1
|
Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H. The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 2004; 15:5118-29. [PMID: 15342780 PMCID: PMC524786 DOI: 10.1091/mbc.e04-02-0140] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Attack by the host powdery mildew Erysiphe cichoracearum usually results in successful penetration and rapid proliferation of the fungus on Arabidopsis. By contrast, the nonhost barley powdery mildew Blumeria graminis f. sp. hordei (Bgh) typically fails to penetrate Arabidopsis epidermal cells. In both instances the plant secretes cell wall appositions or papillae beneath the penetration peg of the fungus. Genetic screens for mutations that result in increased penetration of Bgh on Arabidopsis have recently identified the PEN1 syntaxin. Here we examine the role of PEN1 and of its closest homologue, SYP122, identified as a syntaxin whose expression is responsive to infection. pen1 syp122 double mutants are both dwarfed and necrotic, suggesting that the two syntaxins have overlapping functions. Although syp122-1 and the cell wall mur mutants have considerably more pronounced primary cell wall defects than pen1 mutants, these have relatively subtle or no effects on penetration resistance. Upon fungal attack, PEN1 appears to be actively recruited to papillae, and there is a 2-h delay in papillae formation in the pen1-1 mutant. We conclude that SYP122 may have a general function in secretion, including a role in cell wall deposition. By contrast, PEN1 appears to have a basal function in secretion and a specialized defense-related function, being required for the polarized secretion events that give rise to papilla formation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
275 |
2
|
Sanderfoot AA, Assaad FF, Raikhel NV. The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. PLANT PHYSIOLOGY 2000; 124:1558-69. [PMID: 11115874 PMCID: PMC59855 DOI: 10.1104/pp.124.4.1558] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Accepted: 09/22/2000] [Indexed: 05/05/2023]
Abstract
Many factors have been characterized as essential for vesicle trafficking, including a number of proteins commonly referred to as soluble N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE) components. The Arabidopsis genome contains a remarkable number of SNAREs. In general, the vesicle fusion machinery appears highly conserved. However, whereas some classes of yeast and mammalian genes appear to be lacking in Arabidopsis, this small plant genome has gene families not found in other eukaryotes. Very little is known about the precise function of plant SNAREs. By contrast, the intracellular localization of and interactions between a large number of plant SNAREs have been determined, and these data are discussed in light of the phylogenetic analysis.
Collapse
|
research-article |
25 |
227 |
3
|
Assaad FF, Tucker KL, Signer ER. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. PLANT MOLECULAR BIOLOGY 1993; 22:1067-1085. [PMID: 8400126 DOI: 10.1007/bf00028978] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In several plant systems expression of structurally intact genes may be silenced epigenetically when a transgenic construct increases the copy number of DNA sequences. Here we report epigenetic silencing in Arabidopsis lines containing transgenic inserts of defined genetic structure, all at the same genomic locus. These comprise an allelic series that includes a single copy of the primary insert, which carries repeated drug resistance transgenes, and a set of its derivatives, which as a result of recombination within the insert carry different numbers and alleles of resistance genes. Although the drug resistance genes remained intact, both the primary and some recombinant lines nevertheless segregated many progeny that were partly or fully drug-sensitive because of silencing. As in other systems silencing was reversible, and correlated with decreased steady-state mRNA and increased DNA methylation. Each different number and combination of genes, on the same or different (i.e., homologous) chromosomes, conditioned its own idiosyncratic segregation pattern. Strikingly, lines with a single gene segregated only a few slightly drug-sensitive progeny whereas multi-gene lines segregated many highly sensitive progeny, indicating dependence of silencing at this locus on repeated sequences. This argues strongly against explanations based on antisense RNA, but is consistent with explanations based on ectopic DNA pairing. One possibility is that silencing reflects the interaction of paired homologous DNA with flanking heterologous DNA, which induces condensation of chromatin into a non-transcribable state.
