1
|
Sullivan EV, Deshmukh A, De Rosa E, Rosenbloom MJ, Pfefferbaum A. Striatal and forebrain nuclei volumes: contribution to motor function and working memory deficits in alcoholism. Biol Psychiatry 2005; 57:768-76. [PMID: 15820234 DOI: 10.1016/j.biopsych.2004.12.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/24/2004] [Accepted: 12/08/2004] [Indexed: 01/29/2023]
Abstract
BACKGROUND Striatal structures are involved in dopaminergic alcohol reward mechanisms and aspects of motor control. Basal forebrain structures hold cholinergic mechanisms influencing memory formation, vulnerable to chronic alcoholism; however, alcoholism's effect on volumes of these structures has seldom been considered with in vivo measurement. METHODS We measured bilateral volumes of caudate nucleus, putamen, nucleus accumbens, and medial septal/diagonal band (MS/DB) in 25 men with alcohol dependence and 51 age-matched control men. Six alcoholic subjects had been drinking recently, and 19 had been sober. RESULTS Volumes of caudate and putamen were smaller in the alcoholics than in the control subjects, regardless of length of sobriety. Recent drinkers showed greater deficits in nucleus accumbens than sober alcoholics. Putamen volume was positively correlated with grip strength; MS/DB volume was positively correlated with verbal working memory independently of the negative association between age-standardized MS/DB and age in alcoholics. CONCLUSIONS Caudate and putamen volume deficits occur and endure in chronic alcoholism. Nucleus accumbens might be especially sensitive to recent alcohol exposure. Striatal volumes should be considered in functional imaging studies of alcohol craving that target striatal brain regions. The age-alcohol interaction for MS/DB volumes is consistent with a cholinergic mechanism for the working memory impairment observed in the alcoholics.
Collapse
|
Comparative Study |
20 |
107 |
2
|
Sullivan EV, Harding AJ, Pentney R, Dlugos C, Martin PR, Parks MH, Desmond JE, Chen SHA, Pryor MR, De Rosa E, Pfefferbaum A. Disruption of frontocerebellar circuitry and function in alcoholism. Alcohol Clin Exp Res 2003; 27:301-9. [PMID: 12605080 DOI: 10.1097/01.alc.0000052584.05305.98] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article represents a symposium of the 2002 joint meeting of RSA and ISBRA held in San Francisco. Presentations were Neuropathology of alcohol-related cerebellar damage in humans, by Antony J. Harding; Neuropathological evidence of cerebellar damage in an animal model of alcoholism, by Roberta Pentney and Cynthia Dlugos; Understanding cortical-cerebellar circuits through neuroimaging study of chronic alcoholics, by Peter R. Martin and Mitchell H. Parks; and Functional reorganization of the brain in alcoholism: neuroimaging evidence, by John E. Desmond, S.H. Annabel Chen, Michelle R. Pryor, Eve De Rosa, Adolf Pfefferbaum, and Edith V. Sullivan.
Collapse
|
Congress |
22 |
99 |
3
|
De Rosa E, Hasselmo ME. Muscarinic cholinergic neuromodulation reduces proactive interference between stored odor memories during associative learning in rats. Behav Neurosci 2000. [DOI: 10.1037/0735-7044.114.1.32] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
25 |
63 |
4
|
De Rosa E, Desmond JE, Anderson AK, Pfefferbaum A, Sullivan EV. The Human Basal Forebrain Integrates the Old and the New. Neuron 2004; 41:825-37. [PMID: 15003180 DOI: 10.1016/s0896-6273(04)00080-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 10/07/2003] [Accepted: 01/21/2004] [Indexed: 11/17/2022]
Abstract
Acquisition of new learning is challenged by the phenomenon of proactive interference (PI), which occurs when previous learning disrupts later learning. Whereas human neuroimaging studies have focused on the cortical contributions to interference resolution, animal studies demonstrate that efficient resolution of PI depends on cholinergic modulation from basal forebrain (BF). Whether the BF promotes PI resolution in humans is unknown. Here, we adapted a PI paradigm from animal studies for use in a functional MRI experiment. During PI resolution, neurologically intact subjects recruited a BF network that included afferent anterior and posterior cortical sites associated with efficient memory acquisition and perceptual processing. Despite normal performance, nonamnesic patients with alcoholism, which is known to disrupt BF function, did not activate a BF network but instead invoked anterior cortical sites traditionally associated with executive function. These results provide evidence for parallel neural systems, each with the potential to resolve interference in the face of competing information.
