1
|
Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 2001; 98:10344-9. [PMID: 11504914 PMCID: PMC56963 DOI: 10.1073/pnas.181177898] [Citation(s) in RCA: 1443] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2001] [Indexed: 12/31/2022] Open
Abstract
Attempts to repair myocardial infarcts by transplanting cardiomyocytes or skeletal myoblasts have failed to reconstitute healthy myocardium and coronary vessels integrated structurally and functionally with the remaining viable portion of the ventricular wall. The recently discovered growth and transdifferentiation potential of primitive bone marrow cells (BMC) prompted us, in an earlier study, to inject in the border zone of acute infarcts Lin(-) c-kit(POS) BMC from syngeneic animals. These BMC differentiated into myocytes and vascular structures, ameliorating the function of the infarcted heart. Two critical determinants seem to be required for the transdifferentiation of primitive BMC: tissue damage and a high level of pluripotent cells. On this basis, we hypothesized here that BMC, mobilized by stem cell factor and granulocyte-colony stimulating factor, would home to the infarcted region, replicate, differentiate, and ultimately promote myocardial repair. We report that, in the presence of an acute myocardial infarct, cytokine-mediated translocation of BMC resulted in a significant degree of tissue regeneration 27 days later. Cytokine-induced cardiac repair decreased mortality by 68%, infarct size by 40%, cavitary dilation by 26%, and diastolic stress by 70%. Ejection fraction progressively increased and hemodynamics significantly improved as a consequence of the formation of 15 x 10(6) new myocytes with arterioles and capillaries connected with the circulation of the unaffected ventricle. In conclusion, mobilization of primitive BMC by cytokines might offer a noninvasive therapeutic strategy for the regeneration of the myocardium lost as a result of ischemic heart disease and, perhaps, other forms of cardiac pathology.
Collapse
|
research-article |
24 |
1443 |
2
|
Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997; 336:1131-41. [PMID: 9099657 DOI: 10.1056/nejm199704173361603] [Citation(s) in RCA: 1178] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Loss of myocytes is an important mechanism in the development of cardiac failure of either ischemic or nonischemic origin. However, whether programmed cell death (apoptosis) is implicated in the terminal stages of heart failure is not known. We therefore studied the magnitude of myocyte apoptosis in patients with intractable congestive heart failure. METHODS Myocardial samples were obtained from the hearts of 36 patients who underwent cardiac transplantation and from the hearts of 3 patients who died soon after myocardial infarction. Samples from 11 normal hearts were used as controls. Apoptosis was evaluated histochemically, biochemically, and by a combination of histochemical analysis and confocal microscopy. The expression of two proto-oncogenes that influence apoptosis, BCL2 and BAX, was also determined. RESULTS Heart failure was characterized morphologically by a 232-fold increase in myocyte apoptosis and biochemically by DNA laddering (an indicator of apoptosis). The histochemical demonstration of DNA-strand breaks in myocyte nuclei was coupled with the documentation of chromatin condensation and fragmentation by confocal microscopy. All these findings reflect apoptosis of myocytes. The percentage of myocytes labeled with BCL2 (which protects cells against apoptosis) was 1.8 times as high in the hearts of patients with cardiac failure as in the normal hearts, whereas labeling with BAX (which promotes apoptosis) remained constant. The near doubling of the expression of BCL2 in the cardiac tissue of patients with heart failure was confirmed by Western blotting. CONCLUSIONS Programmed death of myocytes occurs in the decompensated human heart in spite of the enhanced expression of BCL2; this phenomenon may contribute to the progression of cardiac dysfunction.
Collapse
|
|
28 |
1178 |
3
|
Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Chimerism of the transplanted heart. N Engl J Med 2002; 346:5-15. [PMID: 11777997 DOI: 10.1056/nejmoa012081] [Citation(s) in RCA: 956] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cases in which a male patient receives a heart from a female donor provide an unusual opportunity to test whether primitive cells translocate from the recipient to the graft and whether cells with the phenotypic characteristics of those of the recipient ultimately reside in the donor heart. The Y chromosome can be used to detect migrated undifferentiated cells expressing stem-cell antigens and to discriminate between primitive cells derived from the recipient and those derived from the donor. METHODS We examined samples from the atria of the recipient and the atria and ventricles of the graft by fluorescence in situ hybridization to determine whether Y chromosomes were present in eight hearts from female donors implanted into male patients. Primitive cells bearing Y chromosomes that expressed c-kit, MDR1, and Sca-1 were also investigated. RESULTS Myocytes, coronary arterioles, and capillaries that had a Y chromosome made up 7 to 10 percent of those in the donor hearts and were highly proliferative. As compared with the ventricles of control hearts, the ventricles of the transplanted hearts had markedly increased numbers of cells that were positive for c-kit, MDR1, or Sca-1. The number of primitive cells was higher in the atria of the hosts and the atria of the donor hearts than in the ventricles of the donor hearts, and 12 to 16 percent of these cells contained a Y chromosome. Undifferentiated cells were negative for markers of bone marrow origin. Progenitor cells expressing MEF2, GATA-4, and nestin (which identify the cells as myocytes) and Flk1 (which identifies the cells as endothelial cells) were identified. CONCLUSIONS Our results show a high level of cardiac chimerism caused by the migration of primitive cells from the recipient to the grafted heart. Putative stem cells and progenitor cells were identified in control myocardium and in increased numbers in transplanted hearts.