Collapse
|
|
32 |
156 |
4
|
Strompen G, El Kasmi F, Richter S, Lukowitz W, Assaad FF, Jürgens G, Mayer U. The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr Biol 2002; 12:153-8. [PMID: 11818068 DOI: 10.1016/s0960-9822(01)00655-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plant cytokinesis starts in the center of the division plane, with vesicle fusion generating a new membrane compartment, the cell plate, that subsequently expands laterally by continuous fusion of newly arriving vesicles to its margin. Targeted delivery of vesicles is assisted by the dynamic reorganization of a plant-specific cytoskeletal array, the phragmoplast, from a solid cylinder into an expanding ring-shaped structure. This lateral translocation is brought about by depolymerization of microtubules in the center, giving way to the expanding cell plate, and polymerization of microtubules along the edge. Whereas several components are known to mediate cytokinetic vesicle fusion [8-10], no gene function involved in phragmoplast dynamics has been identified by mutation. Mutations in the Arabidopsis HINKEL gene cause cytokinesis defects, such as enlarged cells with incomplete cell walls and multiple nuclei. Proper targeting of the cytokinesis-specific syntaxin KNOLLE [8] and lateral expansion of the phragmoplast are not affected. However, the phragmoplast microtubules appear to persist in the center, where vesicle fusion should result in cell plate formation. Molecular analysis reveals that the HINKEL gene encodes a plant-specific kinesin-related protein with a putative N-terminal motor domain and is expressed in a cell cycle-dependent manner similar to the KNOLLE gene. Our results suggest that HINKEL plays a role in the reorganization of phragmoplast microtubules during cell plate formation.
Collapse
|
|
23 |
152 |
5
|
Assaad FF, Huet Y, Mayer U, Jürgens G. The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE. J Cell Biol 2001; 152:531-43. [PMID: 11157980 PMCID: PMC2195996 DOI: 10.1083/jcb.152.3.531] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
KEULE is required for cytokinesis in Arabidopsis thaliana. We have positionally cloned the KEULE gene and shown that it encodes a Sec1 protein. KEULE is expressed throughout the plant, yet appears enriched in dividing tissues. Cytokinesis-defective mutant sectors were observed in all somatic tissues upon transformation of wild-type plants with a KEULE-green fluorescent protein gene fusion, suggesting that KEULE is required not only during embryogenesis, but at all stages of the plant's life cycle. KEULE is characteristic of a Sec1 protein in that it appears to exist in two forms: soluble or peripherally associated with membranes. More importantly, KEULE binds the cytokinesis-specific syntaxin KNOLLE. Sec1 proteins are key regulators of vesicle trafficking, capable of integrating a large number of intra- and/or intercellular signals. As a cytokinesis-related Sec1 protein, KEULE appears to represent a novel link between cell cycle progression and the membrane fusion apparatus.
Collapse
|
research-article |
24 |
144 |
6
|
Waizenegger I, Lukowitz W, Assaad F, Schwarz H, Jürgens G, Mayer U. The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Curr Biol 2000; 10:1371-4. [PMID: 11084337 DOI: 10.1016/s0960-9822(00)00775-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Partitioning of the cytoplasm during cytokinesis or cellularisation requires syntaxin-mediated membrane fusion [1-3]. Whereas in animals, membrane fusion promotes ingression of a cleavage furrow from the plasma membrane [4,5], somatic cells of higher plants form de novo a transient membrane compartment, the cell plate, which is initiated in the centre of the division plane and matures into a new cell wall and its flanking plasma membranes [6,7]. Cell plate formation results from the fusion of Golgi-derived vesicles delivered by a dynamic cytoskeletal array, the phragmoplast. Mutations in two Arabidopsis genes, KNOLLE (KN) and KEULE (KEU), cause abnormal seedlings with multinucleate cells and incomplete cell walls [1,8]. The KN gene encodes a cytokinesis-specific syntaxin which localises to the cell plate [9]. Here, we show that KN protein localisation is unaffected in keu mutant cells, which, like kn, display phragmoplast microtubules and accumulate ADL1 protein in the plane of cell division but vesicles fail to fuse with one another. Genetic interactions between KN and KEU were analysed in double mutant embryos. Whereas the haploid gametophytes gave rise to functional gametes, the embryos behaved like single cells displaying multiple, synchronously cycling nuclei, cell cycle-dependent microtubule arrays and ADL1 accumulation between pairs of daughter nuclei. This complete inhibition of cytokinesis from fertilisation indicates that KN and KEU, have partially redundant functions and interact specifically in vesicle fusion during cytokinesis of somatic cells.
