1
|
Wu M, Maier E, Benz R, Hancock RE. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 1999; 38:7235-42. [PMID: 10353835 DOI: 10.1021/bi9826299] [Citation(s) in RCA: 572] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antimicrobial cationic peptides are prevalent throughout nature as part of the intrinsic defenses of most organisms, and have been proposed as a blueprint for the design of novel antimicrobial agents. They are known to interact with membranes, and it has been frequently proposed that this represents their antibacterial target. To see if this was a general mechanism of action, we studied the interaction, with model membranes and the cytoplasmic membrane of Escherichia coli, of 12 peptides representing all 4 structural classes of antimicrobial peptides. Planar lipid bilayer studies indicated that there was considerable variance in the interactions of the peptides with model phospholipid membranes, but generally both high concentrations of peptide and high transmembrane voltages (usually -180 mV) were required to observe conductance events (channels). The channels observed for most peptides varied widely in magnitude and duration. An assay was developed to measure the interaction with the Escherichia coli cytoplasmic membrane employing the membrane potential sensitive dye 3,5-dipropylthiacarbocyanine in the outer membrane barrier-defective E. coli strain DC2. It was demonstrated that individual peptides varied widely in their ability to depolarize the cytoplasmic membrane potential of E. coli, with certain peptides such as the loop peptide bactenecin and the alpha-helical peptide CP26 being unable to cause depolarization at the minimal inhibitory concentration (MIC), and others like gramicidin S causing maximal depolarization below the MIC. We discuss the mechanism of interaction with the cytoplasmic membrane in terms of the model of Matsuzaki et al. [(1998) Biochemistry 37, 15144-15153] and the possibility that the cytoplasmic membrane is not the target for some or even most cationic antimicrobial peptides.
Collapse
|
|
26 |
572 |
2
|
Hoheisel JD, Maier E, Mott R, McCarthy L, Grigoriev AV, Schalkwyk LC, Nizetic D, Francis F, Lehrach H. High resolution cosmid and P1 maps spanning the 14 Mb genome of the fission yeast S. pombe. Cell 1993; 73:109-20. [PMID: 8462094 DOI: 10.1016/0092-8674(93)90164-l] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Gridded on high density filters, a P1 genomic library of 17-fold coverage and a cosmid library of 8 genome equivalents, both made from S. pombe strain 972h-, were ordered by hybridizing genetic markers and individual clones from the two libraries. Yeast artificial chromosome (YAC) clones covering the entire genome were used to subdivide the libraries, and hybridization of short oligonucleotides and DNA pools made from randomly selected cosmids provided further mapping information. Restriction digests were generated as an independent confirmation of the clone order. The high resolution clone map was aligned to the genetic map and the physical Notl and YAC maps. The usefulness of the various mapping techniques and cloning procedures could be assessed upon the different data sets.
Collapse
|
|
32 |
199 |
3
|
Kölker S, Garbade SF, Greenberg CR, Leonard JV, Saudubray JM, Ribes A, Kalkanoglu HS, Lund AM, Merinero B, Wajner M, Troncoso M, Williams M, Walter JH, Campistol J, Martí-Herrero M, Caswill M, Burlina AB, Lagler F, Maier EM, Schwahn B, Tokatli A, Dursun A, Coskun T, Chalmers RA, Koeller DM, Zschocke J, Christensen E, Burgard P, Hoffmann GF. Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Pediatr Res 2006; 59:840-7. [PMID: 16641220 DOI: 10.1203/01.pdr.0000219387.79887.86] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutaryl-CoA dehydrogenase (GCDH) deficiency is a rare inborn disorder of L-lysine, L-hydroxylysine, and L-tryptophan metabolism complicated by striatal damage during acute encephalopathic crises. Three decades after its description, the natural history and how to treat this disorder are still incompletely understood. To study which variables influenced the outcome, we conducted an international cross-sectional study in 35 metabolic centers. Our main outcome measures were onset and neurologic sequelae of acute encephalopathic crises. A total of 279 patients (160 male, 119 female) were included who were diagnosed clinically after clinical presentation (n = 218) or presymptomatically by neonatal screening (n = 23), high-risk screening (n = 24), or macrocephaly (n = 14). Most symptomatic patients (n = 185) had encephalopathic crises, characteristically resulting in bilateral striatal damage and dystonia, secondary complications, and reduced life expectancy. First crises usually occurred during infancy (95% by age 2 y); the oldest age at which a repeat crisis was reported was 70 mo. In a few patients, neurologic disease developed without a reported crisis. Differences in the diagnostic criteria and therapeutic protocols for patients with GCDH deficiency resulted in a huge variability in the outcome worldwide. Recursive partitioning demonstrated that timely diagnosis in neurologically asymptomatic patients followed by treatment with L-carnitine and a lysine-restricted diet was the best predictor of good outcome, whereas treatment efficacy was low in patients diagnosed after the onset of neurologic disease. Notably, the biochemical phenotype did not predict the clinical phenotype. Our study proves GCDH deficiency to be a treatable disorder and a good candidate for neonatal screening.
