1
|
Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, Dennis J, Pirie A, Riggan M, Chornokur G, Earp MA, Lyra PC, Lee JM, Coetzee S, Beesley J, McGuffog L, Soucy P, Dicks E, Lee A, Barrowdale D, Lecarpentier J, Leslie G, Aalfs CM, Aben KK, Adams M, Adlard J, Andrulis IL, Anton-Culver H, Antonenkova N, Aravantinos G, Arnold N, Arun BK, Arver B, Azzollini J, Balmaña J, Banerjee SN, Barjhoux L, Barkardottir RB, Bean Y, Beckmann MW, Beeghly-Fadiel A, Benitez J, Bermisheva M, Bernardini MQ, Birrer MJ, Bjorge L, Black A, Blankstein K, Blok MJ, Bodelon C, Bogdanova N, Bojesen A, Bonanni B, Borg Å, Bradbury AR, Brenton JD, Brewer C, Brinton L, Broberg P, Brooks-Wilson A, Bruinsma F, Brunet J, Buecher B, Butzow R, Buys SS, Caldes T, Caligo MA, Campbell I, Cannioto R, Carney ME, Cescon T, Chan SB, Chang-Claude J, Chanock S, Chen XQ, Chiew YE, Chiquette J, Chung WK, Claes KB, Conner T, Cook LS, Cook J, Cramer DW, Cunningham JM, D’Aloisio AA, Daly MB, Damiola F, Damirovna SD, Dansonka-Mieszkowska A, Dao F, Davidson R, DeFazio A, Delnatte C, Doheny KF, Diez O, Ding YC, Doherty JA, Domchek SM, Dorfling CM, Dörk T, Dossus L, Duran M, Dürst M, Dworniczak B, Eccles D, Edwards T, Eeles R, Eilber U, Ejlertsen B, Ekici AB, Ellis S, Elvira M, Eng KH, Engel C, Evans DG, Fasching PA, Ferguson S, Ferrer SF, Flanagan JM, Fogarty ZC, Fortner RT, Fostira F, Foulkes WD, Fountzilas G, Fridley BL, Friebel TM, Friedman E, Frost D, Ganz PA, Garber J, García MJ, Garcia-Barberan V, Gehrig A, Gentry-Maharaj A, Gerdes AM, Giles GG, Glasspool R, Glendon G, Godwin AK, Goldgar DE, Goranova T, Gore M, Greene MH, Gronwald J, Gruber S, Hahnen E, Haiman CA, Håkansson N, Hamann U, Hansen TV, Harrington PA, Harris HR, Hauke J, Hein A, Henderson A, Hildebrandt MA, Hillemanns P, Hodgson S, Høgdall CK, Høgdall E, Hogervorst FB, Holland H, Hooning MJ, Hosking K, Huang RY, Hulick PJ, Hung J, Hunter DJ, Huntsman DG, Huzarski T, Imyanitov EN, Isaacs C, Iversen ES, Izatt L, Izquierdo A, Jakubowska A, James P, Janavicius R, Jernetz M, Jensen A, Jensen UB, John EM, Johnatty S, Jones ME, Kannisto P, Karlan BY, Karnezis A, Kast K, Kennedy CJ, Khusnutdinova E, Kiemeney LA, Kiiski JI, Kim SW, Kjaer SK, Köbel M, Kopperud RK, Kruse TA, Kupryjanczyk J, Kwong A, Laitman Y, Lambrechts D, Larrañaga N, Larson MC, Lazaro C, Le ND, Le Marchand L, Lee JW, Lele SB, Leminen A, Leroux D, Lester J, Lesueur F, Levine DA, Liang D, Liebrich C, Lilyquist J, Lipworth L, Lissowska J, Lu KH, Lubiński J, Luccarini C, Lundvall L, Mai PL, Mendoza-Fandiño G, Manoukian S, Massuger LF, May T, Mazoyer S, McAlpine JN, McGuire V, McLaughlin JR, McNeish I, Meijers-Heijboer H, Meindl A, Menon U, Mensenkamp AR, Merritt MA, Milne RL, Mitchell G, Modugno F, Moes-Sosnowska J, Moffitt M, Montagna M, Moysich KB, Mulligan AM, Musinsky J, Nathanson KL, Nedergaard L, Ness RB, Neuhausen SL, Nevanlinna H, Niederacher D, Nussbaum RL, Odunsi K, Olah E, Olopade OI, Olsson H, Olswold C, O’Malley DM, Ong KR, Onland-Moret NC, Orr N, Orsulic S, Osorio A, Palli D, Papi L, Park-Simon TW, Paul J, Pearce CL, Pedersen IS, Peeters PH, Peissel B, Peixoto A, Pejovic T, Pelttari LM, Permuth JB, Peterlongo P, Pezzani L, Pfeiler G, Phillips KA, Piedmonte M, Pike MC, Piskorz AM, Poblete SR, Pocza T, Poole EM, Poppe B, Porteous ME, Prieur F, Prokofyeva D, Pugh E, Pujana MA, Pujol P, Radice P, Rantala J, Rappaport-Fuerhauser C, Rennert G, Rhiem K, Rice P, Richardson A, Robson M, Rodriguez GC, Rodríguez-Antona C, Romm J, Rookus MA, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Salvesen HB, Sandler DP, Schoemaker MJ, Senter L, Setiawan VW, Severi G, Sharma P, Shelford T, Siddiqui N, Side LE, Sieh W, Singer CF, Sobol H, Song H, Southey MC, Spurdle AB, Stadler Z, Steinemann D, Stoppa-Lyonnet D, Sucheston-Campbell LE, Sukiennicki G, Sutphen R, Sutter C, Swerdlow AJ, Szabo CI, Szafron L, Tan YY, Taylor JA, Tea MK, Teixeira MR, Teo SH, Terry KL, Thompson PJ, Thomsen LCV, Thull DL, Tihomirova L, Tinker AV, Tischkowitz M, Tognazzo S, Toland AE, Tone A, Trabert B, Travis RC, Trichopoulou A, Tung N, Tworoger SS, van Altena AM, Van Den Berg D, van der Hout AH, van der Luijt RB, Van Heetvelde M, Van Nieuwenhuysen E, van Rensburg EJ, Vanderstichele A, Varon-Mateeva R, Ana V, Edwards DV, Vergote I, Vierkant RA, Vijai J, Vratimos A, Walker L, Walsh C, Wand D, Wang-Gohrke S, Wappenschmidt B, Webb PM, Weinberg CR, Weitzel JN, Wentzensen N, Whittemore AS, Wijnen JT, Wilkens LR, Wolk A, Woo M, Wu X, Wu AH, Yang H, Yannoukakos D, Ziogas A, Zorn KK, Narod SA, Easton DF, Amos CI, Schildkraut JM, Ramus SJ, Ottini L, Goodman MT, Park SK, Kelemen LE, Risch HA, Thomassen M, Offit K, Simard J, Schmutzler RK, Hazelett D, Monteiro AN, Couch FJ, Berchuck A, Chenevix-Trench G, Goode EL, Sellers TA, Gayther SA, Antoniou AC, Pharoah PD. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet 2017; 49:680-691. [PMID: 28346442 PMCID: PMC5612337 DOI: 10.1038/ng.3826] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 03/03/2017] [Indexed: 12/14/2022]
Abstract
To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.