Collapse
|
|
25 |
134 |
7
|
Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E. Closely related receptor complexes differ in their ABA selectivity and sensitivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:25-35. [PMID: 19769575 DOI: 10.1111/j.1365-313x.2009.04025.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The recent discovery of a variety of receptors has led to new models for hormone perception in plants. In the case of the hormone abscisic acid (ABA), which regulates plant responses to abiotic stress, perception seems to occur both at the plasma membrane and in the cytosol. The cytosolic receptors for ABA have recently been identified as complexes between protein phosphatases 2C (PP2C) and regulatory components (RCAR/PYR/PYL) that bind ABA. Binding of ABA to the receptor complexes inactivates the PP2Cs, thereby activating the large variety of physiological processes regulated by ABA. The Arabidopsis genome encodes 13 homologues of RCAR1 and approximately 80 PP2Cs, of which six in clade A have been identified as negative regulators of ABA responses. In this study we characterize a novel member of the RCAR family, RCAR3. RCAR3 was identified in a screen for interactors of the PP2Cs ABI1 and ABI2, which are key regulators of ABA responses. RCAR3 was shown to repress ABI1 and ABI2 in vitro, and to stimulate ABA signalling in protoplast cells. RCAR3 conferred greater ABA sensitivity to the PP2C regulation than RCAR1, whereas stereo-selectivity for (S)-ABA was less stringent with RCAR3 as compared with RCAR1. In addition, regulation of the protein phosphatase activity by RCAR1 and RCAR3 was more sensitive to ABA for ABI1 than for ABI2. Based on the differences we have observed in transcriptional regulation and biochemical properties, we propose a model whereby differential expression of the co-receptors and combinatorial assembly of the receptor complexes act in concert to modulate and fine-tune ABA responses.
Collapse
|
|
15 |
93 |
8
|
Thiele K, Wanner G, Kindzierski V, Jürgens G, Mayer U, Pachl F, Assaad FF. The timely deposition of callose is essential for cytokinesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:13-26. [PMID: 19067977 DOI: 10.1111/j.1365-313x.2008.03760.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The primary plant cell wall is laid down over a brief period of time during cytokinesis. Initially, a membrane network forms at the equator of a dividing cell. The cross-wall is then assembled and remodeled within this membrane compartment. Callose is the predominant luminal component of the nascent cross-wall or cell plate, but is not a component of intact mature cell walls, which are composed primarily of cellulose, pectins and xyloglucans. Widely accepted models postulate that callose comprises a transient, rapid spreading force for the expansion of membrane networks during cytokinesis. In this study, we clone and characterize an Arabidopsis gene, MASSUE/AtGSL8, which encodes a putative callose synthase. massue mutants are seedling-lethal and have a striking cytokinesis-defective phenotype. Callose deposition was delayed in the cell plates of massue mutants. Mutant cells were occasionally bi- or multi-nucleate, with cell-wall stubs, and we frequently observed gaps at the junction between cross-walls and parental cell walls. The results suggest that the timely deposition of callose is essential for the completion of plant cytokinesis. Surprisingly, confocal analysis revealed that the cell-plate membrane compartment forms and expands, seemingly as far as the parental wall, prior to the appearance of callose. We discuss the possibility that callose may be required to establish a lasting connection between the nascent cross-wall and the parental cell wall.
