Fooladi M, Cheki M, Shirazi A, Sheikhzadeh P, Amirrashedi M, Ghahramani F, Khoobi M. Histopathological Evaluation of Protective Effect of Telmisartan against Radiation-Induced Bone Marrow Injury.
J Biomed Phys Eng 2022;
12:277-284. [PMID:
35698535 PMCID:
PMC9175127 DOI:
10.31661/jbpe.v0i0.2012-1243]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 06/15/2023]
Abstract
BACKGROUND
Radiation-induced hematopoietic suppression and myelotoxicity can occur due to the nuclear accidents, occupational irradiation and therapeutic interventions. Bone marrow dysfunction has always been one of the most important causes of morbidity and mortality after ionizing irradiation.
OBJECTIVE
This study aims to investigate the protective effect of telmisartan against radiation-induced bone marrow injuries in a Balb/c mouse model.
MATERIAL AND METHODS
In this experimental study, male Balb/c mice were divided into four groups as follow: group 1: mice received phosphate buffered saline (PBS) without irradiation, group 2: mice received a solution of telmisartan in PBS without irradiation, group 3: mice received PBS with irradiation, and group 4: mice received a solution of telmisartan in PBS with irradiation. A solution of telmisartan was prepared and administered orally at 12 mg/kg body weight for seven consecutive days prior to whole body exposing to a single sub-lethal dose of 5 Gy X-rays. Protection of bone marrow against radiation induced damage was investigated by Hematoxylin-Eosin (HE) staining assay at 3, 9, 15 and 30 days after irradiation.
RESULTS
Histopathological analysis indicated that administration of telmisartan reduced X-radiation-induced damage and improved bone marrow histology. The number of different cell types in bone marrow, including polymorphonuclear /mononuclear cells and megakaryocytes significantly increased in telmisartan treated group compared to the only irradiated group at all-time points.
CONCLUSION
The results of the present study demonstrated an efficient radioprotective effect of telmisartan in mouse bone marrow against sub-lethal X-irradiation.
Collapse