Collapse
|
research-article |
8 |
338 |
2
|
Milne RL, Kuchenbaecker KB, Michailidou K, Beesley J, Kar S, Lindström S, Hui S, Lemaçon A, Soucy P, Dennis J, Jiang X, Rostamianfar A, Finucane H, Bolla MK, McGuffog L, Wang Q, Aalfs CM, Adams M, Adlard J, Agata S, Ahmed S, Ahsan H, Aittomäki K, Al-Ejeh F, Allen J, Ambrosone CB, Amos CI, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Arnold N, Aronson KJ, Auber B, Auer PL, Ausems MGEM, Azzollini J, Bacot F, Balmaña J, Barile M, Barjhoux L, Barkardottir RB, Barrdahl M, Barnes D, Barrowdale D, Baynes C, Beckmann MW, Benitez J, Bermisheva M, Bernstein L, Bignon YJ, Blazer KR, Blok MJ, Blomqvist C, Blot W, Bobolis K, Boeckx B, Bogdanova NV, Bojesen A, Bojesen SE, Bonanni B, Børresen-Dale AL, Bozsik A, Bradbury AR, Brand JS, Brauch H, Brenner H, Bressac-de Paillerets B, Brewer C, Brinton L, Broberg P, Brooks-Wilson A, Brunet J, Brüning T, Burwinkel B, Buys SS, Byun J, Cai Q, Caldés T, Caligo MA, Campbell I, Canzian F, Caron O, Carracedo A, Carter BD, Castelao JE, Castera L, Caux-Moncoutier V, Chan SB, Chang-Claude J, Chanock SJ, Chen X, Cheng TYD, Chiquette J, Christiansen H, Claes KBM, Clarke CL, Conner T, Conroy DM, Cook J, Cordina-Duverger E, Cornelissen S, Coupier I, Cox A, Cox DG, Cross SS, Cuk K, Cunningham JM, Czene K, Daly MB, Damiola F, Darabi H, Davidson R, De Leeneer K, Devilee P, Dicks E, Diez O, Ding YC, Ditsch N, Doheny KF, Domchek SM, Dorfling CM, Dörk T, Dos-Santos-Silva I, Dubois S, Dugué PA, Dumont M, Dunning AM, Durcan L, Dwek M, Dworniczak B, Eccles D, Eeles R, Ehrencrona H, Eilber U, Ejlertsen B, Ekici AB, Eliassen AH, Engel C, Eriksson M, Fachal L, Faivre L, Fasching PA, Faust U, Figueroa J, Flesch-Janys D, Fletcher O, Flyger H, Foulkes WD, Friedman E, Fritschi L, Frost D, Gabrielson M, Gaddam P, Gammon MD, Ganz PA, Gapstur SM, Garber J, Garcia-Barberan V, García-Sáenz JA, Gaudet MM, Gauthier-Villars M, Gehrig A, Georgoulias V, Gerdes AM, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Goodfellow P, Greene MH, Alnæs GIG, Grip M, Gronwald J, Grundy A, Gschwantler-Kaulich D, Guénel P, Guo Q, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hallberg E, Hamann U, Hamel N, Hankinson S, Hansen TVO, Harrington P, Hart SN, Hartikainen JM, Healey CS, Hein A, Helbig S, Henderson A, Heyworth J, Hicks B, Hillemanns P, Hodgson S, Hogervorst FB, Hollestelle A, Hooning MJ, Hoover B, Hopper JL, Hu C, Huang G, Hulick PJ, Humphreys K, Hunter DJ, Imyanitov EN, Isaacs C, Iwasaki M, Izatt L, Jakubowska A, James P, Janavicius R, Janni W, Jensen UB, John EM, Johnson N, Jones K, Jones M, Jukkola-Vuorinen A, Kaaks R, Kabisch M, Kaczmarek K, Kang D, Kast K, Keeman R, Kerin MJ, Kets CM, Keupers M, Khan S, Khusnutdinova E, Kiiski JI, Kim SW, Knight JA, Konstantopoulou I, Kosma VM, Kristensen VN, Kruse TA, Kwong A, Lænkholm AV, Laitman Y, Lalloo F, Lambrechts D, Landsman K, Lasset C, Lazaro C, Le Marchand L, Lecarpentier J, Lee A, Lee E, Lee JW, Lee MH, Lejbkowicz F, Lesueur F, Li J, Lilyquist J, Lincoln A, Lindblom A, Lissowska J, Lo WY, Loibl S, Long J, Loud JT, Lubinski J, Luccarini C, Lush M, MacInnis RJ, Maishman T, Makalic E, Kostovska IM, Malone KE, Manoukian S, Manson JE, Margolin S, Martens JWM, Martinez ME, Matsuo K, Mavroudis D, Mazoyer S, McLean C, Meijers-Heijboer H, Menéndez P, Meyer J, Miao H, Miller A, Miller N, Mitchell G, Montagna M, Muir K, Mulligan AM, Mulot C, Nadesan S, Nathanson KL, Neuhausen SL, Nevanlinna H, Nevelsteen I, Niederacher D, Nielsen SF, Nordestgaard BG, Norman A, Nussbaum RL, Olah E, Olopade OI, Olson JE, Olswold C, Ong KR, Oosterwijk JC, Orr N, Osorio A, Pankratz VS, Papi L, Park-Simon TW, Paulsson-Karlsson Y, Lloyd R, Pedersen IS, Peissel B, Peixoto A, Perez JIA, Peterlongo P, Peto J, Pfeiler G, Phelan CM, Pinchev M, Plaseska-Karanfilska D, Poppe B, Porteous ME, Prentice R, Presneau N, Prokofieva D, Pugh E, Pujana MA, Pylkäs K, Rack B, Radice P, Rahman N, Rantala J, Rappaport-Fuerhauser C, Rennert G, Rennert HS, Rhenius V, Rhiem K, Richardson A, Rodriguez GC, Romero A, Romm J, Rookus MA, Rudolph A, Ruediger T, Saloustros E, Sanders J, Sandler DP, Sangrajrang S, Sawyer EJ, Schmidt DF, Schoemaker MJ, Schumacher F, Schürmann P, Schwentner L, Scott C, Scott RJ, Seal S, Senter L, Seynaeve C, Shah M, Sharma P, Shen CY, Sheng X, Shimelis H, Shrubsole MJ, Shu XO, Side LE, Singer CF, Sohn C, Southey MC, Spinelli JJ, Spurdle AB, Stegmaier C, Stoppa-Lyonnet D, Sukiennicki G, Surowy H, Sutter C, Swerdlow A, Szabo CI, Tamimi RM, Tan YY, Taylor JA, Tejada MI, Tengström M, Teo SH, Terry MB, Tessier DC, Teulé A, Thöne K, Thull DL, Tibiletti MG, Tihomirova L, Tischkowitz M, Toland AE, Tollenaar RAEM, Tomlinson I, Tong L, Torres D, Tranchant M, Truong T, Tucker K, Tung N, Tyrer J, Ulmer HU, Vachon C, van Asperen CJ, Van Den Berg D, van den Ouweland AMW, van Rensburg EJ, Varesco L, Varon-Mateeva R, Vega A, Viel A, Vijai J, Vincent D, Vollenweider J, Walker L, Wang Z, Wang-Gohrke S, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wesseling J, Whittemore AS, Wijnen JT, Willett W, Winqvist R, Wolk A, Wu AH, Xia L, Yang XR, Yannoukakos D, Zaffaroni D, Zheng W, Zhu B, Ziogas A, Ziv E, Zorn KK, Gago-Dominguez M, Mannermaa A, Olsson H, Teixeira MR, Stone J, Offit K, Ottini L, Park SK, Thomassen M, Hall P, Meindl A, Schmutzler RK, Droit A, Bader GD, Pharoah PDP, Couch FJ, Easton DF, Kraft P, Chenevix-Trench G, García-Closas M, Schmidt MK, Antoniou AC, Simard J. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet 2017; 49:1767-1778. [PMID: 29058716 PMCID: PMC5808456 DOI: 10.1038/ng.3785] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022]
Abstract
Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10-8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.
Collapse
|
research-article |
8 |
280 |
3
|
Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, Jiang X, O'Mara TA, Zhao N, Bolla MK, Dunning AM, Dennis J, Wang Q, Ful ZA, Aittomäki K, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Arun BK, Auer PL, Azzollini J, Barrowdale D, Becher H, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bialkowska K, Blanco A, Blomqvist C, Bogdanova NV, Bojesen SE, Bonanni B, Bondavalli D, Borg A, Brauch H, Brenner H, Briceno I, Broeks A, Brucker SY, Brüning T, Burwinkel B, Buys SS, Byers H, Caldés T, Caligo MA, Calvello M, Campa D, Castelao JE, Chang-Claude J, Chanock SJ, Christiaens M, Christiansen H, Chung WK, Claes KBM, Clarke CL, Cornelissen S, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Diez O, Domchek SM, Dörk T, Dwek M, Eccles DM, Ekici AB, Evans DG, Fasching PA, Figueroa J, Foretova L, Fostira F, Friedman E, Frost D, Gago-Dominguez M, Gapstur SM, Garber J, García-Sáenz JA, Gaudet MM, Gayther SA, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Gronwald J, Guénel P, Häberle L, Hahnen E, Haiman CA, Hake CR, Hall P, Hamann U, Harkness EF, Heemskerk-Gerritsen BAM, Hillemanns P, Hogervorst FBL, Holleczek B, Hollestelle A, Hooning MJ, Hoover RN, Hopper JL, Howell A, Huebner H, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Jager A, Jakimovska M, Jakubowska A, James P, Janavicius R, Janni W, John EM, Jones ME, Jung A, Kaaks R, Kapoor PM, Karlan BY, Keeman R, Khan S, Khusnutdinova E, Kitahara CM, Ko YD, Konstantopoulou I, Koppert LB, Koutros S, Kristensen VN, Laenkholm AV, Lambrechts D, Larsson SC, Laurent-Puig P, Lazaro C, Lazarova E, Lejbkowicz F, Leslie G, Lesueur F, Lindblom A, Lissowska J, Lo WY, Loud JT, Lubinski J, Lukomska A, MacInnis RJ, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Matricardi L, McGuffog L, McLean C, Mebirouk N, Meindl A, Menon U, Miller A, Mingazheva E, Montagna M, Mulligan AM, Mulot C, Muranen TA, Nathanson KL, Neuhausen SL, Nevanlinna H, Neven P, Newman WG, Nielsen FC, Nikitina-Zake L, Nodora J, Offit K, Olah E, Olopade OI, Olsson H, Orr N, Papi L, Papp J, Park-Simon TW, Parsons MT, Peissel B, Peixoto A, Peshkin B, Peterlongo P, Peto J, Phillips KA, Piedmonte M, Plaseska-Karanfilska D, Prajzendanc K, Prentice R, Prokofyeva D, Rack B, Radice P, Ramus SJ, Rantala J, Rashid MU, Rennert G, Rennert HS, Risch HA, Romero A, Rookus MA, Rübner M, Rüdiger T, Saloustros E, Sampson S, Sandler DP, Sawyer EJ, Scheuner MT, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Schöttker B, Schürmann P, Senter L, Sharma P, Sherman ME, Shu XO, Singer CF, Smichkoska S, Soucy P, Southey MC, Spinelli JJ, Stone J, Stoppa-Lyonnet D, Swerdlow AJ, Szabo CI, Tamimi RM, Tapper WJ, Taylor JA, Teixeira MR, Terry M, Thomassen M, Thull DL, Tischkowitz M, Toland AE, Tollenaar RAEM, Tomlinson I, Torres D, Troester MA, Truong T, Tung N, Untch M, Vachon CM, van den Ouweland AMW, van der Kolk LE, van Veen EM, vanRensburg EJ, Vega A, Wappenschmidt B, Weinberg CR, Weitzel JN, Wildiers H, Winqvist R, Wolk A, Yang XR, Yannoukakos D, Zheng W, Zorn KK, Milne RL, Kraft P, Simard J, Pharoah PDP, Michailidou K, Antoniou AC, Schmidt MK, Chenevix-Trench G, Easton DF, Chatterjee N, García-Closas M. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet 2020; 52:572-581. [PMID: 32424353 PMCID: PMC7808397 DOI: 10.1038/s41588-020-0609-2] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/05/2020] [Indexed: 11/18/2022]