Collapse
|
|
16 |
89 |
9
|
Ogata M, Luchini MU, Sorella S, Assaad FF. Phase diagram of the one-dimensional t-J model. PHYSICAL REVIEW LETTERS 1991; 66:2388-2391. [PMID: 10043472 DOI: 10.1103/physrevlett.66.2388] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
|
34 |
76 |
10
|
Söllner R, Glässer G, Wanner G, Somerville CR, Jürgens G, Assaad FF. Cytokinesis-defective mutants of Arabidopsis. PLANT PHYSIOLOGY 2002; 129:678-90. [PMID: 12068111 PMCID: PMC161693 DOI: 10.1104/pp.004184] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Accepted: 03/18/2002] [Indexed: 05/17/2023]
Abstract
We have identified mutations in six previously uncharacterized genes of Arabidopsis, named club, bublina, massue, rod, bloated, and bims, that are required for cytokinesis. The mutants are seedling lethal, have morphological abnormalities, and are characterized by cell wall stubs, gapped walls, and multinucleate cells. In these and other respects, the new mutants are phenotypically similar to knolle, keule, hinkel, and pleiade mutants. The mutants display a gradient of stomatal phenotypes, correlating roughly with the severity of their cytokinesis defect. Similarly, the extent to which the different mutant lines were capable of growing in tissue culture correlated well with the severity of the cytokinesis defect. Phenotypic analysis of the novel and previously characterized loci indicated that the secondary consequences of a primary defect in cytokinesis include anomalies in body organization, organ number, and cellular differentiation, as well as organ fusions and perturbations of the nuclear cycle. Two of the 10 loci are required for both cytokinesis and root hair morphogenesis. The results have implications for the identification of novel cytokinesis genes and highlight the mechanistic similarity between cytokinesis and root hair morphogenesis, two processes that result in a rapid deposition of new cell walls via polarized secretion.
Collapse
|
research-article |
23 |
64 |
11
|
Abstract
Nearly every measles infection results in well-recognized clinical disease. In nonimmunized populations almost every child will get measles early in life. The universality of the disease in nonimmunized communities, particularly those in the developing world, has led to a more or less passive acceptance of measles as an unavoidable risk of early life. The clinical spectrum of measles ranges from a mild, self-limiting illness to a fatal disease. Conditions encountered mainly in the developing world, e.g., unfavorable nutrition, high risk of concurrent infection, and inadequate case management -- particularly at home -- favor the development of complications and adverse outcome. Conversely, good clinical management of an otherwise healthy child, a situation seen mostly in the developed world, greatly influences the course of the disease. Hence many in the medical profession believe that measles is a mild disease except among populations living under particularly unfavorable conditions. Measles vaccine is effective in preventing disease in the individual and in controlling it in the community if it is given at the critical age when maternal antibodies wane and the risk of natural infection increases sharply and if a high immunization rate is maintained in the target population. The experience with immunization, particularly in sub-saharan Africa, is rewarding: mothers who had previously accepted measles as an unavoidable risk clamour for immunization of their children once its effectiveness has been demonstrated. No reason exists for measles to claim its present toll of morbidity and mortality. With extension of the Expanded Programme on Immunization of the World Health Organization, the impact of measles should progressively decline.
Collapse
|
Comparative Study |
42 |
56 |
12
|
Assaad FF, Signer ER. Cauliflower mosaic virus P35S promoter activity in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:517-20. [PMID: 2176717 DOI: 10.1007/bf00264462] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present evidence that the cauliflower mosaic virus promoter P35S can direct expression of the bacterial neomycin phosphotransferase II (NPTII) gene in Escherichia coli. Transcription is initiated at several sites, the major one being located approximately 315 bases upstream of the plant start site. The nucleotide sequence directly preceding this start site is strongly homologous to the prokaryotic promoter consensus sequence. Thus constructs designed for introduction into plants can be expressed in E. coli.