Collapse
|
|
21 |
47 |
5
|
De Rosa E, Hasselmo ME, Baxter MG. Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats. Behav Neurosci 2001. [DOI: 10.1037/0735-7044.115.2.314] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
24 |
44 |
6
|
Botly LCP, De Rosa E. Cholinergic deafferentation of the neocortex using 192 IgG-saporin impairs feature binding in rats. J Neurosci 2009; 29:4120-30. [PMID: 19339607 PMCID: PMC6665388 DOI: 10.1523/jneurosci.0654-09.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 02/24/2009] [Indexed: 11/21/2022] Open
Abstract
The binding problem refers to the fundamental challenge of the CNS to integrate sensory information registered by distinct brain regions to form a unified neural representation of a stimulus. Although the human cognitive literature has established that attentional processes in frontoparietal cortices support feature binding, the neurochemical and specific downstream neuroanatomical contributions to feature binding remain unknown. Using systemic pharmacology in rats, it has been shown that the neuromodulator acetylcholine is essential for feature binding at encoding, but the neural source of such critical cholinergic neurotransmission has yet to be identified. Cholinergic efferents from the nucleus basalis magnocellularis (NBM) of the basal forebrain provide the majority of the cholinergic input to the neocortex. Accordingly, it was hypothesized that the NBM is the neural source that provides the critical neuromodulatory support for feature binding. To test this hypothesis, rats received bilateral 192 IgG-saporin lesions of the NBM, and their feature binding performance was tested using a forced-choice digging paradigm. Relative to sham-lesioned rats, NBM-lesioned rats were significantly impaired at acquiring a crossmodal feature conjunction (FC) stimulus set that required feature binding, whereas their ability to retrieve an FC stimulus set and to acquire two crossmodal feature singleton stimulus sets, one of greater difficulty than the other but neither requiring feature binding, remained intact. These behavioral findings, along with histological analyses demonstrating positive relationships between feature-binding acquisition and markers of cholinergic activity in frontoparietal regions, reveal the importance of neocortical cholinergic input from the NBM to feature binding at encoding.
Collapse
|
research-article |
16 |
39 |
7
|
Abstract
Visual scenes contain many statistical regularities such as the likely identity and location of objects that are present; with experience, such regularities can be encoded and can ultimately facilitate the deployment of spatial attention to important locations. Memory-guided attention has been extensively examined in adults with the 'contextual cueing' paradigm and has been linked to specific neural substrates - a medial temporal lobe (MTL)-frontoparietal network. However, it currently remains unknown when this ability comes 'online' during development. Thus, we examined the performance of school-aged children on an age-appropriate version of the contextual cueing paradigm. Children searched for a target fish among distractor fish in new displays and in 'old' displays on a touchscreen computer. Old displays repeated across blocks of trials and thus provided an opportunity for prior experience with the invariant configuration of the stimuli to guide attentional deployment. We found that over time children searched old displays significantly faster than new displays, thus revealing intact memory-guided attention and presumed function of an MTL-frontoparietal network in 5- to 9-year-olds. More generally, our findings suggest that children are remarkably sensitive to the inherent structure of their visual environment and this enables attentional deployment to become more efficient with experience.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
38 |
8
|
Abstract
The binding problem refers to the fundamental challenge of the central nervous system to integrate sensory information registered by multiple brain regions to form a unified neural representation of a stimulus. Human behavioral, neuropsychological, and functional neuroimaging evidence suggests a fundamental role for attention in feature binding; however, its neurochemical basis is currently unknown. This study examined whether acetylcholine (ACh), a neuromodulator that has been implicated in attentional processes, plays a critical role in feature binding. Using a within-subjects pharmacological design and the cholinergic muscarinic antagonist scopolamine, the present experiments demonstrate, in a rat model, a critical role for the cortical muscarinic cholinergic system in feature binding. Specifically, ACh and the attentional resources that it supports are essential for the initial feature binding process but are not required to maintain neural representations of bound stimuli.