Collapse
|
|
23 |
956 |
4
|
Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, LeCapitaine N, Cascapera S, Beltrami AP, D'Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci U S A 2007; 104:14068-73. [PMID: 17709737 PMCID: PMC1955818 DOI: 10.1073/pnas.0706760104] [Citation(s) in RCA: 697] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of cardiac progenitor cells in mammals raises the possibility that the human heart contains a population of stem cells capable of generating cardiomyocytes and coronary vessels. The characterization of human cardiac stem cells (hCSCs) would have important clinical implications for the management of the failing heart. We have established the conditions for the isolation and expansion of c-kit-positive hCSCs from small samples of myocardium. Additionally, we have tested whether these cells have the ability to form functionally competent human myocardium after infarction in immunocompromised animals. Here, we report the identification in vitro of a class of human c-kit-positive cardiac cells that possess the fundamental properties of stem cells: they are self-renewing, clonogenic, and multipotent. hCSCs differentiate predominantly into cardiomyocytes and, to a lesser extent, into smooth muscle cells and endothelial cells. When locally injected in the infarcted myocardium of immunodeficient mice and immunosuppressed rats, hCSCs generate a chimeric heart, which contains human myocardium composed of myocytes, coronary resistance arterioles, and capillaries. The human myocardium is structurally and functionally integrated with the rodent myocardium and contributes to the performance of the infarcted heart. Differentiated human cardiac cells possess only one set of human sex chromosomes excluding cell fusion. The lack of cell fusion was confirmed by the Cre-lox strategy. Thus, hCSCs can be isolated and expanded in vitro for subsequent autologous regeneration of dead myocardium in patients affected by heart failure of ischemic and nonischemic origin.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
697 |
5
|
Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, Beltrami CA, Bussani R, Beltrami AP, Quaini F, Bolli R, Leri A, Kajstura J, Anversa P. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 2005; 102:8692-7. [PMID: 15932947 PMCID: PMC1150816 DOI: 10.1073/pnas.0500169102] [Citation(s) in RCA: 479] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Indexed: 12/12/2022] Open
Abstract
In this study, we tested whether the human heart possesses a cardiac stem cell (CSC) pool that promotes regeneration after infarction. For this purpose, CSC growth and senescence were measured in 20 hearts with acute infarcts, 20 hearts with end-stage postinfarction cardiomyopathy, and 12 control hearts. CSC number increased markedly in acute and, to a lesser extent, in chronic infarcts. CSC growth correlated with the increase in telomerase-competent dividing CSCs from 1.5% in controls to 28% in acute infarcts and 14% in chronic infarcts. The CSC mitotic index increased 29-fold in acute and 14-fold in chronic infarcts. CSCs committed to the myocyte, smooth muscle, and endothelial cell lineages increased approximately 85-fold in acute infarcts and approximately 25-fold in chronic infarcts. However, p16(INK4a)-p53-positive senescent CSCs also increased and were 10%, 18%, and 40% in controls, acute infarcts, and chronic infarcts, respectively. Old CSCs had short telomeres and apoptosis involved 0.3%, 3.8%, and 9.6% of CSCs in controls, acute infarcts, and chronic infarcts, respectively. These variables reduced the number of functionally competent CSCs from approximately 26,000/cm3 of viable myocardium in acute to approximately 7,000/cm3 in chronic infarcts, respectively. In seven acute infarcts, foci of spontaneous myocardial regeneration that did not involve cell fusion were identified. In conclusion, the human heart possesses a CSC compartment, and CSC activation occurs in response to ischemic injury. The loss of functionally competent CSCs in chronic ischemic cardiomyopathy may underlie the progressive functional deterioration and the onset of terminal failure.
Collapse
|
Comparative Study |
20 |
479 |
6
|
Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A, Hosoda T, Chimenti S, Baker M, Limana F, Nurzynska D, Torella D, Rotatori F, Rastaldo R, Musso E, Quaini F, Leri A, Kajstura J, Anversa P. Cardiac Stem Cells Possess Growth Factor-Receptor Systems That After Activation Regenerate the Infarcted Myocardium, Improving Ventricular Function and Long-Term Survival. Circ Res 2005; 97:663-73. [PMID: 16141414 DOI: 10.1161/01.res.0000183733.53101.11] [Citation(s) in RCA: 431] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac stem cells and early committed cells (CSCs-ECCs) express c-Met and insulin-like growth factor-1 (IGF-1) receptors and synthesize and secrete the corresponding ligands, hepatocyte growth factor (HGF) and IGF-1. HGF mobilizes CSCs-ECCs and IGF-1 promotes their survival and proliferation. Therefore, HGF and IGF-1 were injected in the hearts of infarcted mice to favor, respectively, the translocation of CSCs-ECCs from the surrounding myocardium to the dead tissue and the viability and growth of these cells within the damaged area. To facilitate migration and homing of CSCs-ECCs to the infarct, a growth factor gradient was introduced between the site of storage of primitive cells in the atria and the region bordering the infarct. The newly-formed myocardium contained arterioles, capillaries, and functionally competent myocytes that with time increased in size, improving ventricular performance at healing and long thereafter. The volume of regenerated myocytes was 2200 μm
3
at 16 days after treatment and reached 5100 μm
3
at 4 months. In this interval, nearly 20% of myocytes reached the adult phenotype, varying in size from 10 000 to 20 000 μm
3
. Moreover, there were 43±13 arterioles and 155±48 capillaries/mm
2
myocardium at 16 days, and 31±6 arterioles and 390±56 capillaries at 4 months. Myocardial regeneration induced increased survival and rescued animals with infarcts that were up to 86% of the ventricle, which are commonly fatal. In conclusion, the heart has an endogenous reserve of CSCs-ECCs that can be activated to reconstitute dead myocardium and recover cardiac function.