Abstract
Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype1-3. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 × 10-8), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
Collapse
|
Meta-Analysis |
5 |
275 |
4
|
Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, Dunning AM, Redman J, Scarth J, Plaskocinska I, Luccarini C, Shah M, Pooley K, Dorling L, Lee A, Adank MA, Adlard J, Aittomäki K, Andrulis IL, Ang P, Barwell J, Bernstein JL, Bobolis K, Borg Å, Blomqvist C, Claes KB, Concannon P, Cuggia A, Culver JO, Damiola F, de Pauw A, Diez O, Dolinsky JS, Domchek SM, Engel C, Evans DG, Fostira F, Garber J, Golmard L, Goode EL, Gruber SB, Hahnen E, Hake C, Heikkinen T, Hurley JE, Janavicius R, Kleibl Z, Kleiblova P, Konstantopoulou I, Kvist A, Laduca H, Lee AS, Lesueur F, Maher ER, Mannermaa A, Manoukian S, McFarland R, McKinnon W, Meindl A, Metcalfe K, Mohd Taib NA, Moilanen J, Nathanson KL, Neuhausen S, Ng PS, Nguyen-Dumont T, Nielsen SM, Obermair F, Offit K, Olopade OI, Ottini L, Penkert J, Pylkäs K, Radice P, Ramus SJ, Rudaitis V, Side L, Silva-Smith R, Silvestri V, Skytte AB, Slavin T, Soukupova J, Tondini C, Trainer AH, Unzeitig G, Usha L, van Overeem Hansen T, Whitworth J, Wood M, Yip CH, Yoon SY, Yussuf A, Zogopoulos G, Goldgar D, Hopper JL, Chenevix-Trench G, Pharoah P, George SH, Balmaña J, Houdayer C, James P, El-Haffaf Z, Ehrencrona H, Janatova M, Peterlongo P, Nevanlinna H, Schmutzler R, Teo SH, Robson M, Pal T, Couch F, Weitzel JN, Elliott A, Southey M, Winqvist R, Easton DF, Foulkes WD, Antoniou AC, Tischkowitz M. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J Clin Oncol 2020; 38:674-685. [PMID: 31841383 PMCID: PMC7049229 DOI: 10.1200/jco.19.01907] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2019] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 × 10-2). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.
Collapse
|
research-article |
5 |
263 |
5
|
Frio TR, Bahubeshi A, Kanellopoulou C, Hamel N, Niedziela M, Sabbaghian N, Pouchet C, Gilbert L, O’Brien PK, Serfas K, Broderick P, Houlston RS, Lesueur F, Bonora E, Muljo S, Schimke RN, Soglio DBD, Arseneau J, Schultz KA, Priest JR, Nguyen VH, Harach HR, Livingston DM, Foulkes WD, Tischkowitz M. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA 2011; 305:68-77. [PMID: 21205968 PMCID: PMC3406486 DOI: 10.1001/jama.2010.1910] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CONTEXT Nontoxic multinodular goiter (MNG) is frequently observed in the general population, but little is known about the underlying genetic susceptibility to this disease. Familial cases of MNG have been reported, and published reports describe 5 families that also contain at least 1 individual with a Sertoli-Leydig cell tumor of the ovary (SLCT). Germline mutations in DICER1, a gene that codes for an RNase III endoribonuclease, have been identified in families affected by pleuropulmonary blastoma (PPB), some of whom include cases of MNG and gonadal tumors such as SLCTs. OBJECTIVE To determine whether familial MNG with or without SLCT in the absence of PPB was associated with mutations in DICER1. DESIGN, SETTING, AND PATIENTS From September 2009 to September 2010, we screened 53 individuals from 2 MNG and 3 MNG/SLCT families at McGill University for mutations in DICER1. We investigated blood lymphocytes and MNG and SLCT tissue from family members for loss of the wild-type DICER1 allele (loss of heterozygosity), DICER1 expression, and microRNA (miRNA) dysregulation. MAIN OUTCOME MEASURE Detection of germline DICER1 gene mutations in familial MNG with and without SLCT. RESULTS We identified and characterized germline DICER1 mutations in 37 individuals from 5 families. Two mutations were predicted to be protein truncating, 2 resulted in in-frame deletions, and 1 was a missense mutation. Molecular analysis of the 3 SLCTs showed no loss of heterozygosity of DICER1, and immunohistochemical analysis in 2 samples showed strong expression of DICER1 in Sertoli cells but weak staining of Leydig cells. miRNA profiling of RNA from lymphoblastoid cell lines from both affected and unaffected members of the familial MNG cases revealed miRNA perturbations in DICER1 mutation carriers. CONCLUSIONS DICER1 mutations are associated with both familial MNG and MNG with SLCT, independent of PPB. These germline DICER1 mutations are associated with dysregulation of miRNA expression patterns.
Collapse
|
research-article |
14 |
226 |
6
|
Rebbeck TR, Friebel TM, Friedman E, Hamann U, Huo D, Kwong A, Olah E, Olopade OI, Solano AR, Teo SH, Thomassen M, Weitzel JN, Chan TL, Couch FJ, Goldgar DE, Kruse TA, Palmero EI, Park SK, Torres D, van Rensburg EJ, McGuffog L, Parsons MT, Leslie G, Aalfs CM, Abugattas J, Adlard J, Agata S, Aittomäki K, Andrews L, Andrulis IL, Arason A, Arnold N, Arun BK, Asseryanis E, Auerbach L, Azzollini J, Balmaña J, Barile M, Barkardottir RB, Barrowdale D, Benitez J, Berger A, Berger R, Blanco AM, Blazer KR, Blok MJ, Bonadona V, Bonanni B, Bradbury AR, Brewer C, Buecher B, Buys SS, Caldes T, Caliebe A, Caligo MA, Campbell I, Caputo S, Chiquette J, Chung WK, Claes KB, Collée JM, Cook J, Davidson R, de la Hoya M, De Leeneer K, de Pauw A, Delnatte C, Diez O, Ding YC, Ditsch N, Domchek SM, Dorfling CM, Velazquez C, Dworniczak B, Eason J, Easton DF, Eeles R, Ehrencrona H, Ejlertsen B, Engel C, Engert S, Evans DG, Faivre L, Feliubadaló L, Ferrer SF, Foretova L, Fowler J, Frost D, Galvão HCR, Ganz PA, Garber J, Gauthier-Villars M, Gehrig A, Gerdes AM, Gesta P, Giannini G, Giraud S, Glendon G, Godwin AK, Greene MH, Gronwald J, Gutierrez-Barrera A, Hahnen E, Hauke J, Henderson A, Hentschel J, Hogervorst FB, Honisch E, Imyanitov EN, Isaacs C, Izatt L, Izquierdo A, Jakubowska A, James P, Janavicius R, Jensen UB, John EM, Joseph V, Kaczmarek K, Karlan BY, Kast K, Kim SW, Konstantopoulou I, Korach J, Laitman Y, Lasa A, Lasset C, Lázaro C, Lee A, Lee MH, Lester J, Lesueur F, Liljegren A, Lindor NM, Longy M, Loud JT, Lu KH, Lubinski J, Machackova E, Manoukian S, Mari V, Martínez-Bouzas C, Matrai Z, Mebirouk N, Meijers-Heijboer HE, Meindl A, Mensenkamp AR, Mickys U, Miller A, Montagna M, Moysich KB, Mulligan AM, Musinsky J, Neuhausen SL, Nevanlinna H, Ngeow J, Nguyen HP, Niederacher D, Nielsen HR, Nielsen FC, Nussbaum RL, Offit K, Öfverholm A, Ong KR, Osorio A, Papi L, Papp J, Pasini B, Pedersen IS, Peixoto A, Peruga N, Peterlongo P, Pohl E, Pradhan N, Prajzendanc K, Prieur F, Pujol P, Radice P, Ramus SJ, Rantala J, Rashid MU, Rhiem K, Robson M, Rodriguez GC, Rogers MT, Rudaitis V, Schmidt AY, Schmutzler RK, Senter L, Shah PD, Sharma P, Side LE, Simard J, Singer CF, Skytte AB, Slavin TP, Snape K, Sobol H, Southey M, Steele L, Steinemann D, Sukiennicki G, Sutter C, Szabo CI, Tan YY, Teixeira MR, Terry MB, Teulé A, Thomas A, Thull DL, Tischkowitz M, Tognazzo S, Toland AE, Topka S, Trainer AH, Tung N, van Asperen CJ, van der Hout AH, van der Kolk LE, van der Luijt RB, Van Heetvelde M, Varesco L, Varon-Mateeva R, Vega A, Villarreal-Garza C, von Wachenfeldt A, Walker L, Wang-Gohrke S, Wappenschmidt B, Weber BHF, Yannoukakos D, Yoon SY, Zanzottera C, Zidan J, Zorn KK, Hutten Selkirk CG, Hulick PJ, Chenevix-Trench G, Spurdle AB, Antoniou AC, Nathanson KL. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum Mutat 2018; 39:593-620. [PMID: 29446198 PMCID: PMC5903938 DOI: 10.1002/humu.23406] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/09/2018] [Accepted: 01/19/2018] [Indexed: 01/19/2023]
Abstract
The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
216 |
7
|