Collapse
|
Journal Article |
18 |
31 |
9
|
Caplan JB, McIntosh AR, De Rosa E. Two Distinct Functional Networks for Successful Resolution of Proactive Interference. Cereb Cortex 2006; 17:1650-63. [PMID: 16968868 DOI: 10.1093/cercor/bhl076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In proactive interference (PI) paradigms, previous learning impairs the acquisition of new, related information. In rats, efficient resolution of PI relies on cholinergic modulation from the basal forebrain (BF). To test whether humans resolve PI using a functional network dependent on the medial septum/diagonal band of Broca (MS/DB) nuclei of the BF, we analyzed functional magnetic resonance imaging signal recorded while human participants learned to respond to baseline color paired associates and then additional pairs that interfered with the baseline pairs. Multivariate, partial least-squares analysis supported a MS/DB-dependent functional network: MS/DB activity covaried with activity in areas important to selective attention, including intraparietal sulcus, and memory that are direct cholinergic efferents of the MS/DB, including the hippocampus, as well as the ventrolateral prefrontal cortex, implicated in PI resolution. This network was associated with effective PI-resolution behavior. A second network also correlated with PI resolution but appearing not to be driven by the MS/DB, included the lateral orbitofrontal cortex. Patients with compromised BF function did not engage the MS/DB-dependent network reliably; instead their PI-resolution behavior was well explained by the second network. Thus, 2 functional networks may underly a single cognitive function; when the MS/DB-dependent attention/memory integration network is compromised, an alternate network is available to maintain normal levels of performance.
Collapse
|
|
19 |
28 |
10
|
Botly LCP, De Rosa E. Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention. Cereb Cortex 2011; 22:2441-53. [PMID: 22095213 DOI: 10.1093/cercor/bhr331] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The visual search task established the feature integration theory of attention in humans and measures visuospatial attentional contributions to feature binding. We recently demonstrated that the neuromodulator acetylcholine (ACh), from the nucleus basalis magnocellularis (NBM), supports the attentional processes required for feature binding using a rat digging-based task. Additional research has demonstrated cholinergic contributions from the NBM to visuospatial attention in rats. Here, we combined these lines of evidence and employed visual search in rats to examine whether cortical cholinergic input supports visuospatial attention specifically for feature binding. We trained 18 male Long-Evans rats to perform visual search using touch screen-equipped operant chambers. Sessions comprised Feature Search (no feature binding required) and Conjunctive Search (feature binding required) trials using multiple stimulus set sizes. Following acquisition of visual search, 8 rats received bilateral NBM lesions using 192 IgG-saporin to selectively reduce cholinergic afferentation of the neocortex, which we hypothesized would selectively disrupt the visuospatial attentional processes needed for efficient conjunctive visual search. As expected, relative to sham-lesioned rats, ACh-NBM-lesioned rats took significantly longer to locate the target stimulus on Conjunctive Search, but not Feature Search trials, thus demonstrating that cholinergic contributions to visuospatial attention are important for feature binding in rats.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
24 |
11
|
Botly LCP, De Rosa E. A cross-species investigation of acetylcholine, attention, and feature binding. Psychol Sci 2009; 19:1185-93. [PMID: 19076492 DOI: 10.1111/j.1467-9280.2008.02221.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The binding problem is the brain's fundamental challenge to integrate sensory information to form a unified representation of a stimulus. A recent nonhuman animal model suggests that acetylcholine serves as the neuromodulatory substrate for feature binding. We hypothesized that this animal model of cholinergic contributions to feature binding may be an analogue of human attention. To test this hypothesis, we conducted a cross-species study in which rats and humans learned comparable intramodal feature-conjunction (FC) and feature-singleton (FS) tasks. We challenged the cholinergic system of rats using the muscarinic antagonist scopolamine (0.2 mg/kg) and challenged the attentional system of humans by dividing attention. The two manipulations yielded strikingly similar patterns of behavior, impairing FC acquisition, while sparing FS acquisition and FC retrieval. These cross-species findings support the hypothesis that cholinergically driven attentional processes are essential to feature binding at encoding, but are not required for retrieval of neural representations of bound stimuli.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
22 |
12
|
Deshmukh A, Rosenbloom MJ, De Rosa E, Sullivan EV, Pfefferbaum A. Regional striatal volume abnormalities in schizophrenia: effects of comorbidity for alcoholism, recency of alcoholic drinking, and antipsychotic medication type. Schizophr Res 2005; 79:189-200. [PMID: 15963693 DOI: 10.1016/j.schres.2005.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 04/18/2005] [Accepted: 04/26/2005] [Indexed: 11/18/2022]
Abstract
Striatal structures form critical nodes of multiple circuits that are implicated in the pathophysiology of schizophrenia and alcoholism. Here, we examined the separate and combined effects of schizophrenia and alcoholism and effects of medication type and drinking recency on striatal volumes. Accordingly, we measured caudate nucleus, putamen, and nucleus accumbens in 27 schizophrenic, 25 alcohol-dependent, 19 comorbid (schizophrenia and alcohol dependence or abuse), and 51 age-matched control men. Schizophrenics were classified by antipsychotic medication (typical or atypical), and alcoholics were classified by recency of sobriety. All measured structures were smaller in the patient groups than the control group. The caudate deficit was comparable across groups, whereas putamen and nucleus accumbens deficits were greater in schizophrenia than alcoholism; comorbids fell between these groups. Schizophrenic patients treated with atypical medication showed greater volume deficits in the putamen than those treated with typical medication. Recently sober (<3 weeks) alcoholics had greater deficits in nucleus accumbens than longer sober drinkers. In conclusion, caudate, putamen, and nucleus accumbens exhibited different patterns of volume deficit in patients with alcoholism and schizophrenia alone, with no evidence for compounded deficits in comorbid patients. Further, these cross-sectional data provide indirect support for at least partial recovery of nucleus accumbens volume with sobriety in alcoholics, regardless of schizophrenia comorbidity.