Collapse
|
|
19 |
193 |
4
|
Zech M, Jech R, Boesch S, Škorvánek M, Weber S, Wagner M, Zhao C, Jochim A, Necpál J, Dincer Y, Vill K, Distelmaier F, Stoklosa M, Krenn M, Grunwald S, Bock-Bierbaum T, Fečíková A, Havránková P, Roth J, Příhodová I, Adamovičová M, Ulmanová O, Bechyně K, Danhofer P, Veselý B, Haň V, Pavelekova P, Gdovinová Z, Mantel T, Meindl T, Sitzberger A, Schröder S, Blaschek A, Roser T, Bonfert MV, Haberlandt E, Plecko B, Leineweber B, Berweck S, Herberhold T, Langguth B, Švantnerová J, Minár M, Ramos-Rivera GA, Wojcik MH, Pajusalu S, Õunap K, Schatz UA, Pölsler L, Milenkovic I, Laccone F, Pilshofer V, Colombo R, Patzer S, Iuso A, Vera J, Troncoso M, Fang F, Prokisch H, Wilbert F, Eckenweiler M, Graf E, Westphal DS, Riedhammer KM, Brunet T, Alhaddad B, Berutti R, Strom TM, Hecht M, Baumann M, Wolf M, Telegrafi A, Person RE, Zamora FM, Henderson LB, Weise D, Musacchio T, Volkmann J, Szuto A, Becker J, Cremer K, Sycha T, Zimprich F, Kraus V, Makowski C, Gonzalez-Alegre P, Bardakjian TM, Ozelius LJ, Vetro A, Guerrini R, Maier E, Borggraefe I, Kuster A, Wortmann SB, Hackenberg A, Steinfeld R, Assmann B, Staufner C, Opladen T, Růžička E, et alZech M, Jech R, Boesch S, Škorvánek M, Weber S, Wagner M, Zhao C, Jochim A, Necpál J, Dincer Y, Vill K, Distelmaier F, Stoklosa M, Krenn M, Grunwald S, Bock-Bierbaum T, Fečíková A, Havránková P, Roth J, Příhodová I, Adamovičová M, Ulmanová O, Bechyně K, Danhofer P, Veselý B, Haň V, Pavelekova P, Gdovinová Z, Mantel T, Meindl T, Sitzberger A, Schröder S, Blaschek A, Roser T, Bonfert MV, Haberlandt E, Plecko B, Leineweber B, Berweck S, Herberhold T, Langguth B, Švantnerová J, Minár M, Ramos-Rivera GA, Wojcik MH, Pajusalu S, Õunap K, Schatz UA, Pölsler L, Milenkovic I, Laccone F, Pilshofer V, Colombo R, Patzer S, Iuso A, Vera J, Troncoso M, Fang F, Prokisch H, Wilbert F, Eckenweiler M, Graf E, Westphal DS, Riedhammer KM, Brunet T, Alhaddad B, Berutti R, Strom TM, Hecht M, Baumann M, Wolf M, Telegrafi A, Person RE, Zamora FM, Henderson LB, Weise D, Musacchio T, Volkmann J, Szuto A, Becker J, Cremer K, Sycha T, Zimprich F, Kraus V, Makowski C, Gonzalez-Alegre P, Bardakjian TM, Ozelius LJ, Vetro A, Guerrini R, Maier E, Borggraefe I, Kuster A, Wortmann SB, Hackenberg A, Steinfeld R, Assmann B, Staufner C, Opladen T, Růžička E, Cohn RD, Dyment D, Chung WK, Engels H, Ceballos-Baumann A, Ploski R, Daumke O, Haslinger B, Mall V, Oexle K, Winkelmann J. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol 2020; 19:908-918. [PMID: 33098801 DOI: 10.1016/s1474-4422(20)30312-4] [Show More Authors] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dystonia is a clinically and genetically heterogeneous condition that occurs in isolation (isolated dystonia), in combination with other movement disorders (combined dystonia), or in the context of multisymptomatic phenotypes (isolated or combined dystonia with other neurological involvement). However, our understanding of its aetiology is still incomplete. We aimed to elucidate the monogenic causes for the major clinical categories of dystonia. METHODS For this exome-wide sequencing study, study participants were identified at 33 movement-disorder and neuropaediatric specialty centres in Austria, Czech Republic, France, Germany, Poland, Slovakia, and Switzerland. Each individual with dystonia was diagnosed in accordance with the dystonia consensus definition. Index cases were eligible for this study if they had no previous genetic diagnosis and no indication of an acquired cause of their illness. The second criterion was not applied to a subset of participants with a working clinical diagnosis of dystonic cerebral palsy. Genomic DNA was extracted from blood of participants and whole-exome sequenced. To find causative variants in known disorder-associated genes, all variants were filtered, and unreported variants were classified according to American College of Medical Genetics and Genomics guidelines. All considered variants were reviewed in expert round-table sessions to validate their clinical significance. Variants that survived filtering and interpretation procedures were defined as diagnostic variants. In the cases that went undiagnosed, candidate dystonia-causing genes were prioritised in a stepwise workflow. FINDINGS We sequenced the exomes of 764 individuals with dystonia and 346 healthy parents who were recruited between June 1, 2015, and July 31, 2019. We identified causative or probable causative variants in 135 (19%) of 728 families, involving 78 distinct monogenic disorders. We observed a larger proportion of individuals with diagnostic variants in those with dystonia (either isolated or combined) with coexisting non-movement disorder-related neurological symptoms (100 [45%] of 222; excepting cases with evidence of perinatal brain injury) than in those with combined (19 [19%] of 98) or isolated (16 [4%] of 388) dystonia. Across all categories of dystonia, 104 (65%) of the 160 detected variants affected genes which are associated with neurodevelopmental disorders. We found diagnostic variants in 11 genes not previously linked to dystonia, and propose a predictive clinical score that could guide the implementation of exome sequencing in routine diagnostics. In cases without perinatal sentinel events, genomic alterations contributed substantively to the diagnosis of dystonic cerebral palsy. In 15 families, we delineated 12 candidate genes. These include IMPDH2, encoding a key purine biosynthetic enzyme, for which robust evidence existed for its involvement in a neurodevelopmental disorder with dystonia. We identified six variants in IMPDH2, collected from four independent cohorts, that were predicted to be deleterious de-novo variants and expected to result in deregulation of purine metabolism. INTERPRETATION In this study, we have determined the role of monogenic variants across the range of dystonic disorders, providing guidance for the introduction of personalised care strategies and fostering follow-up pathophysiological explorations. FUNDING Else Kröner-Fresenius-Stiftung, Technische Universität München, Helmholtz Zentrum München, Medizinische Universität Innsbruck, Charles University in Prague, Czech Ministry of Education, the Slovak Grant and Development Agency, the Slovak Research and Grant Agency.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
