1
|
Abstract
Disulfide bonds formed between pairs of cysteines are important features of the structure of many proteins. Elaborate electron transfer pathways have evolved Escherichia coli to promote the formation of these covalent bonds and to ensure that the correct pairs of cysteines are joined in the final folded protein. These transfers of electrons consist, in the main, of cascades of disulfide bond formation or reduction steps between a series of proteins (DsbA, DsbB, DsbC, and DsbD). A surprising variety of mechanisms and protein structures are involved in carrying out these steps.
Collapse
|
Review |
22 |
432 |
2
|
Abstract
Recent technical advances have revitalized cell-free expression systems to meet the increasing demands for protein synthesis. Cell-free systems offer several advantages over traditional cell-based expression methods, including the easy modification of reaction conditions to favor protein folding, decreased sensitivity to product toxicity and suitability for high-throughput strategies because of reduced reaction volumes and process time. Moreover, improvements in translation efficiency have resulted in yields that exceed a milligram of protein per milliliter of reaction mix. We review the advances on this expanding technology and highlight the growing list of associated applications.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
238 |
3
|
Becker A, Katzen F, Pühler A, Ielpi L. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 1998; 50:145-52. [PMID: 9763683 DOI: 10.1007/s002530051269] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Xanthan gum is a complex exopolysaccharide produced by the plant-pathogenic bacterium Xanthomonas campestris pv. campestris. It consists of D-glucosyl, D-mannosyl, and D-glucuronyl acid residues in a molar ratio of 2:2:1 and variable proportions of O-acetyl and pyruvyl residues. Because of its physical properties, it is widely used as a thickener or viscosifier in both food and non-food industries. Xanthan gum is also used as a stabilizer for a wide variety of suspensions, emulsions, and foams. This article outlines aspects of the biochemical assembly and genetic loci involved in its biosynthesis, including the synthesis of the sugar nucleotide substrates, the building and decoration of the pentasaccharide subunit, and the polymerization and secretion of the polymer. An overview of the applications and industrial production of xanthan is also covered.
Collapse
|
Review |
27 |
209 |
4
|
Katzen F. Gateway®recombinational cloning: a biological operating system. Expert Opin Drug Discov 2007; 2:571-89. [DOI: 10.1517/17460441.2.4.571] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
|
18 |
162 |
5
|
Katzen F, Beckwith J. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 2000; 103:769-79. [PMID: 11114333 DOI: 10.1016/s0092-8674(00)00180-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cytoplasmic membrane protein DsbD transfers electrons from the cytoplasm to the periplasm of E. coli, where its reducing power is used to maintain cysteines in certain proteins in the reduced state. We split DsbD into three structural domains, each containing two essential cysteines. Remarkably, when coexpressed, these truncated proteins restore DsbD function. Utilizing this three piece system, we were able to determine a pathway of the electrons through DsbD. Our findings strongly suggest that the pathway is based on a series of multistep redox reactions that include direct interactions between thioredoxin and DsbD, and between DsbD and its periplasmic substrates. A thioredoxin-fold domain in DsbD appears to have the novel role of intramolecular electron shuttle.
Collapse
|
|
25 |
153 |
6
|
Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A, Pühler A, Ielpi L. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 1998; 180:1607-17. [PMID: 9537354 PMCID: PMC107069 DOI: 10.1128/jb.180.7.1607-1617.1998] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Xanthan is an industrially important exopolysaccharide produced by the phytopathogenic, gram-negative bacterium Xanthomonas campestris pv. campestris. It is composed of polymerized pentasaccharide repeating units which are assembled by the sequential addition of glucose-1-phosphate, glucose, mannose, glucuronic acid, and mannose on a polyprenol phosphate carrier (L. Ielpi, R. O. Couso, and M. A. Dankert, J. Bacteriol. 175:2490-2500, 1993). A cluster of 12 genes in a region designated xpsI or gum has been suggested to encode proteins involved in the synthesis and polymerization of the lipid intermediate. However, no experimental evidence supporting this suggestion has been published. In this work, from the biochemical analysis of a defined set of X. campestris gum mutants, we report experimental data for assigning functions to the products of the gum genes. We also show that the first step in the assembly of the lipid-linked intermediate is severely affected by the combination of certain gum and non-gum mutations. In addition, we provide evidence that the C-terminal domain of the gumD gene product is sufficient for its glucosyl-1-phosphate transferase activity. Finally, we found that alterations in the later stages of xanthan biosynthesis reduce the aggressiveness of X. campestris against the plant.