Kuchenbaecker KB, McGuffog L, Barrowdale D, Lee A, Soucy P, Healey S, Dennis J, Lush M, Robson M, Spurdle AB, Ramus SJ, Mavaddat N, Terry MB, Neuhausen SL, Hamann U, Southey M, John EM, Chung WK, Daly MB, Buys SS, Goldgar DE, Dorfling CM, van Rensburg EJ, Ding YC, Ejlertsen B, Gerdes AM, Hansen TVO, Slager S, Hallberg E, Benitez J, Osorio A, Cohen N, Lawler W, Weitzel JN, Peterlongo P, Pensotti V, Dolcetti R, Barile M, Bonanni B, Azzollini J, Manoukian S, Peissel B, Radice P, Savarese A, Papi L, Giannini G, Fostira F, Konstantopoulou I, Adlard J, Brewer C, Cook J, Davidson R, Eccles D, Eeles R, Ellis S, Frost D, Hodgson S, Izatt L, Lalloo F, Ong KR, Godwin AK, Arnold N, Dworniczak B, Engel C, Gehrig A, Hahnen E, Hauke J, Kast K, Meindl A, Niederacher D, Schmutzler RK, Varon-Mateeva R, Wang-Gohrke S, Wappenschmidt B, Barjhoux L, Collonge-Rame MA, Elan C, Golmard L, Barouk-Simonet E, Lesueur F, Mazoyer S, Sokolowska J, Stoppa-Lyonnet D, Isaacs C, Claes KBM, Poppe B, de la Hoya M, Garcia-Barberan V, Aittomäki K, Nevanlinna H, Ausems MGEM, de Lange JL, Gómez Garcia EB, Hogervorst FBL, Kets CM, Meijers-Heijboer HEJ, Oosterwijk JC, Rookus MA, van Asperen CJ, van den Ouweland AMW, van Doorn HC, van Os TAM, Kwong A, Olah E, Diez O, Brunet J, Lazaro C, Teulé A, Gronwald J, Jakubowska A, Kaczmarek K, Lubinski J, Sukiennicki G, Barkardottir RB, Chiquette J, Agata S, Montagna M, Teixeira MR, Park SK, Olswold C, Tischkowitz M, Foretova L, Gaddam P, Vijai J, Pfeiler G, Rappaport-Fuerhauser C, Singer CF, Tea MKM, Greene MH, Loud JT, Rennert G, Imyanitov EN, Hulick PJ, Hays JL, Piedmonte M, Rodriguez GC, Martyn J, Glendon G, Mulligan AM, Andrulis IL, Toland AE, Jensen UB, Kruse TA, Pedersen IS, Thomassen M, Caligo MA, Teo SH, Berger R, Friedman E, Laitman Y, Arver B, Borg A, Ehrencrona H, Rantala J, Olopade OI, Ganz PA, Nussbaum RL, Bradbury AR, Domchek SM, Nathanson KL, Arun BK, James P, Karlan BY, Lester J, Simard J, Pharoah PDP, Offit K, Couch FJ, Chenevix-Trench G, Easton DF, Antoniou AC. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers. J Natl Cancer Inst 2017; 109:3064534. [PMID: 28376175 PMCID: PMC5408990 DOI: 10.1093/jnci/djw302] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 10/15/2016] [Accepted: 11/16/2016] [Indexed: 12/16/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2×10 -53 ). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2×10 -20 ). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management.
Collapse
|
research-article |
8 |
203 |
8
|
Canzian F, Amati P, Harach HR, Kraimps JL, Lesueur F, Barbier J, Levillain P, Romeo G, Bonneau D. A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am J Hum Genet 1998; 63:1743-8. [PMID: 9837827 PMCID: PMC1377646 DOI: 10.1086/302164] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Familial nonmedullary thyroid cancer (FNMTC) is a clinical entity characterized by a phenotype more aggressive than that of its sporadic counterpart. Families with recurrence of nonmedullary thyroid cancer (NMTC) have been repeatedly reported in the literature, and epidemiological data show a very high relative risk for first-degree relatives of probands with thyroid cancer. The transmission of susceptibility to FNMTC is compatible with autosomal dominant inheritance with reduced penetrance, or with complex inheritance. Cases of benign thyroid disease are often found in FNMTC kindreds. We report both the identification of a new entity of FNMTC and the mapping of the responsible gene, named "TCO" (thyroid tumors with cell oxyphilia), in a French pedigree with multiple cases of multinodular goiter and NMTC. TCO was mapped to chromosome 19p13.2 by linkage analysis with a whole-genome panel of microsatellite markers. Interestingly, both the benign and malignant thyroid tumors in this family exhibit some extent of cell oxyphilia, which, until now, had not been described in the FNMTC. These findings suggest that the relatives of patients affected with sporadic NMTC with cell oxyphilia should be carefully investigated.
Collapse
|
research-article |
27 |
167 |
9
|
Tavtigian SV, Greenblatt MS, Lesueur F, Byrnes GB. In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 2008; 29:1327-36. [PMID: 18951440 DOI: 10.1002/humu.20892] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetic testing for mutations in high-risk cancer susceptibility genes often reveals missense substitutions that are not easily classified as pathogenic or neutral. Among the methods that can help in their classification are computational analyses. Predictions of pathogenic vs. neutral, or the probability that a variant is pathogenic, can be made based on: 1) inferences from evolutionary conservation using protein multiple sequence alignments (PMSAs) of the gene of interest for almost any missense sequence variant; and 2) for many variants, structural features of wild-type and variant proteins. These in silico methods have improved considerably in recent years. In this work, we review and/or make suggestions with respect to: 1) the rationale for using in silico methods to help predict the consequences of missense variants; 2) important aspects of creating PMSAs that are informative for classification; 3) specific features of algorithms that have been used for classification of clinically-observed variants; 4) validation studies demonstrating that computational analyses can have predictive values (PVs) of approximately 75 to 95%; 5) current limitations of data sets and algorithms that need to be addressed to improve the computational classifiers; and 6) how in silico algorithms can be a part of the "integrated analysis" of multiple lines of evidence to help classify variants. We conclude that carefully validated computational algorithms, in the context of other evidence, can be an important tool for classification of missense variants.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
157 |
10
|
Tavtigian SV, Oefner PJ, Babikyan D, Hartmann A, Healey S, Le Calvez-Kelm F, Lesueur F, Byrnes GB, Chuang SC, Forey N, Feuchtinger C, Gioia L, Hall J, Hashibe M, Herte B, McKay-Chopin S, Thomas A, Vallée MP, Voegele C, Webb PM, Whiteman DC, Sangrajrang S, Hopper JL, Southey MC, Andrulis IL, John EM, Chenevix-Trench G. Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am J Hum Genet 2009; 85:427-46. [PMID: 19781682 DOI: 10.1016/j.ajhg.2009.08.018] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 07/02/2009] [Accepted: 08/28/2009] [Indexed: 01/22/2023] Open
Abstract
The susceptibility gene for ataxia telangiectasia, ATM, is also an intermediate-risk breast-cancer-susceptibility gene. However, the spectrum and frequency distribution of ATM mutations that confer increased risk of breast cancer have been controversial. To assess the contribution of rare variants in this gene to risk of breast cancer, we pooled data from seven published ATM case-control mutation-screening studies, including a total of 1544 breast cancer cases and 1224 controls, with data from our own mutation screening of an additional 987 breast cancer cases and 1021 controls. Using an in silico missense-substitution analysis that provides a ranking of missense substitutions from evolutionarily most likely to least likely, we carried out analyses of protein-truncating variants, splice-junction variants, and rare missense variants. We found marginal evidence that the combination of ATM protein-truncating and splice-junction variants contribute to breast cancer risk. There was stronger evidence that a subset of rare, evolutionarily unlikely missense substitutions confer increased risk. On the basis of subset analyses, we hypothesize that rare missense substitutions falling in and around the FAT, kinase, and FATC domains of the protein may be disproportionately responsible for that risk and that a subset of these may confer higher risk than do protein-truncating variants. We conclude that a comparison between the graded distributions of missense substitutions in cases versus controls can complement analyses of truncating variants and help identify susceptibility genes and that this approach will aid interpretation of the data emerging from new sequencing technologies.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
143 |
11
|
McKay JD, Lesueur F, Jonard L, Pastore A, Williamson J, Hoffman L, Burgess J, Duffield A, Papotti M, Stark M, Sobol H, Maes B, Murat A, Kääriäinen H, Bertholon-Grégoire M, Zini M, Rossing MA, Toubert ME, Bonichon F, Cavarec M, Bernard AM, Boneu A, Leprat F, Haas O, Lasset C, Schlumberger M, Canzian F, Goldgar DE, Romeo G. Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21. Am J Hum Genet 2001; 69:440-6. [PMID: 11438887 PMCID: PMC1235316 DOI: 10.1086/321979] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2001] [Accepted: 06/12/2001] [Indexed: 11/03/2022] Open
Abstract
The familial form of nonmedullary thyroid carcinoma (NMTC) is a complex genetic disorder characterized by multifocal neoplasia and a higher degree of aggressiveness than its sporadic counterpart. In a large Tasmanian pedigree (Tas1) with recurrence of papillary thyroid carcinoma (PTC), the most common form of NMTC, an extensive genomewide scan revealed a common haplotype on chromosome 2q21 in seven of the eight patients with PTC. To verify the significance of the 2q21 locus, we performed linkage analysis in an independent sample set of 80 pedigrees, yielding a multipoint heterogeneity LOD score (HLOD) of 3.07 (alpha=0.42), nonparametric linkage (NPL) 3.19, (P=.001) at marker D2S2271. Stratification based on the presence of at least one case of the follicular variant of PTC, the phenotype observed in the Tas1 family, identified 17 such pedigrees, yielding a maximal HLOD score of 4.17 (alpha=0.80) and NPL=4.99 (P=.00002) at markers AFMa272zg9 and D2S2271, respectively. These results indicate the existence of a susceptibility locus for familial NMTC on chromosome 2q21.