156 |
5
|
Boy N, Mühlhausen C, Maier EM, Heringer J, Assmann B, Burgard P, Dixon M, Fleissner S, Greenberg CR, Harting I, Hoffmann GF, Karall D, Koeller DM, Krawinkel MB, Okun JG, Opladen T, Posset R, Sahm K, Zschocke J, Kölker S. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 2017; 40:75-101. [PMID: 27853989 DOI: 10.1007/s10545-016-9999-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
Glutaric aciduria type I (GA-I; synonym, glutaric acidemia type I) is a rare inherited metabolic disease caused by deficiency of glutaryl-CoA dehydrogenase located in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. The enzymatic defect results in elevated concentrations of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutaryl carnitine in body tissues, which can be reliably detected by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Most untreated individuals with GA-I experience acute encephalopathic crises during the first 6 years of life that are triggered by infectious diseases, febrile reaction to vaccinations, and surgery. These crises result in striatal injury and consequent dystonic movement disorder; thus, significant mortality and morbidity results. In some patients, neurologic disease may also develop without clinically apparent crises at any age. Neonatal screening for GA-I us being used in a growing number of countries worldwide and is cost effective. Metabolic treatment, consisting of low lysine diet, carnitine supplementation, and intensified emergency treatment during catabolism, is effective treatment and improves neurologic outcome in those individuals diagnosed early; treatment after symptom onset, however, is less effective. Dietary treatment is relaxed after age 6 years and should be supervised by specialized metabolic centers. The major aim of this second revision of proposed recommendations is to re-evaluate the previous recommendations (Kölker et al. J Inherit Metab Dis 30:5-22, 2007b; J Inherit Metab Dis 34:677-694, 2011) and add new research findings, relevant clinical aspects, and the perspective of affected individuals.
Collapse
|
Review |
8 |
139 |
6
|
Barth H, Pfeifer G, Hofmann F, Maier E, Benz R, Aktories K. Low pH-induced formation of ion channels by clostridium difficile toxin B in target cells. J Biol Chem 2001; 276:10670-6. [PMID: 11152463 DOI: 10.1074/jbc.m009445200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium difficile toxin B (269 kDa), which is one of the causative agents of antibiotic-associated diarrhea and pseudomembranous colitis, inactivates Rho GTPases by glucosylation. Here we studied the uptake and membrane interaction of the toxin with eukaryotic target cells. Bafilomycin A1, which prevents acidification of endosomal compartments, blocked the cellular uptake of toxin B in Chinese hamster ovary cells cells. Extracellular acidification (pH </= 5.2) induced uptake of toxin B into the cytosol even in the presence of bafilomycin A1. Toxin B increased (86)Rb(+) release when preloaded Chinese hamster ovary cells were exposed to low pH (pH </= 5.6) for 5 min. Release of (86)Rb(+) depended on the concentration of toxin B and on the pH of the extracellular medium. An antibody directed against the holotoxin prevented channel formation, whereas an antibody against the N-terminal enzyme domain was without effect. The N-terminally truncated toxin B fragment consisting of amino acids 547-2366 increased (86)Rb(+) efflux when cells were exposed to low pH. Toxin B also induced pH-dependent channel formation in artificial lipid bilayer membranes. Clostridium sordellii lethal toxin, another member of the family of large clostridial cytotoxins, also induced increased (86)Rb(+) release at low pH. The results suggest that large clostridial cytotoxins including C. difficile toxin B and C. sordellii lethal toxin undergo structural changes at low pH of endosomes that are accompanied by membrane insertion and channel formation.
Collapse
|
|
24 |
124 |
7
|
Harting I, Neumaier-Probst E, Seitz A, Maier EM, Assmann B, Baric I, Troncoso M, Mühlhausen C, Zschocke J, Boy NPS, Hoffmann GF, Garbade SF, Kölker S. Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. ACTA ACUST UNITED AC 2009; 132:1764-82. [PMID: 19433437 DOI: 10.1093/brain/awp112] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In glutaric aciduria type I, an autosomal recessive disease of mitochondrial lysine, hydroxylysine and tryptophan catabolism, striatal lesions are characteristically induced by acute encephalopathic crises during a finite period of brain development (age 3-36 months). The frequency of striatal injury is significantly less in patients diagnosed as asymptomatic newborns by newborn screening. Most previous studies have focused on the onset and mechanism of striatal injury, whereas little is known about neuroradiological abnormalities in pre-symptomatically diagnosed patients and about dynamic changes of extrastriatal abnormalities. Thus, the major aim of the present retrospective study was to improve our understanding of striatal and extrastriatal abnormalities in affected individuals including those diagnosed by newborn screening. To this end, we systematically analysed magnetic resonance imagings (MRIs) in 38 patients with glutaric aciduria type I diagnosed before or after the manifestation of neurological symptoms. To identify brain regions that are susceptible to cerebral injury during acute encephalopathic crises, we compared the frequency of magnetic resonance abnormalities in patients with and without such crises. Major specific changes after encephalopathic crises were found in the putamen (P < 0.001), nucleus caudatus (P < 0.001), globus pallidus (P = 0.012) and ventricles (P = 0.001). Analysis of empirical cumulative distribution frequencies, however, demonstrated that isolated pallidal abnormalities did not significantly differ over time in both groups (P = 0.544) suggesting that isolated pallidal abnormalities are not induced by acute crises--in contrast to striatal abnormalities. The manifestation of motor disability was associated with signal abnormalities in putamen, caudate, pallidum and ventricles. In addition, we found a large number of extrastriatal abnormalities in patients with and without preceding encephalophatic crises. These abnormalities include widening of anterior temporal and sylvian CSF spaces, pseudocysts, signal changes of substantia nigra, nucleus dentatus, thalamus, tractus tegmentalis centralis and supratentorial white matter as well as signs of delayed maturation (myelination and gyral pattern). In contrast to the striatum, extrastriatal abnormalities were variable and could regress or even normalize with time. This includes widening of sylvian fissures, delayed maturation, pallidal signal changes and pseudocysts. Based on these results, we hypothesize that neuroradiological abnormalities and neurological symptoms in glutaric aciduria type I can be explained by overlaying episodes of cerebral alterations including maturational delay of the brain in utero, acute striatal injury during a vulnerable period in infancy and chronic progressive changes that may continue lifelong. This may have widespread consequences for the pathophysiological understanding of this disease, long-term outcomes and therapeutic considerations.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
120 |
8
|
Heringer J, Boy SPN, Ensenauer R, Assmann B, Zschocke J, Harting I, Lücke T, Maier EM, Mühlhausen C, Haege G, Hoffmann GF, Burgard P, Kölker S. Use of guidelines improves the neurological outcome in glutaric aciduria type I. Ann Neurol 2010; 68:743-52. [DOI: 10.1002/ana.22095] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
15 |
117 |
9
|
Zech M, Boesch S, Maier EM, Borggraefe I, Vill K, Laccone F, Pilshofer V, Ceballos-Baumann A, Alhaddad B, Berutti R, Poewe W, Haack TB, Haslinger B, Strom TM, Winkelmann J. Haploinsufficiency of KMT2B, Encoding the Lysine-Specific Histone Methyltransferase 2B, Results in Early-Onset Generalized Dystonia. Am J Hum Genet 2016; 99:1377-1387. [PMID: 27839873 DOI: 10.1016/j.ajhg.2016.10.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/25/2016] [Indexed: 12/26/2022] Open
Abstract
Early-onset generalized dystonia represents the severest form of dystonia, a hyperkinetic movement disorder defined by involuntary twisting postures. Although frequently transmitted as a single-gene trait, the molecular basis of dystonia remains largely obscure. By whole-exome sequencing a parent-offspring trio in an Austrian kindred affected by non-familial early-onset generalized dystonia, we identified a dominant de novo frameshift mutation, c.6406delC (p.Leu2136Serfs∗17), in KMT2B, encoding a lysine-specific methyltransferase involved in transcriptional regulation via post-translational modification of histones. Whole-exome-sequencing-based exploration of a further 30 German-Austrian individuals with early-onset generalized dystonia uncovered another three deleterious mutations in KMT2B-one de novo nonsense mutation (c.1633C>T [p.Arg545∗]), one de novo essential splice-site mutation (c.7050-2A>G [p.Phe2321Serfs∗93]), and one inherited nonsense mutation (c.2428C>T [p.Gln810∗]) co-segregating with dystonia in a three-generation kindred. Each of the four mutations was predicted to mediate a loss-of-function effect by introducing a premature termination codon. Suggestive of haploinsufficiency, we found significantly decreased total mRNA levels of KMT2B in mutant fibroblasts. The phenotype of individuals with KMT2B loss-of-function mutations was dominated by childhood lower-limb-onset generalized dystonia, and the family harboring c.2428C>T (p.Gln810∗) showed variable expressivity. In most cases, dystonic symptoms were accompanied by heterogeneous non-motor features. Independent support for pathogenicity of the mutations comes from the observation of high rates of dystonic presentations in KMT2B-involving microdeletion syndromes. Our findings thus establish generalized dystonia as the human phenotype associated with haploinsufficiency of KMT2B. Moreover, we provide evidence for a causative role of disordered histone modification, chromatin states, and transcriptional deregulation in dystonia pathogenesis.
Collapse
|
Journal Article |
9 |
115 |
10
|
Petit L, Maier E, Gibert M, Popoff MR, Benz R. Clostridium perfringens epsilon toxin induces a rapid change of cell membrane permeability to ions and forms channels in artificial lipid bilayers. J Biol Chem 2001; 276:15736-40. [PMID: 11278669 DOI: 10.1074/jbc.m010412200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epsilon toxin is a potent toxin produced by Clostridium perfringens types B and D, which are responsible for a rapidly fatal enterotoxemia in animals. One of the main properties of epsilon toxin is the production of edema. We have previously found that epsilon toxin causes a rapid swelling of Madin-Darby canine kidney cells and that the toxin does not enter the cytosol and remains associated with the cell membrane by forming a large complex (Petit, L., Gibert, M., Gillet, D., Laurent-Winter, C., Boquet, P., and Popoff, M. R. (1997) J. Bacteriol. 179, 6480-6487). Here, we report that epsilon toxin induced in Madin-Darby canine kidney cells a rapid decrease of intracellular K(+), and an increase of Cl(-) and Na(+), whereas the increase of Ca(2+) occurred later. The entry of propidium iodide that was correlated with the loss of cell viability monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test indicates that epsilon toxin formed large pores. In artificial lipid bilayers, epsilon toxin caused current steps with a single-channel conductance of 60 pS in 100 mm KCl, which represented general diffusion pores. The channels were slightly selective for anions, but cations could also penetrate. Epsilon toxin formed wide and water-filled channels permeable to hydrophilic solutes up to a molecular mass of at least 1 kDa, which probably represents the basic mechanism of toxin action on target cells.
