative Study |
30 |
51 |
24
|
Gueorguiev VD, Zeman RJ, Hiremagalur B, Menezes A, Sabban EL. Differing temporal roles of Ca2+ and cAMP in nicotine-elicited elevation of tyrosine hydroxylase mRNA. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C54-65. [PMID: 9886920 DOI: 10.1152/ajpcell.1999.276.1.c54] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The involvement of cAMP- and Ca2+-mediated pathways in the activation of tyrosine hydroxylase (TH) gene expression by nicotine was examined in PC-12 cells. Extracellular Ca2+ and elevations in intracellular Ca2+ concentration ([Ca2+]i) were required for nicotine to increase TH mRNA. The nicotine-elicited rapid rise in [Ca2+]i was inhibited by blockers of either L-type or N-type, and to a lesser extent P/Q-, but not T-type, voltage-gated Ca2+ channels. With continual nicotine treatment, [Ca2+]i returned to basal levels within 3-4 min. After a lag of approximately 5-10 min, there was a smaller elevation in [Ca2+]i that persisted for 6 h and displayed different responsiveness to Ca2+ channel blockers. This second phase of elevated [Ca2+]i was blocked by an inhibitor of store-operated Ca2+ channels, consistent with the observed generation of inositol trisphosphate. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM), when added before or 2 h after nicotine, prevented elevation of TH mRNA. Nicotine treatment significantly raised cAMP levels. Addition of the adenylyl cyclase inhibitor 2', 5'-dideoxyadenosine (DDA) prevented the nicotine-elicited phosphorylation of cAMP response element binding protein. DDA also blocked the elevation of TH mRNA only when added after the initial transient rise in [Ca2+]i and not after 1 h. This study reveals that several temporal phases are involved in the induction of TH gene expression by nicotine, each of them with differing requirements for Ca2+ and cAMP.
Collapse
|
|
26 |
51 |
25
|
Nakashima A, Ota A, Sabban EL. Interactions between Egr1 and AP1 factors in regulation of tyrosine hydroxylase transcription. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:61-9. [PMID: 12670703 DOI: 10.1016/s0169-328x(03)00047-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several treatments which regulate tyrosine hydroxylase (TH) transcription, such as stress in vivo, or 12-O-tetradecanoylphorbol-13-acetate (TPA) in cell culture, induce both Egr1 and AP1 factors. Previously, we identified a functional Egr1 motif overlapping with Sp1 site in the rat TH promoter. Its response to Egr1 also required the presence of an AP1/Ebox motif. Here, we further examined the cross-talk between these sites. Insertion of 10- or 20-bp between the Sp1/Egr1 and AP1/Ebox elements, reduced the ability of Egr1 to upregulate luciferase reporter activity controlled by the proximal 272 nucleotides of the rat TH promoter in PC12 cells. Electrophoretic mobility shift assays with nuclear extracts from TPA treated cells were used to identify the composition of the factors which bound the AP1/Ebox motif and whether there is competition with factors which bind the Sp1/Egr1 motif. The complexes formed with labeled AP1/E box oligonucleotide were reduced or supershifted with antisera to Fos family, c-Fos, Fra-2, and Jun D. Excess Sp1/Egr1 oligonucleotide or anti Egr1 antisera did not compete. Fra-2 was a major component of the complex after 2-4 h TPA. Transfection of PC12 cells with Fra-2 induced reporter activity requiring the AP1, but not the Egr1 motif. However, when cotransfected with Fra-2, Egr1 expression plasmids elicited lower induction of luciferase activity than observed with Egr1 alone. Our results suggest that although it does not compete for binding to the promoter, Egr1 can modulate the regulation of TH transcription by AP1 factors.
Collapse
|
|
22 |
51 |