Collapse
|
case-report |
24 |
137 |
12
|
Li S, Silvestri V, Leslie G, Rebbeck TR, Neuhausen SL, Hopper JL, Nielsen HR, Lee A, Yang X, McGuffog L, Parsons MT, Andrulis IL, Arnold N, Belotti M, Borg Å, Buecher B, Buys SS, Caputo SM, Chung WK, Colas C, Colonna SV, Cook J, Daly MB, de la Hoya M, de Pauw A, Delhomelle H, Eason J, Engel C, Evans DG, Faust U, Fehm TN, Fostira F, Fountzilas G, Frone M, Garcia-Barberan V, Garre P, Gauthier-Villars M, Gehrig A, Glendon G, Goldgar DE, Golmard L, Greene MH, Hahnen E, Hamann U, Hanson H, Hassan T, Hentschel J, Horvath J, Izatt L, Janavicius R, Jiao Y, John EM, Karlan BY, Kim SW, Konstantopoulou I, Kwong A, Laugé A, Lee JW, Lesueur F, Mebirouk N, Meindl A, Mouret-Fourme E, Musgrave H, Ngeow Yuen Yie J, Niederacher D, Park SK, Pedersen IS, Ramser J, Ramus SJ, Rantala J, Rashid MU, Reichl F, Ritter J, Rump A, Santamariña M, Saule C, Schmidt G, Schmutzler RK, Senter L, Shariff S, Singer CF, Southey MC, Stoppa-Lyonnet D, Sutter C, Tan Y, Teo SH, Terry MB, Thomassen M, Tischkowitz M, Toland AE, Torres D, Vega A, Wagner SA, Wang-Gohrke S, Wappenschmidt B, Weber BHF, Yannoukakos D, Spurdle AB, Easton DF, Chenevix-Trench G, Ottini L, Antoniou AC. Cancer Risks Associated With BRCA1 and BRCA2 Pathogenic Variants. J Clin Oncol 2022; 40:1529-1541. [PMID: 35077220 PMCID: PMC9084432 DOI: 10.1200/jco.21.02112] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To provide precise age-specific risk estimates of cancers other than female breast and ovarian cancers associated with pathogenic variants (PVs) in BRCA1 and BRCA2 for effective cancer risk management. METHODS We used data from 3,184 BRCA1 and 2,157 BRCA2 families in the Consortium of Investigators of Modifiers of BRCA1/2 to estimate age-specific relative (RR) and absolute risks for 22 first primary cancer types adjusting for family ascertainment. RESULTS BRCA1 PVs were associated with risks of male breast (RR = 4.30; 95% CI, 1.09 to 16.96), pancreatic (RR = 2.36; 95% CI, 1.51 to 3.68), and stomach (RR = 2.17; 95% CI, 1.25 to 3.77) cancers. Associations with colorectal and gallbladder cancers were also suggested. BRCA2 PVs were associated with risks of male breast (RR = 44.0; 95% CI, 21.3 to 90.9), stomach (RR = 3.69; 95% CI, 2.40 to 5.67), pancreatic (RR = 3.34; 95% CI, 2.21 to 5.06), and prostate (RR = 2.22; 95% CI, 1.63 to 3.03) cancers. The stomach cancer RR was higher for females than males (6.89 v 2.76; P = .04). The absolute risks to age 80 years ranged from 0.4% for male breast cancer to approximately 2.5% for pancreatic cancer for BRCA1 carriers and from approximately 2.5% for pancreatic cancer to 27% for prostate cancer for BRCA2 carriers. CONCLUSION In addition to female breast and ovarian cancers, BRCA1 and BRCA2 PVs are associated with increased risks of male breast, pancreatic, stomach, and prostate (only BRCA2 PVs) cancers, but not with the risks of other previously suggested cancers. The estimated age-specific risks will refine cancer risk management in men and women with BRCA1/2 PVs.
Collapse
|
research-article |
3 |
136 |
13
|
Park YG, Zhao X, Lesueur F, Lowy DR, Lancaster M, Pharoah P, Qian X, Hunter KW. Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 2005; 37:1055-62. [PMID: 16142231 PMCID: PMC2140048 DOI: 10.1038/ng1635] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 07/11/2005] [Indexed: 11/08/2022]
Abstract
We previously identified loci in the mouse genome that substantially influence the metastatic efficiency of mammary tumors. Here, we present data supporting the idea that the signal transduction molecule, Sipa1, is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Analysis of candidate genes identified a nonsynonymous amino acid polymorphism in Sipa1 that affects the Sipa1 Rap-GAP function. Spontaneous metastasis assays using cells ectopically expressing Sipa1 or cells with knocked-down Sipa1 expression showed that metastatic capacity was correlated with cellular Sipa1 levels. We examined human expression data and found that they were consistent with the idea that Sipa1 concentration has a role in metastasis. Taken together, these data suggest that the Sipa1 polymorphism is one of the genetic polymorphisms underlying the Mtes1 locus. This report is also the first demonstration, to our knowledge, of a constitutional genetic polymorphism affecting tumor metastasis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
133 |
14
|
Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, Pooley KA, Dennis J, Michailidou K, Turman C, Soucy P, Lemaçon A, Lush M, Tyrer JP, Ghoussaini M, Moradi Marjaneh M, Jiang X, Agata S, Aittomäki K, Alonso MR, Andrulis IL, Anton-Culver H, Antonenkova NN, Arason A, Arndt V, Aronson KJ, Arun BK, Auber B, Auer PL, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Beeghly-Fadiel A, Benitez J, Bermisheva M, Białkowska K, Blanco AM, Blomqvist C, Blot W, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Borg A, Bosse K, Brauch H, Brenner H, Briceno I, Brock IW, Brooks-Wilson A, Brüning T, Burwinkel B, Buys SS, Cai Q, Caldés T, Caligo MA, Camp NJ, Campbell I, Canzian F, Carroll JS, Carter BD, Castelao JE, Chiquette J, Christiansen H, Chung WK, Claes KBM, Clarke CL, Collée JM, Cornelissen S, Couch FJ, Cox A, Cross SS, Cybulski C, Czene K, Daly MB, de la Hoya M, Devilee P, Diez O, Ding YC, Dite GS, Domchek SM, Dörk T, Dos-Santos-Silva I, Droit A, Dubois S, Dumont M, Duran M, Durcan L, Dwek M, Eccles DM, Engel C, Eriksson M, Evans DG, Fasching PA, Fletcher O, Floris G, Flyger H, Foretova L, Foulkes WD, Friedman E, Fritschi L, Frost D, Gabrielson M, Gago-Dominguez M, Gambino G, Ganz PA, Gapstur SM, Garber J, García-Sáenz JA, Gaudet MM, Georgoulias V, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Tibiletti MG, Greene MH, Grip M, Gronwald J, Grundy A, Guénel P, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hartikainen JM, Hartman M, He W, Healey CS, Heemskerk-Gerritsen BAM, Heyworth J, Hillemanns P, Hogervorst FBL, Hollestelle A, Hooning MJ, Hopper JL, Howell A, Huang G, Hulick PJ, Imyanitov EN, Isaacs C, Iwasaki M, Jager A, Jakimovska M, Jakubowska A, James PA, Janavicius R, Jankowitz RC, John EM, Johnson N, Jones ME, Jukkola-Vuorinen A, Jung A, Kaaks R, Kang D, Kapoor PM, Karlan BY, Keeman R, Kerin MJ, Khusnutdinova E, Kiiski JI, Kirk J, Kitahara CM, Ko YD, Konstantopoulou I, Kosma VM, Koutros S, Kubelka-Sabit K, Kwong A, Kyriacou K, Laitman Y, Lambrechts D, Lee E, Leslie G, Lester J, Lesueur F, Lindblom A, Lo WY, Long J, Lophatananon A, Loud JT, Lubiński J, MacInnis RJ, Maishman T, Makalic E, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Matsuo K, Maurer T, Mavroudis D, Mayes R, McGuffog L, McLean C, Mebirouk N, Meindl A, Miller A, Miller N, Montagna M, Moreno F, Muir K, Mulligan AM, Muñoz-Garzon VM, Muranen TA, Narod SA, Nassir R, Nathanson KL, Neuhausen SL, Nevanlinna H, Neven P, Nielsen FC, Nikitina-Zake L, Norman A, Offit K, Olah E, Olopade OI, Olsson H, Orr N, Osorio A, Pankratz VS, Papp J, Park SK, Park-Simon TW, Parsons MT, Paul J, Pedersen IS, Peissel B, Peshkin B, Peterlongo P, Peto J, Plaseska-Karanfilska D, Prajzendanc K, Prentice R, Presneau N, Prokofyeva D, Pujana MA, Pylkäs K, Radice P, Ramus SJ, Rantala J, Rau-Murthy R, Rennert G, Risch HA, Robson M, Romero A, Rossing M, Saloustros E, Sánchez-Herrero E, Sandler DP, Santamariña M, Saunders C, Sawyer EJ, Scheuner MT, Schmidt DF, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Schöttker B, Schürmann P, Scott C, Scott RJ, Senter L, Seynaeve CM, Shah M, Sharma P, Shen CY, Shu XO, Singer CF, Slavin TP, Smichkoska S, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Stoppa-Lyonnet D, Sutter C, Swerdlow AJ, Tamimi RM, Tan YY, Tapper WJ, Taylor JA, Teixeira MR, Tengström M, Teo SH, Terry MB, Teulé A, Thomassen M, Thull DL, Tischkowitz M, Toland AE, Tollenaar RAEM, Tomlinson I, Torres D, Torres-Mejía G, Troester MA, Truong T, Tung N, Tzardi M, Ulmer HU, Vachon CM, van Asperen CJ, van der Kolk LE, van Rensburg EJ, Vega A, Viel A, Vijai J, Vogel MJ, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wildiers H, Winqvist R, Wolk A, Wu AH, Yannoukakos D, Zhang Y, Zheng W, Hunter D, Pharoah PDP, Chang-Claude J, García-Closas M, Schmidt MK, Milne RL, Kristensen VN, French JD, Edwards SL, Antoniou AC, Chenevix-Trench G, Simard J, Easton DF, Kraft P, Dunning AM. Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat Genet 2020; 52:56-73. [PMID: 31911677 PMCID: PMC6974400 DOI: 10.1038/s41588-019-0537-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/24/2019] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