Collapse
|
|
24 |
109 |
11
|
Holmström A, Olsson J, Cherepanov P, Maier E, Nordfelth R, Pettersson J, Benz R, Wolf-Watz H, Forsberg A. LcrV is a channel size-determining component of the Yop effector translocon of Yersinia. Mol Microbiol 2001; 39:620-32. [PMID: 11169103 DOI: 10.1046/j.1365-2958.2001.02259.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Delivery of Yop effector proteins by pathogenic Yersinia across the eukaryotic cell membrane requires LcrV, YopB and YopD. These proteins were also required for channel formation in infected erythrocytes and, using different osmolytes, the contact-dependent haemolysis assay was used to study channel size. Channels associated with LcrV were around 3 nm, whereas the homologous PcrV protein of Pseudomonas aeruginosa induced channels of around 2 nm in diameter. In lipid bilayer membranes, purified LcrV and PcrV induced a stepwise conductance increase of 3 nS and 1 nS, respectively, in 1 M KCl. The regions important for channel size were localized to amino acids 127-195 of LcrV and to amino acids 106-173 of PcrV. The size of the channel correlated with the ability to translocate Yop effectors into host cells. We suggest that LcrV is a size-determining structural component of the Yop translocon.
Collapse
|
|
24 |
101 |
12
|
Nordström U, Maier E, Jessell TM, Edlund T. An early role for WNT signaling in specifying neural patterns of Cdx and Hox gene expression and motor neuron subtype identity. PLoS Biol 2006; 4:e252. [PMID: 16895440 PMCID: PMC1502144 DOI: 10.1371/journal.pbio.0040252] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 05/24/2006] [Indexed: 12/13/2022] Open
Abstract
The link between extrinsic signaling, progenitor cell specification and neuronal subtype identity is central to the developmental organization of the vertebrate central nervous system. In the hindbrain and spinal cord, distinctions in the rostrocaudal identity of progenitor cells are associated with the generation of different motor neuron subtypes. Two fundamental classes of motor neurons, those with dorsal (dMN) and ventral (vMN) exit points, are generated over largely non-overlapping rostrocaudal domains of the caudal neural tube. Cdx and Hox genes are important determinants of the rostrocaudal identity of neural progenitor cells, but the link between early patterning signals, neural Cdx and Hox gene expression, and the generation of dMN and vMN subtypes, is unclear. Using an in vitro assay of neural differentiation, we provide evidence that an early Wnt-based program is required to interact with a later retinoic acid- and fibroblast growth factor-mediated mechanism to generate a pattern of Cdx and Hox profiles characteristic of hindbrain and spinal cord progenitor cells that prefigure the generation of vMNs and dMNs.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
94 |
13
|
Maier EM, Liebl B, Röschinger W, Nennstiel-Ratzel U, Fingerhut R, Olgemöller B, Busch U, Krone N, v Kries R, Roscher AA. Population spectrum of ACADM genotypes correlated to biochemical phenotypes in newborn screening for medium-chain acyl-CoA dehydrogenase deficiency. Hum Mutat 2006; 25:443-52. [PMID: 15832312 DOI: 10.1002/humu.20163] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most frequent inherited defect of fatty acid oxidation, with a significant morbidity and mortality in undiagnosed patients. Adverse outcomes can effectively be prevented by avoiding metabolic stress and following simple dietary measures. Therefore, prospective newborn screening (NBS) is being proposed for this condition. However, technical validation of MCADD population screening and assessment of its overall benefit require broadening of the as-yet-scarce knowledge of the MCADD genetic heterogeneity unraveled by NBS and its phenotypic consequences. Here, we describe the entire spectrum of sequence variations occurring in newborns with MCADD in the population of Bavaria, Germany, in relation to the biochemical phenotype. Among 524,287 newborns, we identified 62 cases of MCADD, indicating a birth incidence of 1 in 8,456. In all of the 57 newborns available for analysis, two alterations within the MCADD gene (ACADM) were identified. The most prevalent alteration c.985A>G (Lys329Glu) occurred in 27 (47%) newborns in the homozygous and in 18 (32%) in the heterozygous state (63% of defective alleles). The mild folding variant c.199T>C (Tyr67His) was identified in nine individuals, six of them being compound heterozygous with c.985A>G (Lys329Glu). Neither of the prevalent alterations were found in the remaining nine newborns. A total of 18 sequence variations were identified; 13 of them were novel: eight missense mutations, one nonsense mutation, two splice variants, and two small deletions. The remaining five were previously reported in MCADD patients. The ACADM heterogeneity uncovered was larger as anticipated from previous c.985A>G (Lys329Glu) carrier screening data. In addition, we show that MCADD appears to occur as frequently in Turkish newborns as in the native German population. Our data validate that biochemical NBS for MCADD is a highly specific procedure for disease detection, with the identification of a significant share of milder biochemical phenotypes, such as c.199T>C (Tyr67His). These show statistically lower acylcarnitine markers, allowing us to distinguish subgroups within the spectrum of ACADM sequence variations that correlate to biochemical MCADD disease expression. Our data might provide technical and medical guidance for decision making in the worldwide efforts to introduce MCADD population screening.