Collapse
|
research-article |
27 |
150 |
7
|
Stewart EJ, Katzen F, Beckwith J. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J 1999; 18:5963-71. [PMID: 10545108 PMCID: PMC1171662 DOI: 10.1093/emboj/18.21.5963] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The active-site cysteines of the Escherichia coli periplasmic protein disulfide bond isomerase (DsbC) are kept reduced by the cytoplasmic membrane protein, DsbD. DsbD, in turn, is reduced by cytoplasmic thioredoxin, indicating that DsbD transfers disulfidereducing potential from the cytoplasm to the periplasm. To understand the mechanism of this unusual mode of electron transfer, we have undertaken a genetic analysis of DsbD. In the process, we discovered that the previously suggested start site for the DsbD protein is incorrect. Our results permit the formulation of a model of DsbD membrane topology. Also, we show that six cysteines of DsbD conserved among DsbD homologs are essential for the reduction of DsbC, DsbG and for a reductive pathway leading to c-type cytochrome assembly in the periplasm. Our findings suggest a testable model for the DsbD-dependent transfer of electrons across the membrane, involving a cascade of disulfide bond reduction steps.
Collapse
|
research-article |
26 |
129 |
8
|
Haebel PW, Goldstone D, Katzen F, Beckwith J, Metcalf P. The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex. EMBO J 2002; 21:4774-84. [PMID: 12234918 PMCID: PMC126285 DOI: 10.1093/emboj/cdf489] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Escherichia coli disulfide bond isomerase DsbC rearranges incorrect disulfide bonds during oxidative protein folding. It is specifically activated by the periplasmic N-terminal domain (DsbDalpha) of the transmembrane electron transporter DsbD. An intermediate of the electron transport reaction was trapped, yielding a covalent DsbC-DsbDalpha complex. The 2.3 A crystal structure of the complex shows for the first time the specific interactions between two thiol oxidoreductases. DsbDalpha is a novel thiol oxidoreductase with the active site cysteines embedded in an immunoglobulin fold. It binds into the central cleft of the V-shaped DsbC dimer, which assumes a closed conformation on complex formation. Comparison of the complex with oxidized DsbDalpha reveals major conformational changes in a cap structure that regulates the accessibility of the DsbDalpha active site. Our results explain how DsbC is selectively activated by DsbD using electrons derived from the cytoplasm.
Collapse
|
research-article |
23 |
104 |
9
|
Katzen F, Peterson TC, Kudlicki W. Membrane protein expression: no cells required. Trends Biotechnol 2009; 27:455-60. [PMID: 19616329 DOI: 10.1016/j.tibtech.2009.05.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/02/2009] [Accepted: 05/06/2009] [Indexed: 01/10/2023]
Abstract
Structural and functional studies of membrane proteins have been severely hampered by difficulties in producing sufficient quantities of properly folded protein products. It is well established that cell-based expression of membrane proteins is generally problematic and frequently results in low yield, cell toxicity, protein aggregation and misfolding. Owing to its inherent open nature, cell-free protein expression has become a highly promising tool for the fast and efficient production of these difficult-to-express proteins. Here we review the most recent advances in this field, underscoring the potentials and weaknesses of the newly developed approaches and place specific emphasis on the use of nanolipoprotein particles (NLPs or nanodiscs).
Collapse
|
Review |
16 |
101 |
10
|
Katzen F, Fletcher JE, Yang JP, Kang D, Peterson TC, Cappuccio JA, Blanchette CD, Sulchek T, Chromy BA, Hoeprich PD, Coleman MA, Kudlicki W. Insertion of Membrane Proteins into Discoidal Membranes Using a Cell-Free Protein Expression Approach. J Proteome Res 2008; 7:3535-42. [DOI: 10.1021/pr800265f] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
17 |
99 |
11
|
Cappuccio JA, Blanchette CD, Sulchek TA, Arroyo ES, Kralj JM, Hinz AK, Kuhn EA, Chromy BA, Segelke BW, Rothschild KJ, Fletcher JE, Katzen F, Peterson TC, Kudlicki WA, Bench G, Hoeprich PD, Coleman MA. Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles. Mol Cell Proteomics 2008; 7:2246-53. [PMID: 18603642 DOI: 10.1074/mcp.m800191-mcp200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Delta1-49 apolipoprotein A-I fragment (Delta49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR --> M transition. Importantly the functional bR was solubilized in discoidal bR.NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Delta49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
17 |
92 |
12
|
Katzen F, Becker A, Ielmini MV, Oddo CG, Ielpi L. New mobilizable vectors suitable for gene replacement in gram-negative bacteria and their use in mapping of the 3' end of the Xanthomonas campestris pv. campestris gum operon. Appl Environ Microbiol 1999; 65:278-82. [PMID: 9872790 PMCID: PMC91013 DOI: 10.1128/aem.65.1.278-282.1999] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe useful vectors to select double-crossover events directly in site-directed marker exchange mutagenesis in gram-negative bacteria. These vectors contain the gusA marker gene, providing colorimetric screens to identify bacteria harboring those sequences. The applicability of these vectors was shown by mapping the 3' end of the Xanthomonas campestris gum operon, involved in biosynthesis of xanthan.