99 |
15
|
Garritano S, Gemignani F, Voegele C, Nguyen-Dumont T, Le Calvez-Kelm F, De Silva D, Lesueur F, Landi S, Tavtigian SV. Determining the effectiveness of High Resolution Melting analysis for SNP genotyping and mutation scanning at the TP53 locus. BMC Genet 2009; 10:5. [PMID: 19222838 PMCID: PMC2648999 DOI: 10.1186/1471-2156-10-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 02/17/2009] [Indexed: 12/22/2022] Open
Abstract
Background Together single nucleotide substitutions and small insertion/deletion variants are the most common form of sequence variation in the human gene pool. High-resolution SNP profile and/or haplotype analyses enable the identification of modest-risk susceptibility genes to common diseases, genes that may modulate responses to pharmaceutical agents, and SNPs that can affect either their expression or function. In addition, sensitive techniques for germline or somatic mutation detection are important tools for characterizing sequence variations in genes responsible for tumor predisposition. Cost-effective methods are highly desirable. Many of the recently developed high-throughput technologies are geared toward industrial scale genetic studies and arguably do not provide useful solutions for small laboratory investigator-initiated projects. Recently, the use of new fluorescent dyes allowed the high-resolution analysis of DNA melting curves (HRM). Results Here, we compared the capacity of HRM, applicable to both genotyping and mutation scanning, to detect genetic variations in the tumor suppressor gene TP53 with that of mutation screening by full resequencing. We also assessed the performance of a variety of available HRM-based genotyping assays by genotyping 30 TP53 SNPs. We describe a series of solutions to handle the difficulties that may arise in large-scale application of HRM to mutation screening and genotyping at the TP53 locus. In particular, we developed specific HRM assays that render possible genotyping of 2 or more, sometimes closely spaced, polymorphisms within the same amplicon. We also show that simultaneous genotyping of 2 SNPs from 2 different amplicons using a multiplex PCR reaction is feasible; the data can be analyzed in a single HRM run, potentially improving the efficiency of HRM genotyping workflows. Conclusion The HRM technique showed high sensitivity and specificity (1.0, and 0.8, respectively, for amplicons of <400 bp) for mutation screening and provided useful genotyping assays as assessed by comparing the results with those obtained with Sanger sequencing. Thus, HRM is particularly suitable for either performing mutation scanning of a large number of samples, even in the situation where the amplicon(s) of interest harbor a common variant that may disturb the analysis, or in a context where gathering common SNP genotypes is of interest.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
95 |
16
|
Easton DF, Lesueur F, Decker B, Michailidou K, Li J, Allen J, Luccarini C, Pooley KA, Shah M, Bolla MK, Wang Q, Dennis J, Ahmad J, Thompson ER, Damiola F, Pertesi M, Voegele C, Mebirouk N, Robinot N, Durand G, Forey N, Luben RN, Ahmed S, Aittomäki K, Anton-Culver H, Arndt V, Baynes C, Beckman MW, Benitez J, Van Den Berg D, Blot WJ, Bogdanova NV, Bojesen SE, Brenner H, Chang-Claude J, Chia KS, Choi JY, Conroy DM, Cox A, Cross SS, Czene K, Darabi H, Devilee P, Eriksson M, Fasching PA, Figueroa J, Flyger H, Fostira F, García-Closas M, Giles GG, Glendon G, González-Neira A, Guénel P, Haiman CA, Hall P, Hart SN, Hartman M, Hooning MJ, Hsiung CN, Ito H, Jakubowska A, James PA, John EM, Johnson N, Jones M, Kabisch M, Kang D, Kosma VM, Kristensen V, Lambrechts D, Li N, Lindblom A, Long J, Lophatananon A, Lubinski J, Mannermaa A, Manoukian S, Margolin S, Matsuo K, Meindl A, Mitchell G, Muir K, Nevelsteen I, van den Ouweland A, Peterlongo P, Phuah SY, Pylkäs K, Rowley SM, Sangrajrang S, Schmutzler RK, Shen CY, Shu XO, Southey MC, Surowy H, Swerdlow A, Teo SH, Tollenaar RAEM, Tomlinson I, Torres D, Truong T, Vachon C, Verhoef S, Wong-Brown M, Zheng W, Zheng Y, Nevanlinna H, Scott RJ, Andrulis IL, Wu AH, Hopper JL, Couch FJ, Winqvist R, Burwinkel B, Sawyer EJ, Schmidt MK, Rudolph A, Dörk T, Brauch H, Hamann U, Neuhausen SL, Milne RL, Fletcher O, Pharoah PDP, Campbell IG, Dunning AM, Le Calvez-Kelm F, Goldgar DE, Tavtigian SV, Chenevix-Trench G. No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing. J Med Genet 2016; 53:298-309. [PMID: 26921362 PMCID: PMC4938802 DOI: 10.1136/jmedgenet-2015-103529] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. METHODS We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia. RESULTS The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75). CONCLUSIONS These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels.
Collapse
|
research-article |
9 |
83 |
17
|
Ferreira MA, Gamazon ER, Al-Ejeh F, Aittomäki K, Andrulis IL, Anton-Culver H, Arason A, Arndt V, Aronson KJ, Arun BK, Asseryanis E, Azzollini J, Balmaña J, Barnes DR, Barrowdale D, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Białkowska K, Blomqvist C, Bogdanova NV, Bojesen SE, Bolla MK, Borg A, Brauch H, Brenner H, Broeks A, Burwinkel B, Caldés T, Caligo MA, Campa D, Campbell I, Canzian F, Carter J, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Christiansen H, Chung WK, Claes KBM, Clarke CL, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, de la Hoya M, Dennis J, Devilee P, Diez O, Dörk T, Dunning AM, Dwek M, Eccles DM, Ejlertsen B, Ellberg C, Engel C, Eriksson M, Fasching PA, Fletcher O, Flyger H, Friedman E, Frost D, Gabrielson M, Gago-Dominguez M, Ganz PA, Gapstur SM, Garber J, García-Closas M, García-Sáenz JA, Gaudet MM, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Gronwald J, Guénel P, Haiman CA, Hall P, Hamann U, He W, Heyworth J, Hogervorst FBL, Hollestelle A, Hoover RN, Hopper JL, Hulick PJ, Humphreys K, Imyanitov EN, Isaacs C, Jakimovska M, Jakubowska A, James PA, Janavicius R, Jankowitz RC, John EM, Johnson N, Joseph V, Karlan BY, Khusnutdinova E, Kiiski JI, Ko YD, Jones ME, Konstantopoulou I, Kristensen VN, Laitman Y, Lambrechts D, Lazaro C, Leslie G, Lester J, Lesueur F, Lindström S, Long J, Loud JT, Lubiński J, Makalic E, Mannermaa A, Manoochehri M, Margolin S, Maurer T, Mavroudis D, McGuffog L, Meindl A, Menon U, Michailidou K, Miller A, Montagna M, Moreno F, Moserle L, Mulligan AM, Nathanson KL, Neuhausen SL, Nevanlinna H, Nevelsteen I, Nielsen FC, Nikitina-Zake L, Nussbaum RL, Offit K, Olah E, Olopade OI, Olsson H, Osorio A, Papp J, Park-Simon TW, Parsons MT, Pedersen IS, Peixoto A, Peterlongo P, Pharoah PDP, Plaseska-Karanfilska D, Poppe B, Presneau N, Radice P, Rantala J, Rennert G, Risch HA, Saloustros E, Sanden K, Sawyer EJ, Schmidt MK, Schmutzler RK, Sharma P, Shu XO, Simard J, Singer CF, Soucy P, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Swerdlow AJ, Tapper WJ, Taylor JA, Teixeira MR, Terry MB, Teulé A, Thomassen M, Thöne K, Thull DL, Tischkowitz M, Toland AE, Torres D, Truong T, Tung N, Vachon CM, van Asperen CJ, van den Ouweland AMW, van Rensburg EJ, Vega A, Viel A, Wang Q, Wappenschmidt B, Weitzel JN, Wendt C, Winqvist R, Yang XR, Yannoukakos D, Ziogas A, Kraft P, Antoniou AC, Zheng W, Easton DF, Milne RL, Beesley J, Chenevix-Trench G. Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nat Commun 2019; 10:1741. [PMID: 30988301 PMCID: PMC6465407 DOI: 10.1038/s41467-018-08053-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.