Collapse
|
Journal Article |
19 |
90 |
14
|
Kölker S, Garbade SF, Boy N, Maier EM, Meissner T, Mühlhausen C, Hennermann JB, Lücke T, Häberle J, Baumkötter J, Haller W, Muller E, Zschocke J, Burgard P, Hoffmann GF. Decline of acute encephalopathic crises in children with glutaryl-CoA dehydrogenase deficiency identified by newborn screening in Germany. Pediatr Res 2007; 62:357-63. [PMID: 17622945 DOI: 10.1203/pdr.0b013e318137a124] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutaryl-CoA dehydrogenase (GCDH) deficiency is a rare neurometabolic disorder that is considered treatable if patients are identified before the onset of acute encephalopathic crises. To allow early identification of affected individuals, tandem mass spectrometry-based newborn screening for GCDH deficiency has been started in Germany in 1999. We prospectively followed neonatally screened patients (n=38) and compared the neurologic outcome with patients from a historical cohort (n=62). In the majority of neonatally screened children, the onset of encephalopathic crises has been prevented (89%), whereas acute encephalopathic crises or progressive neurologic impairment was common in the historical cohort. Neonatal screening in combination with intensive management is effective--even assuming ascertainment bias in the historical cohort. Similar proportions of commonest mutations and biochemical phenotypes (high and low excretors) were found in neonatally screened and historical patients. However, potential predictor variables for mild clinical phenotypes are not yet known and thus a selection of these patients by newborn screening is not excluded. No patient was known to be missed by newborn screening from 1999 to 2005. In conclusion, this study confirms that newborn screening for GCDH deficiency in combination with intensive management is beneficial.
Collapse
|
|
18 |
87 |
15
|
Maier EM, Osterrieder S, Whybra C, Ries M, Gal A, Beck M, Roscher AA, Muntau AC. Disease manifestations and X inactivation in heterozygous females with Fabry disease. Acta Paediatr 2006; 95:30-8. [PMID: 16720462 DOI: 10.1080/08035320600618809] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIM Fabry disease is an X-linked lysosomal storage disorder characterized by an accumulation of neutral glycosphingolipids in multiple organ systems caused by alpha-galactosidase A deficiency due to mutations in the GLA gene. The majority of heterozygous females show the characteristic signs and symptoms of the disease, and some of them are severely affected. The current hypothesis for the occurrence of disease manifestations in females is skewed X inactivation favouring the mutant GLA allele. METHOD We analyzed the patterns of X inactivation in the leukocytes of 28 biochemically and genetically characterized symptomatic Fabry disease heterozygotes and their correlation with clinical and biochemical disease expression. RESULTS X inactivation patterns in symptomatic females who are heterozygous for Fabry disease did not differ from those of female controls of the same age (p = 0.669). Thirteen (46%) of the 28 females with Fabry disease showed random X inactivation, ten (36%) moderate skewing, and five (18%) highly skewed X inactivation. Segregation analysis was performed in the families of six females who had highly or moderately skewed X inactivation. In four of these females, skewing favoured the wild-type GLA allele and in the other two skewing favoured the mutant allele. Patterns of X inactivation or the extent of skewing were not related to the severity of clinical manifestations or to residual enzyme activity. CONCLUSION In this study we provide evidence that heterozygous females with Fabry disease show random X inactivation. Our data do not support the hypothesis that the occurrence and severity of disease manifestations in the majority of Fabry heterozygotes are related to skewed X inactivation.
Collapse
|
|
19 |
80 |
16
|
Meier-Ewert S, Maier E, Ahmadi A, Curtis J, Lehrach H. An automated approach to generating expressed sequence catalogues. Nature 1993; 361:375-6. [PMID: 8426656 DOI: 10.1038/361375a0] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
|
32 |
79 |
17
|
Jongmans M, Sistermans EA, Rikken A, Nillesen WM, Tamminga R, Patton M, Maier EM, Tartaglia M, Noordam K, van der Burgt I. Genotypic and phenotypic characterization of Noonan syndrome: new data and review of the literature. Am J Med Genet A 2005; 134A:165-70. [PMID: 15723289 DOI: 10.1002/ajmg.a.30598] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Noonan syndrome (NS) is an autosomal dominant disorder, characterized by short stature, minor facial anomalies, and congenital heart defects. In approximately 50% of cases the condition is caused by missense mutations in the PTPN11 gene on chromosome 12, resulting in a gain of function of the protein SHP-2. In this study, PTPN11 mutation analysis was performed in 170 NS patients. In 76 (45%) of them a mutation was identified. We report on the distribution of these mutations, as well as on genotype-phenotype relationships. The benefit of the NS scoring system developed by van der Burgt et al. [(1994); Am J Med Genet 53:187-191] is shown, among physicians who consequently based their diagnosis on the NS scoring system the percentage mutation positive subjects was 54%, whereas this percentage was only 39% among physicians who made less use of the scoring system. In two patients with some uncommon manifestations mutations were found in the C-SH2 domain, a region in which defects are not often identified in NS. A trend was observed in patients carrying the 922A --> G change (Asn308Asp) receiving normal education. In one patient with NS and mild juvenile myelomonocytic leukemia (JMML) the mutation 218C --> T (Thr73Ile) was found. This confirms previous findings indicating that individuals with NS with specific mutations in PTPN11 are at risk of developing JMML.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
78 |
18
|
Benz R, Maier E, Gentschev I. TolC of Escherichia coli functions as an outer membrane channel. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1993; 278:187-96. [PMID: 7688606 DOI: 10.1016/s0934-8840(11)80836-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Reconstitution experiments were performed with TolC from Escherichia coli outer membrane by using the lipid bilayer membrane technique. TolC was purified by elution of the oligomeric and the monomeric forms out of preparative SDS-PAGE. The oligomeric but not the monomeric form of the protein was able to increase the specific conductance of artificial lipid bilayer membranes. Investigation of the membrane activity in single-channel experiments suggested that TolC formed ion-permeable channels. The channels of 80 pS in 1 M KCl had a much smaller single-channel conductance than the general diffusion pores of E. coli outer membrane (1500 pS). The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration which indicated either ion binding or charge effects. Titration of TolC-induced membrane conductance with peptides lead to a dose-dependent decrease of the conductance. This result suggested that TolC contained a binding site for peptides. A dissociation constant of 20 mM was calculated for the binding of the tripeptide H-Gly-Gly-Leu-OH to the binding site. The results are consistent with the assumption that TolC acts as an outer membrane channel for peptides.