Collapse
|
research-article |
26 |
70 |
13
|
Katzen F, Becker A, Zorreguieta A, Pühler A, Ielpi L. Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide. J Bacteriol 1996; 178:4313-8. [PMID: 8763965 PMCID: PMC178194 DOI: 10.1128/jb.178.14.4313-4318.1996] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Xanthomonas campestris gum gene cluster is composed of 12 genes designated gumB, -C, -D, -E, -F, -G, -H, -I, -J, -K, -L, and -M. The transcriptional organization of this gene cluster was analyzed by the construction of gum-lacZ transcriptional fusions in association with plasmid integration mutagenesis. This analysis, coupled with primer extension assays, indicated that the gum region was mainly expressed as an operon from a promoter located upstream of the first gene, gumB.
Collapse
|
research-article |
29 |
69 |
14
|
Katzen F, Deshmukh M, Daldal F, Beckwith J. Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J 2002; 21:3960-9. [PMID: 12145197 PMCID: PMC126151 DOI: 10.1093/emboj/cdf405] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Modular organization of proteins has been postulated as a widely used strategy for protein evolution. The multidomain transmembrane protein DsbD catalyzes the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. Most bacterial species do not have DsbD, but instead their genomes encode a much smaller protein, CcdA, which resembles the central hydrophobic domain of DsbD. We used reciprocal heterologous complementation assays between E.coli and Rhodobacter capsulatus to show that, despite their differences in size and structure, DsbD and CcdA are functional homologs. While DsbD transfers reducing potential to periplasmic protein disulfide bond isomerases and to the cytochrome c thioreduction pathway, CcdA appears to be involved only in cytochrome c biogenesis. Our findings strongly suggest that, by the acquisition of additional thiol-redox active domains, DsbD expanded its substrate specificity.
Collapse
|
research-article |
23 |
66 |
15
|
Yang JP, Cirico T, Katzen F, Peterson TC, Kudlicki W. Cell-free synthesis of a functional G protein-coupled receptor complexed with nanometer scale bilayer discs. BMC Biotechnol 2011; 11:57. [PMID: 21605442 PMCID: PMC3125327 DOI: 10.1186/1472-6750-11-57] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/23/2011] [Indexed: 12/11/2022] Open
Abstract
Background G protein coupled receptors (GPCRs) represent the largest family of membrane proteins in the human genome and the richest source of targets for the pharmaceutical industry. A major limitation to characterizing GPCRs has been the difficulty in developing high-level heterologous expression systems that are cost effective. Reasons for these difficulties include inefficient transport and insertion in the plasma membrane and cytotoxicity. Additionally, GPCR purification requires detergents, which have a negative effect on receptor yields and stability. Results Here we report a detergent-free cell-free protein expression-based method to obtain pharmacologically active GPCRs in about 2 hours. Our strategy relies on the co-translational insertion of modified GPCRs into nanometer-sized planar membranes. As a model we employed an engineered β2-adrenergic receptor in which the third intracellular loop has been replaced with T4 lysozyme (β2AR -T4L). We demonstrated that nanolipoprotein particles (NLPs) are necessary for expression of active β2AR -T4L in cell-free systems. The binding specificity of the NLP- β2AR-T4L complex has been determined by competitive assays. Our results demonstrate that β2AR-T4L synthesized in vitro depends on similar oxidative conditions as those required by an in vivo-expressed receptor. Conclusions Although the activation of β2AR-T4L requires the insertion of the T4 lysozyme sequence and the yield of that active protein limited, our results conceptually prove that cell-free protein expression could be used as a fast approach to express these valuable and notoriously difficult-to-express proteins.
Collapse
|
Journal Article |
14 |
46 |
16
|
Katzen F, Beckwith J. Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD. Proc Natl Acad Sci U S A 2003; 100:10471-6. [PMID: 12925743 PMCID: PMC193585 DOI: 10.1073/pnas.1334136100] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The central hydrophobic domain of the membrane protein DsbD catalyzes the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. Two cysteine residues embedded in transmembrane segments are essential for this process. Our results, based on cysteine alkylation and site-directed proteolysis, provide strong evidence that these residues are capable of forming an intramolecular disulfide bond. Also, by using a combination of two complementary genetic approaches, we show that both cysteines appear to be solvent-exposed to the cytoplasmic side of the inner membrane. These data are inconsistent with earlier topological models that place these residues on opposite sides of the membrane and permit the formulation of alternate hypotheses for the mechanism of this unusual transmembrane electron transfer.