Collapse
|
|
20 |
431 |
7
|
Linke A, Müller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Böhm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A 2005; 102:8966-71. [PMID: 15951423 PMCID: PMC1157041 DOI: 10.1073/pnas.0502678102] [Citation(s) in RCA: 404] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to determine whether the heart in large mammals contains cardiac progenitor cells that regulate organ homeostasis and regenerate dead myocardium after infarction. We report that the dog heart possesses a cardiac stem cell pool characterized by undifferentiated cells that are self-renewing, clonogenic, and multipotent. These clonogenic cells and early committed progeny possess a hepatocyte growth factor (HGF)-c-Met and an insulin-like growth factor 1 (IGF-1)-IGF-1 receptor system that can be activated to induce their migration, proliferation, and survival. Therefore, myocardial infarction was induced in chronically instrumented dogs implanted with sonomicrometric crystals in the region of the left ventricular wall supplied by the occluded left anterior descending coronary artery. After infarction, HGF and IGF-1 were injected intramyocardially to stimulate resident cardiac progenitor cells. This intervention led to the formation of myocytes and coronary vessels within the infarct. Newly generated myocytes expressed nuclear and cytoplasmic proteins specific of cardiomyocytes: MEF2C was detected in the nucleus, whereas alpha-sarcomeric actin, cardiac myosin heavy chain, troponin I, and alpha-actinin were identified in the cytoplasm. Connexin 43 and N-cadherin were also present. Myocardial reconstitution resulted in a marked recovery of contractile performance of the infarcted heart. In conclusion, the activation of resident primitive cells in the damaged dog heart can promote a significant restoration of dead tissue, which is paralleled by a progressive improvement in cardiac function. These results suggest that strategies capable of activating the growth reserve of the myocardium may be important in cardiac repair after ischemic injury.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
404 |
8
|
Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, Nurzynska D, Kasahara H, Zias E, Bonafé M, Nadal-Ginard B, Torella D, Nascimbene A, Quaini F, Urbanek K, Leri A, Anversa P. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 2004; 96:127-37. [PMID: 15569828 DOI: 10.1161/01.res.0000151843.79801.60] [Citation(s) in RCA: 384] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies in mice have challenged the ability of bone marrow cells (BMCs) to differentiate into myocytes and coronary vessels. The claim has also been made that BMCs acquire a cell phenotype different from the blood lineages only by fusing with resident cells. Technical problems exist in the induction of myocardial infarction and the successful injection of BMCs in the mouse heart. Similarly, the accurate analysis of the cell populations implicated in the regeneration of the dead tissue is complex and these factors together may account for the negative findings. In this study, we have implemented a simple protocol that can easily be reproduced and have reevaluated whether injection of BMCs restores the infarcted myocardium in mice and whether cell fusion is involved in tissue reconstitution. For this purpose, c-kit-positive BMCs were obtained from male transgenic mice expressing enhanced green fluorescence protein (EGFP). EGFP and the Y-chromosome were used as markers of the progeny of the transplanted cells in the recipient heart. By this approach, we have demonstrated that BMCs, when properly administrated in the infarcted heart, efficiently differentiate into myocytes and coronary vessels with no detectable differentiation into hemopoietic lineages. However, BMCs have no apparent paracrine effect on the growth behavior of the surviving myocardium. Within the infarct, in 10 days, nearly 4.5 million biochemically and morphologically differentiated myocytes together with coronary arterioles and capillary structures were generated independently of cell fusion. In conclusion, BMCs adopt the cardiac cell lineages and have an important therapeutic impact on ischemic heart failure.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
384 |
9
|
Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996; 28:2005-16. [PMID: 8899559 DOI: 10.1006/jmcc.1996.0193] [Citation(s) in RCA: 379] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Conditions of diastolic overload associated with increases in filling pressure trigger apoptosis. Moreover, ischemia alone and ischemia followed by reperfusion induce programmed cell death in myocytes in vitro. On this basis, the possibility was raised that apoptotic myocyte cell death may occur in the surviving myocardium acutely after infarction. Myocardial samples were obtained from the region adjacent to and remote from infarction in patients who died within 10 days from the initial clinical symptoms. Apoptosis was measured quantitatively by the terminal deoxynucleotidyl transferase assay and confirmed biochemically by DNA extraction and agarose gel electrophoresis. This analysis included 20 infarcted and ten control hearts. DNA strand breaks in myocyte nuclei were observed in all 20 infarcted hearts in both the regions bordering on and distant from the necrotic myocardium. However, the number of apoptotic nuclei was greater in the peri-infarcted region than in that away from infarction. Quantitatively, 12% of myocytes in the border zone showed DNA strand breaks, whereas 1% of cells were undergoing apoptosis in the remote myocardium. Moreover DNA laddering was detected biochemically in these two regions of the heart. Thus, apoptosis appears to be a significant complicating factor of acute myocardial infarction increasing the magnitude of myocyte cell death associated with coronary artery occlusion.