Collapse
|
|
32 |
68 |
19
|
Holzinger A, Maier EM, Bück C, Mayerhofer PU, Kappler M, Haworth JC, Moroz SP, Hadorn HB, Sadler JE, Roscher AA. Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet 2002; 70:20-5. [PMID: 11719902 PMCID: PMC384888 DOI: 10.1086/338456] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2001] [Accepted: 11/01/2001] [Indexed: 11/03/2022] Open
Abstract
Enteropeptidase (enterokinase [E.C.3.4.21.9]) is a serine protease of the intestinal brush border in the proximal small intestine. It activates the pancreatic proenzyme trypsinogen, which, in turn, releases active digestive enzymes from their inactive pancreatic precursors. Congenital enteropeptidase deficiency is a rare recessively inherited disorder leading, in affected infants, to severe failure to thrive. The genomic structure of the proenteropeptidase gene (25 exons, total gene size 88 kb) was characterized in order to perform DNA sequencing in three clinically and biochemically proved patients with congenital enteropeptidase deficiency who were from two families. We found compound heterozygosity for nonsense mutations (S712X/R857X) in two affected siblings and found compound heterozygosity for a nonsense mutation (Q261X) and a frameshift mutation (FsQ902) in the third patient. In accordance with the biochemical findings, all four defective alleles identified are predicted null alleles leading to a gene product not containing the active site of the enzyme. These data provide first evidence that proenteropeptidase-gene mutations are the primary cause of congenital enteropeptidase deficiency.
Collapse
|
research-article |
23 |
65 |
20
|
Boy N, Mengler K, Thimm E, Schiergens KA, Marquardt T, Weinhold N, Marquardt I, Das AM, Freisinger P, Grünert SC, Vossbeck J, Steinfeld R, Baumgartner MR, Beblo S, Dieckmann A, Näke A, Lindner M, Heringer J, Hoffmann GF, Mühlhausen C, Maier EM, Ensenauer R, Garbade SF, Kölker S. Newborn screening: A disease-changing intervention for glutaric aciduria type 1. Ann Neurol 2018; 83:970-979. [DOI: 10.1002/ana.25233] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/02/2018] [Accepted: 04/07/2018] [Indexed: 11/09/2022]
|
|
7 |
64 |
21
|
Rujano MA, Cannata Serio M, Panasyuk G, Péanne R, Reunert J, Rymen D, Hauser V, Park JH, Freisinger P, Souche E, Guida MC, Maier EM, Wada Y, Jäger S, Krogan NJ, Kretz O, Nobre S, Garcia P, Quelhas D, Bird TD, Raskind WH, Schwake M, Duvet S, Foulquier F, Matthijs G, Marquardt T, Simons M. Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects. J Exp Med 2017; 214:3707-3729. [PMID: 29127204 PMCID: PMC5716037 DOI: 10.1084/jem.20170453] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Rujano et al. report mutations in ATP6AP2 leading to liver disease, immunodeficiency, and psychomotor impairment. ATP6AP2 deficiency impairs the assembly and function of the V-ATPase proton pump, causing defects in protein glycosylation and autophagy. The biogenesis of the multi-subunit vacuolar-type H+-ATPase (V-ATPase) is initiated in the endoplasmic reticulum with the assembly of the proton pore V0, which is controlled by a group of assembly factors. Here, we identify two hemizygous missense mutations in the extracellular domain of the accessory V-ATPase subunit ATP6AP2 (also known as the [pro]renin receptor) responsible for a glycosylation disorder with liver disease, immunodeficiency, cutis laxa, and psychomotor impairment. We show that ATP6AP2 deficiency in the mouse liver caused hypoglycosylation of serum proteins and autophagy defects. The introduction of one of the missense mutations into Drosophila led to reduced survival and altered lipid metabolism. We further demonstrate that in the liver-like fat body, the autophagic dysregulation was associated with defects in lysosomal acidification and mammalian target of rapamycin (mTOR) signaling. Finally, both ATP6AP2 mutations impaired protein stability and the interaction with ATP6AP1, a member of the V0 assembly complex. Collectively, our data suggest that the missense mutations in ATP6AP2 lead to impaired V-ATPase assembly and subsequent defects in glycosylation and autophagy.
Collapse
|
Journal Article |
8 |
64 |
22
|
Maier E, Hoheisel JD, McCarthy L, Mott R, Grigoriev AV, Monaco AP, Larin Z, Lehrach H. Complete coverage of the Schizosaccharomyces pombe genome in yeast artificial chromosomes. Nat Genet 1992; 1:273-7. [PMID: 1302023 DOI: 10.1038/ng0792-273] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The genome of the fission yeast, Schizosaccharomyces pombe, consists of some 14 million base pairs of DNA contained in three chromosomes. On account of its excellent genetics we used it as a test system for a strategy designed to map mammalian chromosomes and genomes. Data obtained from hybridization fingerprinting established an ordered library of 1,248 yeast artificial chromosome clones with an average size of 535 kilobases. The clones fall into three contigs completely representing the three chromosomes of the organism. This work provides a high resolution physical and clone map of the genome, which has been related to available genetic and physical map information.