Collapse
|
|
35 |
54 |
13
|
Assaad FF, Mayer U, Wanner G, Jürgens G. The KEULE gene is involved in cytokinesis in Arabidopsis. MOLECULAR & GENERAL GENETICS : MGG 1996; 253:267-77. [PMID: 9003313 DOI: 10.1007/pl00008594] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present evidence to show that the KEULE gene of Arabidopsis is involved in cytokinesis. Mutant keule embryos have large multinucleate cells with gapped or incomplete cross walls, as well as cell wall stubs that are very similar to those observed upon caffeine inhibition of cytokinesis in plants. These defects are observed in all populations of dividing cells in the mutant, including calli, but less frequently in mature cells. Cell division appears to be slowed down, and the planes of cell division are often misoriented. In late embryos and seedlings, cross-wall formation usually appears complete, suggesting that the requirement for KEULE during cytokinesis is not absolute. Nonetheless, keule mutants die as seedlings with large polyploid cells. The bloated surface layer of keule seedlings does not uniformly behave like wild-type epidermis, and patches of this layer assume characteristics of the underlying ground tissue. The cytokinesis defect of keule mutants may influence aspects of cellular differentiation.
Collapse
|
|
29 |
52 |
14
|
Thellmann M, Rybak K, Thiele K, Wanner G, Assaad FF. Tethering factors required for cytokinesis in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:720-32. [PMID: 20713617 PMCID: PMC2948999 DOI: 10.1104/pp.110.154286] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
At the end of the cell cycle, the nascent cross wall is laid down within a transient membrane compartment referred to as the cell plate. Tethering factors, which act by capturing vesicles and holding them in the vicinity of their target membranes, are likely to play an important role in the first stages of cell plate assembly. Factors required for cell plate biogenesis, however, remain to be identified. In this study, we used a reverse genetic screen to isolate tethering factors required for cytokinesis in Arabidopsis (Arabidopsis thaliana). We focused on the TRAPPI and TRAPPII (for transport protein particle) tethering complexes, which are thought to be required for the flow of traffic through the Golgi and for trans-Golgi network function, as well as on the GARP complex, thought to be required for the tethering of endocytotic vesicles to the trans-Golgi network. We found weak cytokinesis defects in some TRAPPI mutants and strong cytokinesis defects in all the TRAPPII lines we surveyed. Indeed, four insertion lines at the TRAPPII locus AtTRS120 had canonical cytokinesis-defective seedling-lethal phenotypes, including cell wall stubs and incomplete cross walls. Confocal and electron microscopy showed that in trs120 mutants, vesicles accumulated at the equator of dividing cells yet failed to assemble into a cell plate. This shows that AtTRS120 is required for cell plate biogenesis. In contrast to the TRAPP complexes, we found no conclusive evidence for cytokinesis defects in seven GARP insertion lines. We discuss the implications of these findings for the origin and identity of cell plate membranes.
Collapse
|
research-article |
15 |
48 |
15
|
Hohenadler M, Lang TC, Assaad FF. Correlation effects in quantum spin-Hall insulators: a quantum Monte Carlo study. PHYSICAL REVIEW LETTERS 2011; 106:100403. [PMID: 21469774 DOI: 10.1103/physrevlett.106.100403] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/03/2011] [Indexed: 05/30/2023]
Abstract
We consider the Kane-Mele model supplemented by a Hubbard U term. The phase diagram is mapped out using projective auxiliary field quantum Monte Carlo simulations. The quantum spin liquid of the Hubbard model is robust against weak spin-orbit interaction, and is not adiabatically connected to the spin-Hall insulating state. Beyond a critical value of U>U(c) both states are unstable toward magnetic ordering. In the quantum spin-Hall state we study the spin, charge, and single-particle dynamics of the helical Luttinger liquid by retaining the Hubbard interaction only on a ribbon edge. The Hubbard interaction greatly suppresses charge currents along the edge and promotes edge magnetism but leaves the single-particle signatures of the helical liquid intact.