Collapse
|
|
29 |
379 |
10
|
Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 1994; 89:151-63. [PMID: 8281642 DOI: 10.1161/01.cir.89.1.151] [Citation(s) in RCA: 376] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Ischemic cardiomyopathy is characterized by myocyte loss, reactive cellular hypertrophy, and ventricular scarring. However, the relative contribution of these tissue and cellular processes to late failure remains to be determined. METHODS AND RESULTS Ten hearts were obtained from individuals undergoing cardiac transplantation as a result of chronic coronary artery disease in its terminal stage. An identical number of control hearts were collected at autopsy from patients who died from causes other than cardiovascular disease, and morphometric methodologies were applied to the analysis of the left and right ventricular myocardium. Left ventricular hypertrophy evaluated as a change in organ weight, aggregate myocyte mass, and myocyte cell volume per nucleus showed increases of 85%, 47%, and 103%, respectively. Corresponding increases in the right ventricle were 75%, 74%, and 112%. Myocyte loss, which accounted for 28% and 30% in the left and right ventricles, was responsible for the difference in the assessment of myocyte hypertrophy at the ventricular, tissue, and cellular levels. Left ventricular muscle cell hypertrophy was accomplished through a 16% and 51% increase in myocyte diameter and length, whereas right ventricular myocyte hypertrophy was the consequence of a 13% and 67% increase in these linear dimensions, respectively. Moreover, a 36% reduction in the number of myocytes included in the thickness of the left ventricular wall was found. Collagen accumulation in the form of segmental, replacement, and interstitial fibrosis comprised an average 28% and 13% of the left and right ventricular myocardia, respectively. The combination of cell loss and myocardial fibrosis, myocyte lengthening, and mural slippage of cells resulted in 4.6-fold expansion of left ventricular cavitary volume and a 56% reduction in the ventricular mass-to-chamber volume ratio. CONCLUSIONS These results are consistent with the contention that both myocyte and collagen compartments participate in the development of decompensated eccentric ventricular hypertrophy in the cardiomyopathic heart of ischemic origin.
Collapse
|
|
31 |
376 |
11
|
Urbanek K, Quaini F, Tasca G, Torella D, Castaldo C, Nadal-Ginard B, Leri A, Kajstura J, Quaini E, Anversa P. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci U S A 2003; 100:10440-5. [PMID: 12928492 PMCID: PMC193580 DOI: 10.1073/pnas.1832855100] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is generally believed that increase in adult contractile cardiac mass can be accomplished only by hypertrophy of existing myocytes. Documentation of myocardial regeneration in acute stress has challenged this dogma and led to the proposition that myocyte renewal is fundamental to cardiac homeostasis. Here we report that in human aortic stenosis, increased cardiac mass results from a combination of myocyte hypertrophy and hyperplasia. Intense new myocyte formation results from the differentiation of stem-like cells committed to the myocyte lineage. These cells express stem cell markers and telomerase. Their number increased >13-fold in aortic stenosis. The finding of cell clusters with stem cells making the transition to cardiogenic and myocyte precursors, as well as very primitive myocytes that turn into terminally differentiated myocytes, provides a link between cardiac stem cells and myocyte differentiation. Growth and differentiation of these primitive cells was markedly enhanced in hypertrophy, consistent with activation of a restricted number of stem cells that, through symmetrical cell division, generate asynchronously differentiating progeny. These clusters strongly support the existence of cardiac stem cells that amplify and commit to the myocyte lineage in response to increased workload. Their presence is consistent with the notion that myocyte hyperplasia significantly contributes to cardiac hypertrophy and accounts for the subpopulation of cycling myocytes.
Collapse
|
research-article |
22 |
372 |
12
|
Kajstura J, Rota M, Hall SR, Hosoda T, D'Amario D, Sanada F, Zheng H, Ogórek B, Rondon-Clavo C, Ferreira-Martins J, Matsuda A, Arranto C, Goichberg P, Giordano G, Haley KJ, Bardelli S, Rayatzadeh H, Liu X, Quaini F, Liao R, Leri A, Perrella MA, Loscalzo J, Anversa P. Evidence for human lung stem cells. N Engl J Med 2011; 364:1795-806. [PMID: 21561345 PMCID: PMC3197695 DOI: 10.1056/nejmoa1101324] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS Human lungs contain undifferentiated human lung stem cells nested in niches in the distal airways. These cells are self-renewing, clonogenic, and multipotent in vitro. After injection into damaged mouse lung in vivo, human lung stem cells form human bronchioles, alveoli, and pulmonary vessels integrated structurally and functionally with the damaged organ. The formation of a chimeric lung was confirmed by detection of human transcripts for epithelial and vascular genes. In addition, the self-renewal and long-term proliferation of human lung stem cells was shown in serial-transplantation assays. CONCLUSIONS Human lungs contain identifiable stem cells. In animal models, these cells participate in tissue homeostasis and regeneration. They have the undemonstrated potential to promote tissue restoration in patients with lung disease. (Funded by the National Institutes of Health.).
Collapse
|
Research Support, N.I.H., Extramural |
14 |
271 |
13
|
Cappetta D, De Angelis A, Sapio L, Prezioso L, Illiano M, Quaini F, Rossi F, Berrino L, Naviglio S, Urbanek K. Oxidative Stress and Cellular Response to Doxorubicin: A Common Factor in the Complex Milieu of Anthracycline Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1521020. [PMID: 29181122 PMCID: PMC5664340 DOI: 10.1155/2017/1521020] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
The production of reactive species is a core of the redox cycling profile of anthracyclines. However, these molecular characteristics can be viewed as a double-edged sword acting not only on neoplastic cells but also on multiple cellular targets throughout the body. This phenomenon translates into anthracycline cardiotoxicity that is a serious problem in the growing population of paediatric and adult cancer survivors. Therefore, better understanding of cellular processes that operate within but also go beyond cardiomyocytes is a necessary step to develop more effective tools for the prevention and treatment of progressive and often severe cardiomyopathy experienced by otherwise successfully treated oncologic patients. In this review, we focus on oxidative stress-triggered cellular events such as DNA damage, senescence, and cell death implicated in anthracycline cardiovascular toxicity. The involvement of progenitor cells of cardiac and extracardiac origin as well as different cardiac cell types is discussed, pointing to molecular signals that impact on cell longevity and functional competence.