Collapse
|
|
33 |
62 |
23
|
Stadler SC, Polanetz R, Maier EM, Heidenreich SC, Niederer B, Mayerhofer PU, Lagler F, Koch HG, Santer R, Fletcher JM, Ranieri E, Das AM, Spiekerkötter U, Schwab KO, Pötzsch S, Marquardt I, Hennermann JB, Knerr I, Mercimek-Mahmutoglu S, Kohlschmidt N, Liebl B, Fingerhut R, Olgemöller B, Muntau AC, Roscher AA, Röschinger W. Newborn screening for 3-methylcrotonyl-CoA carboxylase deficiency: population heterogeneity ofMCCA andMCCB mutations and impact on risk assessment. Hum Mutat 2006; 27:748-59. [PMID: 16835865 DOI: 10.1002/humu.20349] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New technology enables expansion of newborn screening (NBS) of inborn errors aimed to prevent adverse outcome. In conditions with a large share of asymptomatic phenotypes, the potential harm created by NBS must carefully be weighed against benefit. Policies vary throughout the United States, Australia, and Europe due to limited data on outcome and treatability of candidate screening conditions. We elaborated the rationale for decision making in 3-methylcrotonyl-coenzyme A (CoA) carboxylase deficiency (MCCD), which afflicts leucine catabolism, with reported outcomes ranging from asymptomatic to death. In Bavaria, we screened 677,852 neonates for 25 conditions, including MCCD, based on elevated concentrations of 3-hydroxyisovalerylcarnitine (3-HIVA-C). Genotypes of MCCA (MCCC1) and MCCB (MCCC2) were assessed in identified newborns, their relatives, and in individuals (n = 17) from other regions, and correlated to biochemical and clinical phenotypes. NBS revealed eight newborns and six relatives with MCCD, suggesting a higher frequency than previously assumed (1:84,700). We found a strikingly heterogeneous spectrum of 22 novel and eight reported mutations. Allelic variants were neither related to biochemical nor anamnestic data of our probands showing all asymptomatic or benign phenotypes. Comparative analysis of case reports with NBS data implied that only few individuals (< 10%) develop symptoms. In addition, none of the symptoms reported so far can clearly be attributed to MCCD. MCCD is a genetic condition with low clinical expressivity and penetrance. It largely represents as nondisease. So far, there are no genetic or biochemical markers that would identify the few individuals potentially at risk for harmful clinical expression. The low ratio of benefit to harm was pivotal to the decision to exclude MCCD from NBS in Germany. MCCD may be regarded as exemplary of the ongoing controversy arising from the inclusion of potentially asymptomatic conditions, which generates a psychological burden for afflicted families and a financial burden for health care systems.
Collapse
|
|
19 |
61 |
24
|
Marudamuthu AS, Bhandary YP, Fan L, Radhakrishnan V, MacKenzie B, Maier E, Shetty SK, Nagaraja MR, Gopu V, Tiwari N, Zhang Y, Watts AB, Williams RO, Criner GJ, Bolla S, Marchetti N, Idell S, Shetty S. Caveolin-1-derived peptide limits development of pulmonary fibrosis. Sci Transl Med 2020; 11:11/522/eaat2848. [PMID: 31826982 DOI: 10.1126/scitranslmed.aat2848] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/05/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease with a median 5-year survival of ~20%. Current U.S. Food and Drug Administration-approved pharmacotherapies slow progression of IPF, providing hope that even more effective treatments can be developed. Alveolar epithelial progenitor type II cell (AEC) apoptosis and proliferation, and accumulation of activated myofibroblasts or fibrotic lung fibroblasts (fLfs) contribute to the progression of IPF. Full-length caveolin-1 scaffolding domain peptide (CSP; amino acids 82 to 101 of Cav1: DGIWKASFTTFTVTKYWFYR) inhibits AEC apoptosis and fLf activation and expansion and attenuates PF in bleomycin (BLM)-induced lung injury in mice. Like full-length CSP, a seven-amino acid deletion fragment of CSP, CSP7 (FTTFTVT), demonstrated antifibrotic effects in murine models of lung fibrosis. When CSP7 was administered during the fibrotic phase in three preclinical models [single-dose BLM, repeated-dose BLM, and adenovirus expressing constitutively active transforming growth factor-β1 (Ad-TGF-β1)-induced established PF], CSP7 reduced extracellular matrix (ECM) markers characteristic of PF, increased AEC survival, and improved lung function. CSP7 is amenable to both systemic (intraperitoneal) or direct lung delivery in a nebulized or dry powder form. Furthermore, CSP7 treatment of end-stage human IPF lung tissue explants attenuated ECM production and promoted AEC survival. Ames testing for mutagenicity and in vitro human peripheral blood lymphocyte and in vivo mouse micronucleus transformation assays indicated that CSP7 is not carcinogenic. Together, these findings support the further development of CSP7 as an antifibrotic treatment for patients with IPF or other interstitial lung diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
61 |
25
|
Blöcker D, Barth H, Maier E, Benz R, Barbieri JT, Aktories K. The C terminus of component C2II of Clostridium botulinum C2 toxin is essential for receptor binding. Infect Immun 2000; 68:4566-73. [PMID: 10899856 PMCID: PMC98375 DOI: 10.1128/iai.68.8.4566-4573.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binary Clostridium botulinum C2 toxin consists of two separate proteins, the binding component C2II (80.5 kDa) and the actin-ADP-ribosylating enzyme component C2I (49.4 kDa). For its cytotoxic action, C2II binds to a cell membrane receptor and induces cell entry of C2I via receptor-mediated endocytosis. Here we studied the structure-function relationship of C2II by constructing truncated C2II proteins and producing polyclonal antisera against selective regions of C2II. An antibody raised against the C terminus (amino acids 592 to 721) of C2II inhibited binding of C2II to cells. The antibody prevented pore formation by C2II oligomers in artificial membranes but did not influence the properties of existing channels. To further define the region responsible for receptor binding, we constructed proteins with deletions in C2II; specifically, they lacked amino acid residues 592 to 721 and the 7 C-terminal amino acid residues. The truncated proteins still formed sodium dodecyl sulfate-stable oligomers but were unable to bind to cells. Our data indicate that the C terminus of C2II mediates binding of the protein to cells and that the 7 C-terminal amino acids are structurally important for receptor binding.
Collapse
|
research-article |
25 |
59 |