Collapse
|
research-article |
6 |
81 |
18
|
Damiola F, Pertesi M, Oliver J, Le Calvez-Kelm F, Voegele C, Young EL, Robinot N, Forey N, Durand G, Vallée MP, Tao K, Roane TC, Williams GJ, Hopper JL, Southey MC, Andrulis IL, John EM, Goldgar DE, Lesueur F, Tavtigian SV. Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study. Breast Cancer Res 2014; 16:R58. [PMID: 24894818 PMCID: PMC4229874 DOI: 10.1186/bcr3669] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/08/2014] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The MRE11A-RAD50-Nibrin (MRN) complex plays several critical roles related to repair of DNA double-strand breaks. Inherited mutations in the three components predispose to genetic instability disorders and the MRN genes have been implicated in breast cancer susceptibility, but the underlying data are not entirely convincing. Here, we address two related questions: (1) are some rare MRN variants intermediate-risk breast cancer susceptibility alleles, and if so (2) do the MRN genes follow a BRCA1/BRCA2 pattern wherein most susceptibility alleles are protein-truncating variants, or do they follow an ATM/CHEK2 pattern wherein half or more of the susceptibility alleles are missense substitutions? METHODS Using high-resolution melt curve analysis followed by Sanger sequencing, we mutation screened the coding exons and proximal splice junction regions of the MRN genes in 1,313 early-onset breast cancer cases and 1,123 population controls. Rare variants in the three genes were pooled using bioinformatics methods similar to those previously applied to ATM, BRCA1, BRCA2, and CHEK2, and then assessed by logistic regression. RESULTS Re-analysis of our ATM, BRCA1, and BRCA2 mutation screening data revealed that these genes do not harbor pathogenic alleles (other than modest-risk SNPs) with minor allele frequencies>0.1% in Caucasian Americans, African Americans, or East Asians. Limiting our MRN analyses to variants with allele frequencies of <0.1% and combining protein-truncating variants, likely spliceogenic variants, and key functional domain rare missense substitutions, we found significant evidence that the MRN genes are indeed intermediate-risk breast cancer susceptibility genes (odds ratio (OR)=2.88, P=0.0090). Key domain missense substitutions were more frequent than the truncating variants (24 versus 12 observations) and conferred a slightly higher OR (3.07 versus 2.61) with a lower P value (0.029 versus 0.14). CONCLUSIONS These data establish that MRE11A, RAD50, and NBN are intermediate-risk breast cancer susceptibility genes. Like ATM and CHEK2, their spectrum of pathogenic variants includes a relatively high proportion of missense substitutions. However, the data neither establish whether variants in each of the three genes are best evaluated under the same analysis model nor achieve clinically actionable classification of individual variants observed in this study.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
80 |
19
|
Barnes DR, Rookus MA, McGuffog L, Leslie G, Mooij TM, Dennis J, Mavaddat N, Adlard J, Ahmed M, Aittomäki K, Andrieu N, Andrulis IL, Arnold N, Arun BK, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Benitez J, Berthet P, Białkowska K, Blanco AM, Blok MJ, Bonanni B, Boonen SE, Borg Å, Bozsik A, Bradbury AR, Brennan P, Brewer C, Brunet J, Buys SS, Caldés T, Caligo MA, Campbell I, Christensen LL, Chung WK, Claes KBM, Colas C, Collonge-Rame MA, Cook J, Daly MB, Davidson R, de la Hoya M, de Putter R, Delnatte C, Devilee P, Diez O, Ding YC, Domchek SM, Dorfling CM, Dumont M, Eeles R, Ejlertsen B, Engel C, Evans DG, Faivre L, Foretova L, Fostira F, Friedlander M, Friedman E, Frost D, Ganz PA, Garber J, Gehrig A, Gerdes AM, Gesta P, Giraud S, Glendon G, Godwin AK, Goldgar DE, González-Neira A, Greene MH, Gschwantler-Kaulich D, Hahnen E, Hamann U, Hanson H, Hentschel J, Hogervorst FBL, Hooning MJ, Horvath J, Hu C, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Izquierdo A, Jakubowska A, James PA, Janavicius R, John EM, Joseph V, Karlan BY, Kast K, Koudijs M, Kruse TA, Kwong A, Laitman Y, Lasset C, Lazaro C, Lester J, Lesueur F, Liljegren A, Loud JT, Lubiński J, Mai PL, Manoukian S, Mari V, Mebirouk N, Meijers-Heijboer HEJ, Meindl A, Mensenkamp AR, Miller A, Montagna M, Mouret-Fourme E, Mukherjee S, Mulligan AM, Nathanson KL, Neuhausen SL, Nevanlinna H, Niederacher D, Nielsen FC, Nikitina-Zake L, Noguès C, Olah E, Olopade OI, Ong KR, O'Shaughnessy-Kirwan A, Osorio A, Ott CE, Papi L, Park SK, Parsons MT, Pedersen IS, Peissel B, Peixoto A, Peterlongo P, Pfeiler G, Phillips KA, Prajzendanc K, Pujana MA, Radice P, Ramser J, Ramus SJ, Rantala J, Rennert G, Risch HA, Robson M, Rønlund K, Salani R, Schuster H, Senter L, Shah PD, Sharma P, Side LE, Singer CF, Slavin TP, Soucy P, Southey MC, Spurdle AB, Steinemann D, Steinsnyder Z, Stoppa-Lyonnet D, Sutter C, Tan YY, Teixeira MR, Teo SH, Thull DL, Tischkowitz M, Tognazzo S, Toland AE, Trainer AH, Tung N, van Engelen K, van Rensburg EJ, Vega A, Vierstraete J, Wagner G, Walker L, Wang-Gohrke S, Wappenschmidt B, Weitzel JN, Yadav S, Yang X, Yannoukakos D, Zimbalatti D, Offit K, Thomassen M, Couch FJ, Schmutzler RK, Simard J, Easton DF, Chenevix-Trench G, Antoniou AC. Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genet Med 2020; 22:1653-1666. [PMID: 32665703 PMCID: PMC7521995 DOI: 10.1038/s41436-020-0862-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/21/2022] Open
Abstract
PURPOSE We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks for BRCA1 and BRCA2 pathogenic variant carriers. METHODS Retrospective cohort data on 18,935 BRCA1 and 12,339 BRCA2 female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort. RESULTS The ER-negative PRS showed the strongest association with BC risk for BRCA1 carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33], P = 3×10-72). For BRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36], P = 7×10-50). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk for BRCA1 (HR = 1.32 [95% CI 1.25-1.40], P = 3×10-22) and BRCA2 (HR = 1.44 [95% CI 1.30-1.60], P = 4×10-12) carriers. The associations in the prospective cohort were similar. CONCLUSION Population-based PRS are strongly associated with BC and EOC risks for BRCA1/2 carriers and predict substantial absolute risk differences for women at PRS distribution extremes.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
75 |
20
|
Le Calvez-Kelm F, Lesueur F, Damiola F, Vallée M, Voegele C, Babikyan D, Durand G, Forey N, McKay-Chopin S, Robinot N, Nguyen-Dumont T, Thomas A, Byrnes GB, Hopper JL, Southey MC, Andrulis IL, John EM, Tavtigian SV. Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res 2011; 13:R6. [PMID: 21244692 PMCID: PMC3109572 DOI: 10.1186/bcr2810] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/24/2010] [Accepted: 01/18/2011] [Indexed: 12/04/2022] Open
Abstract
Introduction Both protein-truncating variants and some missense substitutions in CHEK2 confer increased risk of breast cancer. However, no large-scale study has used full open reading frame mutation screening to assess the contribution of rare missense substitutions in CHEK2 to breast cancer risk. This absence has been due in part to a lack of validated statistical methods for summarizing risk attributable to large numbers of individually rare missense substitutions. Methods Previously, we adapted an in silico assessment of missense substitutions used for analysis of unclassified missense substitutions in BRCA1 and BRCA2 to the problem of assessing candidate genes using rare missense substitution data observed in case-control mutation-screening studies. The method involves stratifying rare missense substitutions observed in cases and/or controls into a series of grades ordered a priori from least to most likely to be evolutionarily deleterious, followed by a logistic regression test for trends to compare the frequency distributions of the graded missense substitutions in cases versus controls. Here we used this approach to analyze CHEK2 mutation-screening data from a population-based series of 1,303 female breast cancer patients and 1,109 unaffected female controls. Results We found evidence of risk associated with rare, evolutionarily unlikely CHEK2 missense substitutions. Additional findings were that (1) the risk estimate for the most severe grade of CHEK2 missense substitutions (denoted C65) is approximately equivalent to that of CHEK2 protein-truncating variants; (2) the population attributable fraction and the familial relative risk explained by the pool of rare missense substitutions were similar to those explained by the pool of protein-truncating variants; and (3) post hoc power calculations implied that scaling up case-control mutation screening to examine entire biochemical pathways would require roughly 2,000 cases and controls to achieve acceptable statistical power. Conclusions This study shows that CHEK2 harbors many rare sequence variants that confer increased risk of breast cancer and that a substantial proportion of these are missense substitutions. The study validates our analytic approach to rare missense substitutions and provides a method to combine data from protein-truncating variants and rare missense substitutions into a one degree of freedom per gene test.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
69 |
21
|
Lesueur F, Pharoah PD, Laing S, Ahmed S, Jordan C, Smith PL, Luben R, Wareham NJ, Easton DF, Dunning AM, Ponder BAJ. Allelic association of the human homologue of the mouse modifier Ptprj with breast cancer. Hum Mol Genet 2005; 14:2349-56. [PMID: 16000320 DOI: 10.1093/hmg/ddi237] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human homologues of mouse cancer modifier genes may play a role in cancer risk and prognosis. A proportion of the familial risk of common cancers may be attributable to variants in such genes, each contributing to a small effect. The protein tyrosine phosphatase receptor type J (PTPRJ) has been recently identified as being the protein encoded by the Scc1 mouse gene (susceptibility to colon cancer-1). In addition, the PTPRJ gene has been shown to be somatically altered in several human cancer types such as colon, lung and breast cancers and to have the characteristics of a tumour-suppressor gene. The purpose of this study was to determine whether common variants in the PTPRJ gene represent low penetrance breast cancer susceptibility alleles. To test this hypothesis, we assessed single nucleotide polymorphisms (SNPs) tagging the common SNPs and haplotypes of the gene in 4512 cases and 4554 controls from the East Anglian population. We observed a difference in the haplotype frequency distributions between cases and controls (P = 0.0023, OR = 0.81 [0.72-0.92]). Thus, carrying a specific PTPRJ haplotype confers a protective effect on the risk of breast cancer. This result establishes the principle that mouse cancer modifier genes are candidates for low penetrance human breast cancer susceptibility genes.