Collapse
|
|
14 |
38 |
16
|
Abstract
Homologous recombination between a pair of directly repeated transgenes was studied in Arabidopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an active HPT (hygromycin phosphotransferase) gene. This construct was introduced into Arabidopsis by agrobacterium-mediated transformation with selection for resistance to hygromycin, and two independent single-insert lines were analyzed. Selection for active NPT by resistance to kanamycin gave both fully and partly (chimeric) recombinant seedlings. Rates for one transgenic line were estimated at less than 2 x 10(-5) events per division for germinal and greater than 10(-6) events per division for somatic recombination, a much smaller difference than between meiotic and mitotic recombination in yeast. Southern analysis showed that recombinants could be formed by either crossing over or gene conversion. A surprisingly high fraction (at least 2/17) of the recombinants, however, appeared to result from the concerted action of two or more independent simple events. Some evolutionary implications are discussed.
Collapse
|
research-article |
33 |
37 |
17
|
Jaber E, Thiele K, Kindzierski V, Loderer C, Rybak K, Jürgens G, Mayer U, Söllner R, Wanner G, Assaad FF. A putative TRAPPII tethering factor is required for cell plate assembly during cytokinesis in Arabidopsis. THE NEW PHYTOLOGIST 2010; 187:751-63. [PMID: 20609115 DOI: 10.1111/j.1469-8137.2010.03331.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
*At the end of the cell cycle, the plant cell wall is deposited within a membrane compartment referred to as the cell plate. Little is known about the biogenesis of this transient membrane compartment. *We have positionally cloned and characterized a novel Arabidopsis gene, CLUB, identified by mutation. *CLUB/AtTRS130 encodes a putative TRAPPII tethering factor. club mutants are seedling-lethal and have a canonical cytokinesis-defective phenotype, characterized by the appearance of bi- or multinucleate cells with cell wall stubs, gaps and floating walls. Confocal microscopy showed that in club mutants, KNOLLE-positive vesicles formed and accumulated at the cell equator throughout cytokinesis, but failed to assemble into a cell plate. Similarly, electron micrographs showed large vesicles loosely connected as patchy, incomplete cell plates in club root tips. Neither the formation of KNOLLE-positive vesicles nor the delivery of these vesicles to the cell equator appeared to be perturbed in club mutants. Thus, the primary defect in club mutants appears to be an impairment in cell plate assembly. *As a putative tethering factor required for cell plate biogenesis, CLUB/AtTRS130 helps to define the identity of this membrane compartment and comprises an important handle on the regulation of cell plate assembly.
Collapse
|
|
15 |
30 |
18
|
Abstract
Worldwide, rubella is considered a public health problem because of the risk of infection to the fetus and of subsequent congenital defects. It is not a notifiable disease in most countries, and even where it is, it is underreported, and greater than 50% of infections are clinically inapparent. The impact of rubella is therefore gauged mainly through seroepidemiologic studies. Rubella appears to be endemic worldwide except in some remote areas or islands, where explosive outbreaks may occur. In general, a large proportion of a population is infected before puberty, but approximately 20% of adults may remain susceptible. Effective vaccines against congenital rubella exist, and many countries have already begun or are considering initiating large-scale immunization programs. In the developing world, where problems compete for priority in the mobilization of meager available resources, certain factors need to be considered before such programs are launched, including the ability to effectively deliver a program, the relationship between susceptibility and the age-fertility pattern, the incidence of congenital rubella, and the cost-effectiveness of intervention.