Collapse
|
Review |
8 |
239 |
14
|
Ferraro F, Lymperi S, Méndez-Ferrer S, Saez B, Spencer JA, Yeap BY, Masselli E, Graiani G, Prezioso L, Rizzini EL, Mangoni M, Rizzoli V, Sykes SM, Lin CP, Frenette PS, Quaini F, Scadden DT. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med 2011; 3:104ra101. [PMID: 21998408 PMCID: PMC3754876 DOI: 10.1126/scitranslmed.3002191] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Success with transplantation of autologous hematopoietic stem and progenitor cells (HSPCs) in patients depends on adequate collection of these cells after mobilization from the bone marrow niche by the cytokine granulocyte colony-stimulating factor (G-CSF). However, some patients fail to achieve sufficient HSPC mobilization. Retrospective analysis of bone marrow transplant patient records revealed that diabetes correlated with poor mobilization of CD34+ HSPCs. In mouse models of type 1 and type 2 diabetes (streptozotocin-induced and db/db mice, respectively), we found impaired egress of murine HSPCs from the bone marrow after G-CSF treatment. Furthermore, HSPCs were aberrantly localized in the marrow niche of the diabetic mice, and abnormalities in the number and function of sympathetic nerve termini were associated with this mislocalization. Aberrant responses to β-adrenergic stimulation of the bone marrow included an inability of marrow mesenchymal stem cells expressing the marker nestin to down-modulate the chemokine CXCL12 in response to G-CSF treatment (mesenchymal stem cells are reported to be critical for HSPC mobilization). The HSPC mobilization defect was rescued by direct pharmacological inhibition of the interaction of CXCL12 with its receptor CXCR4 using the drug AMD3100. These data suggest that there are diabetes-induced changes in bone marrow physiology and microanatomy and point to a potential intervention to overcome poor HSPC mobilization in diabetic patients.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
233 |
15
|
Kajstura J, Gurusamy N, Ogórek B, Goichberg P, Clavo-Rondon C, Hosoda T, D'Amario D, Bardelli S, Beltrami AP, Cesselli D, Bussani R, del Monte F, Quaini F, Rota M, Beltrami CA, Buchholz BA, Leri A, Anversa P. Myocyte turnover in the aging human heart. Circ Res 2010; 107:1374-86. [PMID: 21088285 DOI: 10.1161/circresaha.110.231498] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE The turnover of cardiomyocytes in the aging female and male heart is currently unknown, emphasizing the need to define human myocardial biology. OBJECTIVE The effects of age and gender on the magnitude of myocyte regeneration and the origin of newly formed cardiomyocytes were determined. METHODS AND RESULTS The interaction of myocyte replacement, cellular senescence, growth inhibition, and apoptosis was measured in normal female (n=32) and male (n=42) human hearts collected from patients 19 to 104 years of age who died from causes other than cardiovascular diseases. A progressive loss of telomeric DNA in human cardiac stem cells (hCSCs) occurs with aging and the newly formed cardiomyocytes inherit short telomeres and rapidly reach the senescent phenotype. Our data provide novel information on the superior ability of the female heart to sustain the multiple variables associated with the development of the senescent myopathy. At all ages, the female heart is equipped with a larger pool of functionally competent hCSCs and younger myocytes than the male myocardium. The replicative potential is higher and telomeres are longer in female hCSCs than in male hCSCs. In the female heart, myocyte turnover occurs at a rate of 10%, 14%, and 40% per year at 20, 60, and 100 years of age, respectively. Corresponding values in the male heart are 7%, 12%, and 32% per year, documenting that cardiomyogenesis involves a large and progressively increasing number of parenchymal cells with aging. From 20 to 100 years of age, the myocyte compartment is replaced 15 times in women and 11 times in men. CONCLUSIONS The human heart is a highly dynamic organ regulated by a pool of resident hCSCs that modulate cardiac homeostasis and condition organ aging.
Collapse
|
Retracted Publication |
15 |
229 |
16
|
Oikawa A, Siragusa M, Quaini F, Mangialardi G, Katare RG, Caporali A, van Buul JD, van Alphen FPJ, Graiani G, Spinetti G, Kraenkel N, Prezioso L, Emanueli C, Madeddu P. Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol 2009; 30:498-508. [PMID: 20042708 DOI: 10.1161/atvbaha.109.200154] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The impact of diabetes on the bone marrow (BM) microenvironment was not adequately explored. We investigated whether diabetes induces microvascular remodeling with negative consequence for BM homeostasis. METHODS AND RESULTS We found profound structural alterations in BM from mice with type 1 diabetes with depletion of the hematopoietic component and fatty degeneration. Blood flow (fluorescent microspheres) and microvascular density (immunohistochemistry) were remarkably reduced. Flow cytometry verified the depletion of MECA-32(+) endothelial cells. Cultured endothelial cells from BM of diabetic mice showed higher levels of oxidative stress, increased activity of the senescence marker beta-galactosidase, reduced migratory and network-formation capacities, and increased permeability and adhesiveness to BM mononuclear cells. Flow cytometry analysis of lineage(-) c-Kit(+) Sca-1(+) cell distribution along an in vivo Hoechst-33342 dye perfusion gradient documented that diabetes depletes lineage(-) c-Kit(+) Sca-1(+) cells predominantly in the low-perfused part of the marrow. Cell depletion was associated to increased oxidative stress, DNA damage, and activation of apoptosis. Boosting the antioxidative pentose phosphate pathway by benfotiamine supplementation prevented microangiopathy, hypoperfusion, and lineage(-) c-Kit(+) Sca-1(+) cell depletion. CONCLUSIONS We provide novel evidence for the presence of microangiopathy impinging on the integrity of diabetic BM. These discoveries offer the framework for mechanistic solutions of BM dysfunction in diabetes.