Collapse
|
Comparative Study |
20 |
20 |
13
|
Ljubojevic V, Luu P, Gill PR, Beckett LA, Takehara-Nishiuchi K, De Rosa E. Cholinergic Modulation of Frontoparietal Cortical Network Dynamics Supporting Supramodal Attention. J Neurosci 2018; 38:3988-4005. [PMID: 29572433 PMCID: PMC6705925 DOI: 10.1523/jneurosci.2350-17.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 02/24/2018] [Accepted: 03/13/2018] [Indexed: 12/29/2022] Open
Abstract
A critical function of attention is to support a state of readiness to enhance stimulus detection, independent of stimulus modality. The nucleus basalis magnocellularis (NBM) is the major source of the neurochemical acetylcholine (ACh) for frontoparietal cortical networks thought to support attention. We examined a potential supramodal role of ACh in a frontoparietal cortical attentional network supporting target detection. We recorded local field potentials (LFPs) in the prelimbic frontal cortex (PFC) and the posterior parietal cortex (PPC) to assess whether ACh contributed to a state of readiness to alert rats to an impending presentation of visual or olfactory targets in one of five locations. Twenty male Long-Evans rats underwent training and then lesions of the NBM using the selective cholinergic immunotoxin 192 IgG-saporin (0.3 μg/μl; ACh-NBM-lesion) to reduce cholinergic afferentation of the cortical mantle. Postsurgery, ACh-NBM-lesioned rats had less correct responses and more omissions than sham-lesioned rats, which changed parametrically as we increased the attentional demands of the task with decreased target duration. This parametric deficit was found equally for both sensory targets. Accurate detection of visual and olfactory targets was associated specifically with increased LFP coherence, in the beta range, between the PFC and PPC, and with increased beta power in the PPC before the target's appearance in sham-lesioned rats. Readiness-associated changes in brain activity and visual and olfactory target detection were attenuated in the ACh-NBM-lesioned group. Accordingly, ACh may support supramodal attention via modulating activity in a frontoparietal cortical network, orchestrating a state of readiness to enhance target detection.SIGNIFICANCE STATEMENT We examined whether the neurochemical acetylcholine (ACh) contributes to a state of readiness for target detection, by engaging frontoparietal cortical attentional networks independent of modality. We show that ACh supported alerting attention to an impending presentation of either visual or olfactory targets. Using local field potentials, enhanced stimulus detection was associated with an anticipatory increase in power in the beta oscillation range before the target's appearance within the posterior parietal cortex (PPC) as well as increased synchrony, also in beta, between the prefrontal cortex and PPC. These readiness-associated changes in brain activity and behavior were attenuated in rats with reduced cortical ACh. Thus, ACh may act, in a supramodal manner, to prepare frontoparietal cortical attentional networks for target detection.