Collapse
|
|
40 |
30 |
19
|
Assaad FF, Würtz D. Charge and spin structures in the one-dimensional t-J model. PHYSICAL REVIEW. B, CONDENSED MATTER 1991; 44:2681-2696. [PMID: 9999838 DOI: 10.1103/physrevb.44.2681] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
|
34 |
28 |
20
|
Steiner A, Rybak K, Altmann M, McFarlane HE, Klaeger S, Nguyen N, Facher E, Ivakov A, Wanner G, Kuster B, Persson S, Braun P, Hauser MT, Assaad FF. Cell cycle-regulated PLEIADE/AtMAP65-3 links membrane and microtubule dynamics during plant cytokinesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:531-541. [PMID: 27420177 DOI: 10.1111/tpj.13275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Cytokinesis, the partitioning of the cytoplasm following nuclear division, requires extensive coordination between cell cycle cues, membrane trafficking and microtubule dynamics. Plant cytokinesis occurs within a transient membrane compartment known as the cell plate, to which vesicles are delivered by a plant-specific microtubule array, the phragmoplast. While membrane proteins required for cytokinesis are known, how these are coordinated with microtubule dynamics and regulated by cell cycle cues remains unclear. Here, we document physical and genetic interactions between Transport Protein Particle II (TRAPPII) tethering factors and microtubule-associated proteins of the PLEIADE/AtMAP65 family. These interactions do not specifically affect the recruitment of either TRAPPII or MAP65 proteins to the cell plate or midzone. Rather, and based on single versus double mutant phenotypes, it appears that they are required to coordinate cytokinesis with the nuclear division cycle. As MAP65 family members are known to be targets of cell cycle-regulated kinases, our results provide a conceptual framework for how membrane and microtubule dynamics may be coordinated with each other and with the nuclear cycle during plant cytokinesis.
Collapse
|
|
9 |
28 |
21
|
Kalde M, Elliott L, Ravikumar R, Rybak K, Altmann M, Klaeger S, Wiese C, Abele M, Al B, Kalbfuß N, Qi X, Steiner A, Meng C, Zheng H, Kuster B, Falter-Braun P, Ludwig C, Moore I, Assaad FF. Interactions between Transport Protein Particle (TRAPP) complexes and Rab GTPases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:279-297. [PMID: 31264742 DOI: 10.1111/tpj.14442] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 05/23/2023]
Abstract
Transport Protein Particle II (TRAPPII) is essential for exocytosis, endocytosis, protein sorting and cytokinesis. In spite of a considerable understanding of its biological role, little information is known about Arabidopsis TRAPPII complex topology and molecular function. In this study, independent proteomic approaches initiated with TRAPP components or Rab-A GTPase variants converge on the TRAPPII complex. We show that the Arabidopsis genome encodes the full complement of 13 TRAPPC subunits, including four previously unidentified components. A dimerization model is proposed to account for binary interactions between TRAPPII subunits. Preferential binding to dominant negative (GDP-bound) versus wild-type or constitutively active (GTP-bound) RAB-A2a variants discriminates between TRAPPII and TRAPPIII subunits and shows that Arabidopsis complexes differ from yeast but resemble metazoan TRAPP complexes. Analyzes of Rab-A mutant variants in trappii backgrounds provide genetic evidence that TRAPPII functions upstream of RAB-A2a, allowing us to propose that TRAPPII is likely to behave as a guanine nucleotide exchange factor (GEF) for the RAB-A2a GTPase. GEFs catalyze exchange of GDP for GTP; the GTP-bound, activated, Rab then recruits a diverse local network of Rab effectors to specify membrane identity in subsequent vesicle fusion events. Understanding GEF-Rab interactions will be crucial to unravel the co-ordination of plant membrane traffic.
Collapse
|
|
6 |
27 |
22
|
Steiner A, Müller L, Rybak K, Vodermaier V, Facher E, Thellmann M, Ravikumar R, Wanner G, Hauser MT, Assaad FF. The Membrane-Associated Sec1/Munc18 KEULE is Required for Phragmoplast Microtubule Reorganization During Cytokinesis in Arabidopsis. MOLECULAR PLANT 2016; 9:528-540. [PMID: 26700031 DOI: 10.1016/j.molp.2015.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/28/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Cytokinesis, the partitioning of the cytoplasm following nuclear division, requires extensive coordination between membrane trafficking and cytoskeletal dynamics. In plants, the onset of cytokinesis is characterized by the assembly of a bipolar microtubule array, the phragmoplast, and of a transient membrane compartment, the cell plate. Little is known about the coordination between membrane deposition at the cell plate and the dynamics of phragmoplast microtubules. In this study, we monitor the localization dynamics of microtubule and membrane markers throughout cytokinesis. Our spatiotemporal resolution is consistent with the general view that microtubule dynamics drive membrane movements. Nonetheless, we provide evidence for active sorting at the cell plate and show that this is, at least in part, mediated by the TRAPPII tethering complex. We also characterize phragmoplast microtubule organization and cell plate formation in a suite of cytokinesis-defective mutants. Of four mutant lines with defects in phragmoplast microtubule organization, only mor1 microtubule-associated mutants exhibited aberrant cell plates. Conversely, the mutants with the strongest impairment in phragmoplast microtubule reorganization are keule alleles, which have a primary defect in membrane fusion. Our findings identify the SEC1/Munc18 protein KEULE as a central regulatory node in the coordination of membrane and microtubule dynamics during plant cytokinesis.