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
177 |
17
|
Meloni M, Caporali A, Graiani G, Lagrasta C, Katare R, Van Linthout S, Spillmann F, Campesi I, Madeddu P, Quaini F, Emanueli C. Nerve growth factor promotes cardiac repair following myocardial infarction. Circ Res 2010; 106:1275-84. [PMID: 20360245 DOI: 10.1161/circresaha.109.210088] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Nerve growth factor (NGF) promotes angiogenesis and cardiomyocyte survival, which are both desirable for postinfarction myocardial healing. Nonetheless, the NGF potential for cardiac repair has never been investigated. OBJECTIVE To define expression and localization of NGF and its high-affinity receptor TrkA (tropomyosin-related receptor A) in the human infarcted heart and to investigate the cardiac roles of both endogenous and engineered NGF using a mouse model of myocardial infarction (MI). METHODS AND RESULTS Immunostaining for NGF and TrkA was performed on heart samples from humans deceased of MI or unrelated pathologies. To study the post-MI functions of endogenous NGF, a NGF-neutralizing antibody (Ab-NGF) or nonimmune IgG (control) was given to MI mice. To investigate the NGF therapeutic potential, human NGF gene or control (empty vector) was delivered to the murine periinfarct myocardium. Results indicate that NGF is present in the infarcted human heart. Both cardiomyocytes and endothelial cells (ECs) possess TrkA, which suggests NGF cardiovascular actions in humans. In MI mice, Ab-NGF abrogated native reparative angiogenesis, increased EC and cardiomyocyte apoptosis and worsened cardiac function. Conversely, NGF gene transfer ameliorated EC and cardiomyocyte survival, promoted neovascularization and improved myocardial blood flow and cardiac function. The prosurvival/proangiogenic Akt/Foxo pathway mediated the therapeutic benefits of NGF transfer. Moreover, NGF overexpression increased stem cell factor (the c-kit receptor ligand) expression, which translated in higher myocardial abundance of c-kit(pos) progenitor cells in NGF-engineered hearts. CONCLUSIONS NGF elicits pleiotropic beneficial actions in the post-MI heart. NGF should be considered as a candidate for therapeutic cardiac regeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
152 |
18
|
Kajstura J, Mansukhani M, Cheng W, Reiss K, Krajewski S, Reed JC, Quaini F, Sonnenblick EH, Anversa P. Programmed cell death and expression of the protooncogene bcl-2 in myocytes during postnatal maturation of the heart. Exp Cell Res 1995; 219:110-21. [PMID: 7628527 DOI: 10.1006/excr.1995.1211] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To determine whether programmed myocyte cell death is a major component of the differential growth adaptation of the right and left ventricle during development, the formation of DNA strand breaks in myocyte nuclei was identified and quantitated in hearts of rats at the end of gestation and at 1, 5, 11, and 21 days after birth. Incorporation of BrdU in left and right ventricular myocytes was also evaluated. Moreover, the expression of bcl-2 in myocytes was determined. Programmed myocyte cell death was absent in the fetal heart but affected the myocardium postnatally. This phenomenon was no longer detectable at 21 days. DNA strand breaks in nonmyocyte nuclei were present at all time intervals. Quantitatively, 10.4, 6.1, and 2.5 myocyte nuclei/10,000 nuclei exhibited DNA degradation at 1 day in the right ventricle, interventricular septum, and left ventricule, respectively. Corresponding values at 5 days were 3.7, 3.5, and 2.0 myocyte nuclei/10,000 nuclei. At 11 days, programmed cell death involved 1.2, 1.5, and 0.53 myocyte nuclei/10,000 nuclei in these three regions of the heart. The 4.2-fold, 1.9-fold, and 2.3-fold greater magnitude of programmed cell death in the right ventricle at 1, 5, and 11 days was statistically significant. In contrast, BrdU incorporation in myocytes decreased in a comparable manner in the left and right ventricles with maturation. Importantly, bcl-2 mRNA levels were high in fetal myocytes, decreased markedly at 1 and 5 days, and progressively increased at 11 and 21 days. The expression of bcl-2 was lower in right than in left ventricular myocytes. In conclusion, programmed myocyte cell death is inversely related to bcl-2 expression and affects the right ventricle more than the left ventricle during postnatal development. This phenomenon may be crucial in the modulation of the number of myocytes in the two ventricles during the transition from the fetal to the adult circulatory system.