Collapse
|
research-article |
7 |
18 |
14
|
De Rosa E, Sullivan EV. Enhanced release from proactive interference in nonamnesic alcoholic individuals: implications for impaired associative binding. Neuropsychology 2003; 17:469-81. [PMID: 12959513 DOI: 10.1037/0894-4105.17.3.469] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Proactive interference (PI) occurs when previously learned information reduces the ability to acquire new, related information. Given that PI is modulated by the cholinergic system in rats (E. De Rosa & M. E. Hasselmo, 2000) and that chronic alcohol dependence disrupts cholinergic function in rats and humans, associative properties of PI in patients with alcoholism were examined. It was hypothesized that normal PI contingencies would be disrupted in alcoholic participants. When tested with a paired-associate simultaneous discrimination paradigm, analogous to that used in the rat model, alcoholic participants showed significantly less PI than controls yet performed comparably on a control response reversal task. The absence of PI in alcoholic participants may reflect impaired configural binding of paired-associate stimuli while sparing the elemental ability to process each stimulus component.
Collapse
|
|
22 |
16 |
15
|
Schmitz TW, Dixon ML, Anderson AK, De Rosa E. Distinguishing attentional gain and tuning in young and older adults. Neurobiol Aging 2014; 35:2514-2525. [PMID: 24906891 DOI: 10.1016/j.neurobiolaging.2014.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 11/16/2022]
Abstract
Here we examined with functional magnetic resonance imaging (fMRI) whether advanced age affects 2 mechanisms of attention that are widely thought to enhance signal processing in the sensory neocortex: gain and tuning. Healthy young and older adults discriminated faces under varying levels of object competition while fMRI was acquired. In young adults, cortical response magnitude to attended faces was maintained despite increasing competition, consistent with gain. Cortical response selectivity, indexed from repetition suppression, also increased only for attended faces despite increasing competition, consistent with tuning. Older adults exhibited intact gain, but altered tuning, with extrastriate cortical tuning determined by object salience rather than attention. Moreover, the magnitude of this susceptibility to stimulus-driven processing was associated with a redistribution of attention-driven competitive processes to the frontal cortices. These data indicate that although both gain and tuning are modulated by increased perceptual competition, they are functionally dissociable in the extrastriate cortices, exhibit differential susceptibility to advanced aging, and spare the frontal cortices a considerable processing burden through early selection.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
16 |
16
|
Hu K, De Rosa E, Anderson AK. Differential temporal salience of earning and saving. Nat Commun 2018; 9:2843. [PMID: 30030433 PMCID: PMC6054624 DOI: 10.1038/s41467-018-05201-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 05/29/2018] [Indexed: 11/24/2022] Open
Abstract
People are often characterized as poor savers. Here we examined whether cues associated with earning and saving have differential salience for attention and action. We first modeled earning and saving after positive and negative variants of monetary reinforcement, i.e., gains versus avoiding loss. Despite their equivalent absolute magnitude in a monetary incentive task, colors predicting saving were judged to appear after those that predicted earning in a temporal-order judgment task. This saving posteriority effect also occurred when savings were framed as earnings that come slightly later. Colors predicting savings, whether they acquired either negative or positive value, persisted in their posteriority. An attentional asymmetry away from money-saved relative to money-earned, potentially contributes to decreased everyday salience and future wealth. Economists have observed that many people seem unwilling to save for the future. Here, the authors show that earning and saving are subject to a basic asymmetry in attentional choice, such that cues that are associated with saving are perceived as occurring later than cues associated with earning.
Collapse
|
Journal Article |
7 |
11 |
17
|
Hu K, De Rosa E, Anderson AK. Differential color tuning of the mesolimbic reward system. Sci Rep 2020; 10:10223. [PMID: 32576844 PMCID: PMC7311418 DOI: 10.1038/s41598-020-66574-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/13/2020] [Indexed: 02/05/2023] Open
Abstract
Visual wavelengths are not only associated with the subjective experience of color but also have long been thought to regulate affect. Here we examined the attracting rewarding properties of opposite ends of the wavelength spectrum, as well as their individual variation. As reward is multifaceted, we sought convergent evidence from subjective and objective behavioral and attentional indices, as well as its neural reward system bases. On average, short (blue) relative to long (red) wavelengths were judged subjectively more pleasant and had objectively greater behavioral and attentional salience, regulating speed of simple color discriminations and perception of temporal order. Consistent with reward, these color effects were magnified following monetary reinforcement. Pronounced individual differences in color effects were related to reward but not punishment sensitivity, with blue relative to red preference associated with high relative to low reward sensitivity. An fMRI study revealed these individual differences were supported by color-dependent functional coupling between the visual cortices and mesolimbic reward circuitry. Our findings reveal the reward bases of color, demonstrating color is a potent regulator of perception, action, and neural dynamics.