Collapse
|
|
9 |
27 |
23
|
Ravikumar R, Steiner A, Assaad FF. Multisubunit tethering complexes in higher plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:97-105. [PMID: 28889036 DOI: 10.1016/j.pbi.2017.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 08/18/2017] [Indexed: 05/23/2023]
Abstract
Tethering complexes mediate the initial, specific contact between donor and acceptor membranes. This review focuses on the modularity and function of multisubunit tethering complexes (MTCs) in higher plants. One emphasis is on molecular interactions of plant MTCs. Here, a number of insights have been gained concerning interactions between different tethering complexes, and between tethers and microtubule-associated proteins. The roles of tethering complexes in abiotic stress responses appear indirect, but in the context of biotic stress responses it has been suggested that some tethers are direct targets of pathogen effectors or virulence factors. In light of the central roles tethering complexes play in plant development, an emerging concept is that tethers may be co-opted for plant adaptive responses.
Collapse
|
Review |
8 |
26 |
24
|
Hellung-Larsen P, Assaad F, Pankratova S, Saietz BL, Skovgaard LT. Effects of Pluronic F-68 on Tetrahymena cells: protection against chemical and physical stress and prolongation of survival under toxic conditions. J Biotechnol 2000; 76:185-95. [PMID: 10656333 DOI: 10.1016/s0168-1656(99)00188-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of the non-ionic surfactant Pluronic F-68 (0.01% w/v) on Tetrahymena cells have been studied. A marked protection against chemical and physical stress was observed. The chemical stress effects were studied in cells suspended in buffer (starvation) or in buffers with added ingredients from a chemically defined medium (Ca2+, Mg2+, Na+, K+, trace metal ions). The physical stress was due to mechanical stress or hyperthermia. The data show that Pluronic: (a) prolongs the survival of low concentration cell suspensions during starvation; (b) prevents the cell death caused by low concentrations of Ca2+ (70 microM); (c) prolongs the survival of cells exposed to higher ion concentrations (10 mM Ca2+, or Na+ or K+); (d) postpones the death caused by trace metal ions like Zn2+, Fe3+ and, Cu2+; (e) protects cells from the death caused by shearing forces; and (f) prolongs the survival of cells exposed to hyperthermia (43 degrees C). The cellular survival is increased at reduced temperatures (e.g. 4 degrees C instead of 36 degrees C) and at increased cellular concentrations (e.g. 100 cells ml(-1) instead of 25 or 10 cells ml(-1)). There is no effect of pre-incubation with Pluronic. The protective effect of Pluronic towards Tetrahymena is observed for concentrations in the range from 0.001 to 0.1% w/v.
Collapse
|
|
25 |
24 |
25
|
Hohenadler M, Assaad FF. Correlation effects in two-dimensional topological insulators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:143201. [PMID: 23470861 DOI: 10.1088/0953-8984/25/14/143201] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Topological insulators have become one of the most active research areas in condensed matter physics. This article reviews progress on the topic of electronic correlation effects in the two-dimensional case, with a focus on systems with intrinsic spin-orbit coupling and numerical results. Topics addressed include an introduction to the noninteracting case, an overview of theoretical models, correlated topological band insulators, interaction-driven phase transitions, topological Mott insulators and fractional topological states, correlation effects on helical edge states, and topological invariants of interacting systems.
Collapse
|
|
12 |
22 |