Collapse
|
Comparative Study |
30 |
149 |
19
|
Mazzaschi G, Madeddu D, Falco A, Bocchialini G, Goldoni M, Sogni F, Armani G, Lagrasta CA, Lorusso B, Mangiaracina C, Vilella R, Frati C, Alfieri R, Ampollini L, Veneziani M, Silini EM, Ardizzoni A, Urbanek K, Aversa F, Quaini F, Tiseo M. Low PD-1 Expression in Cytotoxic CD8+ Tumor-Infiltrating Lymphocytes Confers an Immune-Privileged Tissue Microenvironment in NSCLC with a Prognostic and Predictive Value. Clin Cancer Res 2017; 24:407-419. [DOI: 10.1158/1078-0432.ccr-17-2156] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022]
|
|
8 |
145 |
20
|
Rossini A, Frati C, Lagrasta C, Graiani G, Scopece A, Cavalli S, Musso E, Baccarin M, Di Segni M, Fagnoni F, Germani A, Quaini E, Mayr M, Xu Q, Barbuti A, DiFrancesco D, Pompilio G, Quaini F, Gaetano C, Capogrossi MC. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res 2010; 89:650-60. [PMID: 20833652 DOI: 10.1093/cvr/cvq290] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS Bone marrow mesenchymal stromal cell (BMStC) transplantation into the infarcted heart improves left ventricular function and cardiac remodelling. However, it has been suggested that tissue-specific cells may be better for cardiac repair than cells from other sources. The objective of the present work has been the comparison of in vitro and in vivo properties of adult human cardiac stromal cells (CStC) to those of syngeneic BMStC. METHODS AND RESULTS Although CStC and BMStC exhibited a similar immunophenotype, their gene, microRNA, and protein expression profiles were remarkably different. Biologically, CStC, compared with BMStC, were less competent in acquiring the adipogenic and osteogenic phenotype but more efficiently expressed cardiovascular markers. When injected into the heart, in rat a model of chronic myocardial infarction, CStC persisted longer within the tissue, migrated into the scar, and differentiated into adult cardiomyocytes better than BMStC. CONCLUSION Our findings demonstrate that although CStC and BMStC share a common stromal phenotype, CStC present cardiovascular-associated features and may represent an important cell source for more efficient cardiac repair.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
97 |
21
|
Graiani G, Lagrasta C, Migliaccio E, Spillmann F, Meloni M, Madeddu P, Quaini F, Padura IM, Lanfrancone L, Pelicci P, Emanueli C. Genetic Deletion of the p66
Shc
Adaptor Protein Protects From Angiotensin II–Induced Myocardial Damage. Hypertension 2005; 46:433-40. [PMID: 15998704 DOI: 10.1161/01.hyp.0000174986.73346.ba] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II), acting through its G protein-coupled AT1 receptor (AT1), contributes to the precocious heart senescence typical of patients with hypertension, atherosclerosis, and diabetes. AT1 was suggested to transactivate an intracellular signaling controlled by growth factors and their tyrosin-kinase receptors. In cultured vascular smooth muscle cells, this downstream mechanism comprises the p66Shc adaptor protein, previously recognized to play a role in vascular cell senescence and death. The aim of the present study was 2-fold: (1) to characterize the cardiovascular phenotype of p66Shc knockout mice (p66Shc(-/-)), and (2) to test the novel hypothesis that disrupting the p66Shc might protect the heart from the damaging action of elevated Ang II levels. Compared with wild-type littermates (p66Shc(+/+)), p66Shc(-/-) showed similar blood pressure, heart rate, and left ventricular wall thickness. However, cardiomyocyte number was increased in mutant animals, indicating a condition of myocardial hyperplasia. In p66Shc(+/+), infusion of a sub-pressor dose of Ang II (300 nmol/kg body weight [BW] daily for 28 days) caused left ventricular hypertrophy and apoptotic death of cardiomyocytes and endothelial cells. In contrast, p66Shc(-/-) were resistant to the proapoptotic/hypertrophic action of Ang II. Consistently, in vitro experiments showed that Ang II causes apoptotic death of cardiomyocytes isolated from p66Shc(+/+) hearts to a greater extent as compared with p66Shc(-/-) cardiomyocytes. Our results indicate a fundamental role of p66Shc in Ang II-mediated myocardial remodeling. In perspective, p66Shc inhibition may be envisioned as a novel way to prevent the deleterious effects of Ang II on the heart.
Collapse
|
|
20 |
95 |
22
|
Fadini GP, Ferraro F, Quaini F, Asahara T, Madeddu P. Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem Cells Transl Med 2014; 3:949-57. [PMID: 24944206 PMCID: PMC4116251 DOI: 10.5966/sctm.2014-0052] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/15/2014] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus is a global health problem that results in multiorgan complications leading to high morbidity and mortality. Until recently, the effects of diabetes and hyperglycemia on the bone marrow microenvironment-a site where multiple organ systems converge and communicate-have been underappreciated. However, several new studies in mice, rats, and humans reveal that diabetes leads to multiple bone marrow microenvironmental defects, such as small vessel disease (microangiopathy), nerve terminal pauperization (neuropathy), and impaired stem cell mobilization (mobilopathy). The discovery that diabetes involves bone marrow-derived progenitors implicated in maintaining cardiovascular homeostasis has been proposed as a bridging mechanism between micro- and macroangiopathy in distant organs. Herein, we review the physiological and molecular bone marrow abnormalities associated with diabetes and discuss how bone marrow dysfunction represents a potential root for the development of the multiorgan failure characteristic of advanced diabetes. The notion of diabetes as a bone marrow and stem cell disease opens new avenues for therapeutic interventions ultimately aimed at improving the outcome of diabetic patients.