Collapse
|
|
5 |
5 |
18
|
De Rosa E. Will Analytics Suppress a Diversity of Ideas in Psychological Science? PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2017; 12:1138-1140. [PMID: 29149580 DOI: 10.1177/1745691617714525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this article, I suggest that an overreliance on analytics to assess faculty productivity and the diffusion of ideas may inadvertently suppress innovation. Even when these productivity-diffusion metrics are used to promote an individual's work, the use of such external guideposts may bias scientific choices and curb a psychological scientist's earnest inclination to synthesize or take scientific risks. Analytics are not inert but can change the path and progress of science itself, potentially reducing the diversity of ideas in psychological science. This potential harm may most affect new scholars at the beginning of their independent research careers.
Collapse
|
|
8 |
3 |
19
|
Ransom A, LaGrant B, Spiteri A, Kushnir T, Anderson AK, De Rosa E. Face-to-face learning enhances the social transmission of information. PLoS One 2022; 17:e0264250. [PMID: 35213587 PMCID: PMC8880930 DOI: 10.1371/journal.pone.0264250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Learning from others provides the foundation for culture and the advancement of knowledge. Learning a new visuospatial skill from others represents a specific challenge-overcoming differences in perspective so that we understand what someone is doing and why they are doing it. The "what" of visuospatial learning is thought to be easiest from a shared 0° first-person perspective and most difficult from a 180° third-person perspective. However, the visual disparity at 180° promotes face-to-face interaction, which may enhance learning by scaffolding social perspective taking, the "why" of visuospatial learning. We tested these potentially conflicting hypotheses in child and young adult learners. Thirty-six children (4-6 years) and 57 young adults (18-27 years) observed a live model open a puzzle box from a first-person (0°) or third-person (90° or 180°) perspective. The puzzle box had multiple solutions, only one of which was modelled, which allowed for the assessment of imitation and goal emulation. Participants had three attempts to open the puzzle box from the model's perspective. While first-person (0°) observation increased imitation relative to a 180° third-person perspective, the 180° observers opened the puzzle box most readily (i.e., fastest). Although both age groups were excellent imitators and able to take the model's perspective, adults were more faithful imitators, and children were more likely to innovate a new solution. A shared visual perspective increased imitation, but a shared mental perspective promoted goal achievement and the social transmission of innovation. "Perfection of means and confusion of goals-in my opinion-seem to characterize our age" Einstein (1973) pg 337, Ideas and Opinions.
Collapse
|
research-article |
3 |
3 |
20
|
Abstract
The authors report a case of genuine brucellar meningitis etiology. Emphasis was given on endemic and epidemiologic factors in our country as well as on contradictory clinical and complementary immunological tests in lower age groups. The CT scan ruled out possibilities of tissue damage. The case had good clinical evolution. The treatment was based on dimethyl-chlortetracycline associated with trimetropin-sulfametoxazol.
Collapse
|
Case Reports |
40 |
2 |
21
|
Li X, Chiu M, Swallow KM, De Rosa E, Anderson AK. Attention and cardiac phase boost judgments of trust. Sci Rep 2020; 10:4274. [PMID: 32144296 PMCID: PMC7060330 DOI: 10.1038/s41598-020-61062-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/11/2020] [Indexed: 11/08/2022] Open
Abstract
Fluctuations in mental and bodily states have both been shown to be associated with negative affective experience. Here we examined how momentary fluctuations in attentional and cardiac states combine to regulate the perception of positive social value. Faces varying in trustworthiness were presented during a go/no-go letter target discrimination task synchronized with systolic or diastolic cardiac phase. Go trials lead to an attentional boosting of perceived trust on high trust and ambiguous neutral faces, suggesting attention both boosted existing and generated positive social value. Cardiac phase during face presentation interacted with attentional boosting of trust, enhancing high trust faces specifically during relaxed diastolic cardiac states. Confidence judgments revealed that attentional trust boosting, and its cardiac modulation, did not reflect altered perceptual or response fluency. These results provide evidence for how moment-to moment fluctuations in top-down mental and bottom-up bodily inputs combine to enhance a priori and generate de novo positive social value.