Collapse
|
research-article |
22 |
37 |
17
|
Cappuccio JA, Hinz AK, Kuhn EA, Fletcher JE, Arroyo ES, Henderson PT, Blanchette CD, Walsworth VL, Corzett MH, Law RJ, Pesavento JB, Segelke BW, Sulchek TA, Chromy BA, Katzen F, Peterson T, Bench G, Kudlicki W, Hoeprich PD, Coleman MA. Cell-free expression for nanolipoprotein particles: building a high-throughput membrane protein solubility platform. Methods Mol Biol 2009; 498:273-296. [PMID: 18988032 DOI: 10.1007/978-1-59745-196-3_18] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Membrane-associated proteins and protein complexes account for approximately a third or more of the proteins in the cell (1, 2). These complexes mediate essential cellular processes; including signal transduc-tion, transport, recognition, bioenergetics and cell-cell communication. In general, membrane proteins are challenging to study because of their insolubility and tendency to aggregate when removed from their protein lipid bilayer environment. This chapter is focused on describing a novel method for producing and solubilizing membrane proteins that can be easily adapted to high-throughput expression screening. This process is based on cell-free transcription and translation technology coupled with nanolipoprotein par ticles (NLPs), which are lipid bilayers confined within a ring of amphipathic protein of defined diameter. The NLPs act as a platform for inserting, solubilizing and characterizing functional membrane proteins. NLP component proteins (apolipoproteins), as well as membrane proteins can be produced by either traditional cell-based or as discussed here, cell-free expression methodologies.
Collapse
|
Validation Study |
16 |
34 |
18
|
Goldstone D, Haebel PW, Katzen F, Bader MW, Bardwell JC, Beckwith J, Metcalf P. DsbC activation by the N-terminal domain of DsbD. Proc Natl Acad Sci U S A 2001; 98:9551-6. [PMID: 11493705 PMCID: PMC55490 DOI: 10.1073/pnas.171315498] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The correct formation of disulfide bonds in the periplasm of Escherichia coli involves Dsb proteins, including two related periplasmic disulfide-bond isomerases, DsbC and DsbG. DsbD is a membrane protein required to maintain the functional oxidation state of DsbC and DsbG. In this work, purified proteins were used to investigate the interaction between DsbD and DsbC. A 131-residue N-terminal fragment of DsbD (DsbDalpha) was expressed and purified and shown to form a functional folded domain. Gel filtration results indicate that DsbDalpha is monomeric. DsbDalpha was shown to interact directly with and to reduce the DsbC dimer, thus increasing the isomerase activity of DsbC. The DsbC-DsbDalpha complex was characterized, and formation of the complex was shown to require the N-terminal dimerization domain of DsbC. These results demonstrate that DsbD interacts directly with full-length DsbC and imply that no other periplasmic components are required to maintain DsbC in the functional reduced state.
Collapse
|
research-article |
24 |
30 |
19
|
Gao T, Blanchette CD, He W, Bourguet F, Ly S, Katzen F, Kudlicki WA, Henderson PT, Laurence TA, Huser T, Coleman MA. Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy. Protein Sci 2011; 20:437-47. [PMID: 21280134 PMCID: PMC3048428 DOI: 10.1002/pro.577] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 01/28/2023]
Abstract
Nanolipoprotein particles (NLPs) represent a unique nanometer-sized scaffold for supporting membrane proteins (MP). Characterization of their dynamic shape and association with MP in solution remains a challenge. Here, we present a rapid method of analysis by fluorescence correlation spectroscopy (FCS) to characterize bacteriorhodopsin (bR), a membrane protein capable of forming a NLP complex. By selectively labeling individual components of NLPs during cell-free synthesis, FCS enabled us to measure specific NLP diffusion times and infer size information for different NLP species. The resulting bR-loaded NLPs were shown to be dynamically discoidal in solution with a mean diameter of 7.8 nm. The insertion rate of bR in the complex was ∼55% based on a fit model incorporating two separate diffusion properties to best approximate the FCS data. More importantly, based on these data, we infer that membrane protein associated NLPs are thermodynamically constrained as discs in solution, while empty NLPs appear to be less constrained and dynamically spherical.