Collapse
|
Review |
11 |
82 |
23
|
Mazzaschi G, Minari R, Zecca A, Cavazzoni A, Ferri V, Mori C, Squadrilli A, Bordi P, Buti S, Bersanelli M, Leonetti A, Cosenza A, Ferri L, Rapacchi E, Missale G, Petronini PG, Quaini F, Tiseo M. Soluble PD-L1 and Circulating CD8+PD-1+ and NK Cells Enclose a Prognostic and Predictive Immune Effector Score in Immunotherapy Treated NSCLC patients. Lung Cancer 2020; 148:1-11. [PMID: 32768804 DOI: 10.1016/j.lungcan.2020.07.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Upfront criteria to foresee immune checkpoint inhibitors (ICIs) efficacy are far from being identified. Thus, we integrated blood descriptors of pro-inflammatory/immunosuppressive or effective anti-tumor response to non-invasively define predictive immune profiles in ICI-treated advanced non-small cell lung cancer (NSCLC). METHODS Peripheral blood (PB) was prospectively collected at baseline from 109 consecutive NSCLC patients undergoing ICIs as first or more line treatment. Soluble PD-L1 (sPD-L1) (immunoassay), CD8+PD-1+ and NK (FACS) cells were assessed and interlaced to generate an Immune effector Score (IeffS). Lung Immune Prognostic Index (LIPI) was computed by LDH levels and derived Neutrophil-to-Lymphocyte Ratio (dNLR). All these parameters were correlated with survival outcome and treatment response. RESULTS High sPD-L1 and low CD8+PD-1+ and NK number had negative impact on PFS (P < 0.001), OS (P < 0.01) and ICI-response (P < 0.05). Thus, sPD-L1high, CD8+PD-1+low and NKlow were considered as risk factors encompassing IeffS, whose prognostic power outperformed that of individual features and slightly exceeded that of LIPI. Accordingly, the absence of these risk factors portrayed a favorable IeffS characterizing patients with significantly (P < 0.001) prolonged PFS (median NR vs 2.3 months) and OS (median NR vs 4.1) and greater benefit from ICIs (P < 0.01). We then combined each risk parameter composing IeffS and LIPI (LDHhigh, dNLRhigh), thus defining three distinct prognostic classes. A remarkable impact of IeffS-LIPI integration was documented on survival outcome (PFS, HR = 4.61; 95%CI = 2.32-9.18; P < 0.001; OS, HR=4.03; 95%CI=1.91-8.67; P < 0.001) and ICI-response (AUC=0.90, 95%CI=0.81-0.97, P < 0.001). CONCLUSION Composite risk models based on blood parameters featuring the tumor-host interaction might provide accurate prognostic scores able to predict ICI benefit in NSCLC patients.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
82 |
24
|
Olivetti G, Melissari M, Balbi T, Quaini F, Cigola E, Sonnenblick EH, Anversa P. Myocyte cellular hypertrophy is responsible for ventricular remodelling in the hypertrophied heart of middle aged individuals in the absence of cardiac failure. Cardiovasc Res 1994; 28:1199-208. [PMID: 7954623 DOI: 10.1093/cvr/28.8.1199] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE The aim was to measure changes in the numbers and size of ventricular myocytes in human hearts with marked ventricular hypertrophy and no clear signs of cardiac failure, to determine whether myocyte cellular hypertrophy is the only factor involved in the increase in cardiac mass. METHODS Morphometric techniques were applied to estimate the number of myocyte nuclei per unit volume of myocardium which, in combination with the determination of the volume percent of myocytes, allowed the computation of the average myocyte cell volume per nucleus and total number of myocyte nuclei in the ventricles. Subsequently, the volume fraction of replacement fibrosis in the tissue was assessed and absolute component volumes in the ventricles obtained. RESULTS Eight hypertrophied human hearts, weight 561(SD 68) g, were collected at necropsy from hypertensive patients who died from non-cardiac causes and were compared with eight normal hearts, weight 387(37) g, obtained from healthy individuals who also died from non-cardiac causes. With cardiac hypertrophy, left and right ventricular weight increased by 53% and 57%, whereas myocyte cell volume increased by 112% and 84%, respectively. The disproportion between the increase in ventricular weight and the increase in myocyte volume was due to a 30% and 16% loss in left and right ventricular myocytes following hypertensive hypertrophy. Myocyte loss also provoked a 319% and a 188% increase in the amount of replacement fibrosis in the left and right ventricular myocardium. These tissue and cellular processes resulted in an expansion in ventricular mass which exceeded the thickening of the wall so that an increase in cavitary volume occurred in both ventricles. CONCLUSIONS Myocyte cellular hypertrophy is responsible for ventricular hypertrophy in hypertensive cardiomyopathy in its compensated stage. Myocyte loss precedes the impairment in ventricular pump function and may be implicated in the initiation of ventricular maladaptation.
Collapse
|
Comparative Study |
31 |
82 |
25
|
Mazzaschi G, Facchinetti F, Missale G, Canetti D, Madeddu D, Zecca A, Veneziani M, Gelsomino F, Goldoni M, Buti S, Bordi P, Aversa F, Ardizzoni A, Quaini F, Tiseo M. The circulating pool of functionally competent NK and CD8+ cells predicts the outcome of anti-PD1 treatment in advanced NSCLC. Lung Cancer 2018; 127:153-163. [PMID: 30642544 DOI: 10.1016/j.lungcan.2018.11.038] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022]
Abstract
INTRODUCTION A prospective investigation of the circulating immune profile in NSCLC patients receiving nivolumab was performed to identify potentially predictive parameters. METHODS Flow Cytometry of peripheral blood (PB) CD3+, CD8+, CD4+, NK, Treg and MDSCs was prospectively performed in 31 consecutive advanced NSCLC patients at baseline (T0) and after 2 (T1) and 4 (T2) cycles of bi-weekly nivolumab. Functional molecules (PD-1, CD3ζ, Granzyme B, Perforin), cell proliferation (Ki67) and NK receptors (NKG2 A, NKG2D, NKp30) were also explored. The immunohistochemical evaluation of PD-L1 and TILs was restricted to available tumor biopsies. Tissue and circulating parameters were correlated to clinico-pathological features and treatment outcomes. RESULTS KRAS mutations, active smoking, COPD and steroid treatment conditioned a different distribution of circulating phenotypes. At baseline, clinical benefit (CB, n = 19) group displayed higher number of phenotypically active NK and PD-1+CD8+ cells (p < 0.01) compared to non-responders (NR, n = 12). Prolonged survival outcomes (p < 0.01) were recorded in cases with high baseline circulating NK and PD-1+CD8+ cells. At tissue level, low PD-1 expression in CD8 + TILs was a positive prognostic feature (p < 0.001). Strikingly, high circulating NK and PD-1+CD8+ cells combined with low PD-1/CD8+ ratio in TILs characterized a privileged context able to provide a significantly prolonged (p < 0.01) progression-free survival (PFS). During PD-1 blockade, NKs progressively raised in CB while declined in NR (p < 0.05) and this phenomenon was counterbalanced by parallel changes in Treg. CONCLUSION The functional pool of circulating NKs associated with a divergent PD-1 expression in blood and tissue CD8+ lymphocytes portrays an immune profile predictive of anti-PD1 treatment efficacy.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
82 |