Collapse
|
research-article |
5 |
1 |
22
|
Cammarata C, Wethington E, Anderson AK, De Rosa E. Older adults' views on training tools to prevent cognitive decline. Inform Health Soc Care 2024; 49:246-258. [PMID: 39462161 DOI: 10.1080/17538157.2024.2417659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Computerized training platforms could be an accessible means for older adults to maintain cognitive health, and several such tools are already commercially available. However, it remains unclear whether older adults use these tools if training is not externally prescribed. We explored older adults' self-initiated experiences with cognitive training. We conducted semi-structured interviews with 13 community-dwelling adults aged 58-85 years, comprising university retirees (N = 8) and public housing residents (N = 5). Interviews were analyzed by thematic analysis. No participants voluntarily used cognitive training, and those who had done so previously reported negative experiences. Several factors shaped older adults' engagement with cognitive training, especially a preference for stimulating activities that are organic and inherently enjoyable. We reveal a mismatch between older adults' priorities and the interventions currently available and uncover issues of access and interest among low-income and minority individuals. We suggest ways to better align future interventions with older adults' priorities.
Collapse
|
|
1 |
|
23
|
Riley E, Cicero N, Mabry SA, Swallow KM, Anderson AK, De Rosa E. Age-related differences in locus coeruleus intensity across a demographically diverse sample. Neurobiol Aging 2025; 150:122-131. [PMID: 40101307 DOI: 10.1016/j.neurobiolaging.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Understanding the trajectory of in vivo locus coeruleus (LC) signal intensity across the adult lifespan and among various demographic groups, particularly during middle age, may be crucial for early detection of neurodegenerative diseases, which begin in the LC decades before symptom onset. Even though pathological changes in the LC are thought to begin in middle age, its characteristics across the adult lifespan, and its consistency and variation across demographic groups, remain not well understood. Using T1-weighted turbo spin echo magnetic resonance (MRI) scans to characterize the LC, we measured LC signal intensity in 134 participants aged 19-86 years, with an effort to recruit a more racially diverse sample (41 % non-White). LC signal intensity was lowest in early adulthood, peaked around age 60, and then decreased again in the oldest adults, particularly in the caudal portion of the LC, which exhibited the greatest overall signal intensity; education, income, and history of early trauma did not alter this general pattern. Rostral LC signal intensity was further heightened in women and Black participants. In higher-performing older adults, increased rostral LC signal intensity was positively associated with higher fluid cognition. The potential accumulation of LC signal intensity across the adult lifespan and its possible dissipation in later life as well as its modification by demographic factors, may be associated with differential susceptibility to neurocognitive aging.
Collapse
|
|
1 |
|
24
|
Vieira JB, Rosa ED. [Polymioclonia-opsoclonus: Kinsbourne's syndrome. Report of a case]. ARQUIVOS DE NEURO-PSIQUIATRIA 1985; 43:194-7. [PMID: 2998307 DOI: 10.1590/s0004-282x1985000200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Case report of a 9 years old boy with Kinsbourne's syndrome. This condition was characterized by the subacute onset of polymyoclonia, cerebellar ataxia and opsoclonus that set later, following an herpes zoster infection. Steroid therapy resulted in rapid dramatic improvement of neurological symptoms.
Collapse
|
Case Reports |
40 |
|
25
|
Sadeghi S, Wittmann M, De Rosa E, Anderson AK. Wrinkles in subsecond time perception are synchronized to the heart. Psychophysiology 2023:e14270. [PMID: 36864822 DOI: 10.1111/psyp.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 03/04/2023]
Abstract
The role of the heart in the experience of time has been long theorized but empirical evidence is scarce. Here, we examined the interaction between fine-grained cardiac dynamics and the momentary experience of subsecond intervals. Participants performed a temporal bisection task for brief tones (80-188 ms) synchronized with the heart. We developed a cardiac Drift-Diffusion Model (cDDM) that embedded contemporaneous heart rate dynamics into the temporal decision model. Results revealed the existence of temporal wrinkles-dilation or contraction of short intervals-in synchrony with cardiac dynamics. A lower prestimulus heart rate was associated with an initial bias in encoding the millisecond-level stimulus duration as longer, consistent with facilitation of sensory intake. Concurrently, a higher prestimulus heart rate aided more consistent and faster temporal judgments through more efficient evidence accumulation. Additionally, a higher speed of poststimulus cardiac deceleration, a bodily marker of attention, was associated with a greater accumulation of sensory temporal evidence in the cDDM. These findings suggest a unique role of cardiac dynamics in the momentary experience of time. Our cDDM framework opens a new methodological avenue for investigating the role of the heart in time perception and perceptual judgment.
Collapse
|
|
2 |
|