Collapse
|
|
20 |
63 |
22
|
Cebrian A, Lesueur F, Martin S, Leyland J, Ahmed S, Luccarini C, Smith PL, Luben R, Whittaker J, Pharoah PD, Dunning AM, Ponder BAJ. Polymorphisms in the initiators of RET (rearranged during transfection) signaling pathway and susceptibility to sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab 2005; 90:6268-74. [PMID: 16091499 DOI: 10.1210/jc.2004-2449] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Medullary thyroid carcinoma (MTC) is a characteristic tumor occurring in individuals with multiple endocrine neoplasia type 2 who carry germ-line mutations in RET (rearranged during transfection). However, most MTC occur in individuals without a family history. OBJECTIVES The objective of this study was to explore the possibility that susceptibility in these cases results from low penetrance alleles of RET, its coreceptors, and ligands. DESIGN We carried out an association study in 135 sporadic MTC (sMTC) patients and 533 controls from the United Kingdom population. RESULTS AND CONCLUSIONS We analyzed 33 polymorphisms in all nine genes involved in the glial cell line-derived neurotropic factor receptor-alpha (GFRalpha)-RET complex. This is the first association study in which all genes involved in this complex have been investigated for susceptibility to sMTC. We did not find any association between single nucleotide polymorphisms in the exonic regions of the GFRalpha2, GFRalpha3, GFRalpha4, glial cell line-derived neurotropic factor, neurturin, or persephin genes and risk of developing sMTC. We found a strong association between the disease and specific haplotypes of RET. We not only confirmed the previously described association with G691S and S904S (for heterozygotes: odds ratio, 1.85; range, 1.22-2.82; P = 0.004), but we found a novel protective effect associated with a specific haplotype (odds ratio, 0.39; range, 0.21-0.72; P = 0.005) revealing the existence of different genetic variants in the RET oncogene that either increase or decrease risk of sMTC.
Collapse
|
|
20 |
61 |
23
|
Vallée MP, Francy TC, Judkins MK, Babikyan D, Lesueur F, Gammon A, Goldgar DE, Couch FJ, Tavtigian SV. Classification of missense substitutions in the BRCA genes: a database dedicated to Ex-UVs. Hum Mutat 2012; 33:22-8. [PMID: 21990165 PMCID: PMC3478957 DOI: 10.1002/humu.21629] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/26/2011] [Indexed: 01/15/2023]
Abstract
Unclassified sequence variants (UVs) arising from clinical mutation screening of cancer susceptibility genes present a frustrating issue to clinical genetics services and the patients that they serve. We created an open-access database holding missense substitutions from the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2. The main inclusion criterion is that each variant should have been assessed in a published work that used the Bayesian integrated evaluation of unclassified BRCA gene variants. Transfer of data on these substitutions from the original publications to our database afforded an opportunity to analyze the missense substitutions under a single model and to remove inconsistencies that arose during the evolution of the integrated evaluation over the last decade. This analysis also afforded the opportunity to reclassify these missense substitutions according to the recently published IARC 5-Class system. From an initial set of 248 missense substitutions, 31 were set aside due to nonnegligible probability to interfere with splicing. Of the remaining substitutions, 28 fell into one of the two pathogenic classes (IARC Class 4 or 5), 174 fell into one of the two nonpathogenic classes (IARC Class 1 or 2), and 15 remain in IARC Class 3, "Uncertain." The database is available at http://brca.iarc.fr/LOVD.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
57 |
24
|
Driver KE, Song H, Lesueur F, Ahmed S, Barbosa-Morais NL, Tyrer JP, Ponder BAJ, Easton DF, Pharoah PDP, Dunning AM. Association of single-nucleotide polymorphisms in the cell cycle genes with breast cancer in the British population. Carcinogenesis 2008; 29:333-41. [PMID: 18174243 DOI: 10.1093/carcin/bgm284] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Using a large-scale case-control study, we examined whether common single-nucleotide polymorphisms (SNPs) within 13 genes involved in the cell cycle pathway are associated with breast cancer risk. Seventy-nine tag SNPs were used to evaluate 240 common SNPs found in the genes: CCND1, CCND2, CCND3, CCNE1, CDK2, CDK4, CDK6, CDKN1A, CDKNIB, CDKN2A/CDKN2B, CDKN2C and CDKN2D. These were genotyped in 2270 cases and 2280 controls from the Studies in Epidemiology and Risks of Cancer Heredity (SEARCH) study. Tag SNPs showing evidence of statistically significant differences between cases and controls (P < 0.1) were genotyped in a further 2200 cases and 2280 controls from the same population. This approach found evidence for breast cancer-associated SNPs in four of the cell cycle genes: the cyclin CCNE1 rs997669 had an odds ratio (OR) (GG/AA) of 1.18 [95% confidence interval (95% CI) 1.04-1.34] P = 0.003 and the cyclin-dependent kinase inhibitors-CDKN1A rs3176336: OR (TT/AA) = 1.25 (95% CI 1.11-1.42) P = 0.0026; CDKN1B rs34330: OR (TT/CC) = 1.22 (95% CI 1.02-1.47) P = 0.013 and the region of CDKN2A/2B rs3731239: OR (CC/TT) = 0.90 (95% CI 0.79-1.03) P = 0.013 and rs3218005 OR (GG/AA) = 1.55 (95% CI 1.02-2.37) P = 0.013 (P-values unadjusted for multiple testing). We were able to exclude the D-type cyclins, cyclin-dependent kinases, CDKN2C and CDKN2D from having any significantly associated risk with breast cancer in our study population. The combined effects of the cell cycle genes considered here provide evidence for a significant association with breast cancer risk in a global test (P-heterogeneity = 0.010, P-trend = 0.048). Further large-scale studies are needed to confirm these results.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
57 |
25
|
Benusiglio PR, Lesueur F, Luccarini C, Conroy DM, Shah M, Easton DF, Day NE, Dunning AM, Pharoah PD, Ponder BAJ. Common ERBB2 polymorphisms and risk of breast cancer in a white British population: a case-control study. Breast Cancer Res 2005; 7:R204-9. [PMID: 15743501 PMCID: PMC1064135 DOI: 10.1186/bcr982] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 11/29/2004] [Accepted: 12/01/2004] [Indexed: 01/21/2023] Open
Abstract
Introduction About two-thirds of the excess familial risk associated with breast cancer is still unaccounted for and may be explained by multiple weakly predisposing alleles. A gene thought to be involved in low-level predisposition to the disease is ERBB2 (HER2). This gene is involved in cell division, differentiation, and apoptosis and is frequently amplified in breast tumours. Its amplification correlates with poor prognosis. Moreover, the coding polymorphism I655V has previously been associated with an increased risk of breast cancer. Methods We aimed to determine if common polymorphisms (frequency ≥ 5%) in ERBB2 were associated with breast cancer risk in a white British population. Five single-nucleotide polymorphisms (SNPs) were selected for study: SNP 1 near the promoter, SNP 2 in intron 1, SNP 3 in intron 4, SNP 4 in exon 17 (I655V), and SNP 5 in exon 27 (A1170P). We tested their association with breast cancer in a large case–control study (n = 2192 cases and 2257 controls). Results There were no differences in genotype frequencies between cases and controls for any of the SNPs examined. To investigate the possibility that a common polymorphism not included in our study might be involved in breast cancer predisposition, we also constructed multilocus haplotypes. Our set of SNPs generated all existing (n = 6) common haplotypes and no differences were seen in haplotype frequencies between cases and controls (P = 0.44). Conclusions In our population, common ERBB2 polymorphisms are not involved in predisposition to breast cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
52 |