Collapse
|
research-article |
14 |
26 |
20
|
Abstract
A number of attempts have been made to simplify the synthesis of whole chromosomes to generate artificial microorganisms. However, the sheer size of the average bacterial genome makes the task virtually impracticable. A major limitation is the maximum assembly DNA size imposed by the current available technologies. We propose to fragment the bacterial chromosome into autonomous replicating units so that (i) each episome becomes small enough to be assembled in its entirety within an assembly host and (ii) the complete episome set should be able to generate a viable cell. In this work, we used the telN/tos system of bacteriophage N1 to show that the circular genome of Escherichia coli can be split into two linear chromosomes that complement each other to produce viable cells.
Collapse
|
|
12 |
20 |
21
|
Katzen F, Kudlicki W. Efficient generation of insect-based cell-free translation extracts active in glycosylation and signal sequence processing. J Biotechnol 2006; 125:194-7. [PMID: 16621082 DOI: 10.1016/j.jbiotec.2006.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/26/2006] [Accepted: 03/06/2006] [Indexed: 11/29/2022]
Abstract
A novel method for generation of insect-based cell-free translation extracts is presented. The protocol can be completed in less than an hour, and the resulting extracts are extremely proficient in N-linked glycosylation and signal sequence processing. No specialized equipment other than that usually present in an ordinary biochemistry laboratory is required. The novel approach dramatically reduces cost and time while rendering enhanced lysates compared to previously published strategies.
Collapse
|
Journal Article |
19 |
18 |
22
|
Liang X, Peng L, Li K, Peterson T, Katzen F. A method for multi-site-directed mutagenesis based on homologous recombination. Anal Biochem 2012; 427:99-101. [PMID: 22579595 DOI: 10.1016/j.ab.2012.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
We have developed an efficient method for the simultaneous introduction of up to three mutations in a plasmid DNA via homologous recombination. The strategy is compatible with a variety of mutations, including degenerate codons in plasmids of different sizes. In contrast to other methodologies, this approach employs the same set of reagents for both single- and multi-site mutagenesis assays, minimizes the required protocol steps, and exhibits remarkably high mutagenesis efficiencies.
Collapse
|
Journal Article |
13 |
14 |
23
|
|
|
23 |
13 |
24
|
Tsvetanova B, Peng L, Liang X, Li K, Yang JP, Ho T, Shirley J, Xu L, Potter J, Kudlicki W, Peterson T, Katzen F. Genetic assembly tools for synthetic biology. Methods Enzymol 2011; 498:327-48. [PMID: 21601684 DOI: 10.1016/b978-0-12-385120-8.00014-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
With the completion of myriad genome sequencing projects, genetic bioengineering has expanded into many applications including the integrated analysis of complex pathways, the construction of new biological parts and the redesign of existing, natural biological systems. All these areas require the precise and concerted assembly of multiple DNA fragments of various sizes, including chromosomes, and the fine-tuning of gene expression levels and protein activity. Current commercial cloning products are not robust enough to support the assembly of very large or very small genetic elements or a combination of both. In addition, current strategies are not flexible enough to allow further modifications to the original design without having to undergo complicated cloning strategies. Here, we present a set of protocols that allow the seamless, simultaneous, flexible, and highly efficient assembly of genetic material, designed for a wide size dynamic range (10s to 100,000s base pairs). The assembly can be performed either in vitro or within the living cells and the DNA fragments may or may not share homology at their ends. A novel site-directed mutagenesis approach enhanced by in vitro recombineering is also presented.
Collapse
|
Journal Article |
14 |
4 |
25
|
Liang X, Peng L, Tsvetanova B, Li K, Yang JP, Ho T, Shirley J, Xu L, Potter J, Kudlicki W, Peterson T, Katzen F. Recombination-based DNA assembly and mutagenesis methods for metabolic engineering. Methods Mol Biol 2012; 834:93-109. [PMID: 22144356 DOI: 10.1007/978-1-61779-483-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In recent years there has been a growing interest in the precise and concerted assembly of multiple DNA fragments of diverse sizes, including chromosomes, and the fine tuning of gene expression levels and protein activity. Commercial DNA assembly solutions have not been conceived to support the cloning of very large or very small genetic elements or a combination of both. Here we summarize a series of protocols that allow the seamless, simultaneous, flexible, and highly efficient assembly of DNA elements of a wide range of sizes (up to hundred thousand base pairs). The protocols harness the power of homologous recombination and are performed either in vitro or within the living cells. The DNA fragments may or may not share homology at their ends. An efficient site-directed mutagenesis protocol enhanced by homologous recombination is also described.
Collapse
|
|
13 |
4 |