1
|
Khansari AR, Balasch JC, Vallejos-Vidal E, Parra D, Reyes-López FE, Tort L. Comparative Immune- and Stress-Related Transcript Response Induced by Air Exposure and Vibrio anguillarum Bacterin in Rainbow Trout ( Oncorhynchus mykiss) and Gilthead Seabream ( Sparus aurata) Mucosal Surfaces. Front Immunol 2018; 9:856. [PMID: 29770134 PMCID: PMC5940744 DOI: 10.3389/fimmu.2018.00856] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
Fish have to face various environmental challenges that may compromise the efficacy of the immune response in mucosal surfaces. Since the effect of acute stress on mucosal barriers in fish has still not been fully elucidated, we aimed to compare the short-term mucosal stress and immune transcriptomic responses in a freshwater (rainbow trout, Oncorhynchus mykiss) and a marine fish (gilthead seabream, Sparus aurata) to bacterial immersion (Vibrio anguillarum bacterin vaccine) and air exposure stress in skin, gills, and intestine. Air exposure and combined (vaccine + air) stressors exposure were found to be inducers of the cortisol secretion in plasma and skin mucus on both species in a time-dependent manner, while V. anguillarum bacterin exposure induced cortisol release in trout skin mucus only. This was coincident with a marked differential increase in transcriptomic patterns of stress- and immune-related gene expression profiles. Particularly in seabream skin, the expression of cytokines was markedly enhanced, whereas in gills the response was mainly suppressed. In rainbow trout gut, both air exposure and vaccine stimulated the transcriptomic response, whereas in seabream, stress and immune responses were mainly induced by air exposure. Therefore, our comparative survey on the transcriptomic mucosal responses demonstrates that skin and gut were generally more reactive in both species. However, the upregulation of immune transcripts was more pronounced in gills and gut of vaccinated trout, whereas seabream appeared to be more stress-prone and less responsive to V. anguillarum bacterin in gills and gut. When fish were subjected to both treatments no definite pattern was observed. Overall, the results indicate that (1) the immune response was not homogeneous among mucosae (2), it was greatly influenced by the specific traits of each stressor in each surface and (3) was highly species-specific, probably as a result of the adaptive life story of each species to the microbial load and environmental characteristics of their respective natural habitats.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
47 |
2
|
Firmino JP, Galindo-Villegas J, Reyes-López FE, Gisbert E. Phytogenic Bioactive Compounds Shape Fish Mucosal Immunity. Front Immunol 2021; 12:695973. [PMID: 34220858 PMCID: PMC8252966 DOI: 10.3389/fimmu.2021.695973] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaculture growth will unavoidably involve the implementation of innovative and sustainable production strategies, being functional feeds among the most promising ones. A wide spectrum of phytogenics, particularly those containing terpenes and organosulfur compounds, are increasingly studied in aquafeeds, due to their growth promoting, antimicrobial, immunostimulant, antioxidant, anti-inflammatory and sedative properties. This trend relies on the importance of the mucosal barrier in the fish defense. Establishing the phytogenics' mode of action in mucosal tissues is of importance for further use and safe administration. Although the impact of phytogenics upon fish mucosal immunity has been extensively approached, most of the studies fail in addressing the mechanisms underlying their pharmacological effects. Unstandardized testing as an extended practice also questions the reproducibility and safety of such studies, limiting the use of phytogenics at commercial scale. The information presented herein provides insight on the fish mucosal immune responses to phytogenics, suggesting their mode of action, and ultimately encouraging the practice of reliable and reproducible research for novel feed additives for aquafeeds. For proper screening, characterization and optimization of their mode of action, we encourage the evaluation of purified compounds using in vitro systems before moving forward to in vivo trials. The formulation of additives with combinations of compounds previously characterized is recommended to avoid bacterial resistance. To improve the delivery of phytogenics and overcome limitations associated to compounds volatility and susceptibility to degradation, the use of encapsulation is advisable. Besides, newer approaches and dedicated methodologies are needed to elucidate the phytogenics pharmacokinetics and mode of action in depth.
Collapse
|
Review |
4 |
28 |
3
|
Azeredo R, Machado M, Afonso A, Fierro-Castro C, Reyes-López FE, Tort L, Gesto M, Conde-Sieira M, Míguez JM, Soengas JL, Kreuz E, Wuertz S, Peres H, Oliva-Teles A, Costas B. Neuroendocrine and Immune Responses Undertake Different Fates following Tryptophan or Methionine Dietary Treatment: Tales from a Teleost Model. Front Immunol 2017; 8:1226. [PMID: 29021795 PMCID: PMC5623689 DOI: 10.3389/fimmu.2017.01226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/15/2017] [Indexed: 01/31/2023] Open
Abstract
Methionine and tryptophan appear to be fundamental in specific cellular pathways involved in the immune response mechanisms, including stimulation of T-regulatory cells by tryptophan metabolites or pro-inflammatory effects upon methionine supplementation. Thus, the aim of this study was to evaluate the immunomodulatory effect of these amino acids on the inflammatory and neuroendocrine responses in juveniles of European seabass, Dicentrarchus labrax. To achieve this, goal fish were fed for 14 days methionine and tryptophan-supplemented diets (MET and TRP, respectively, 2× dietary requirement level) or a control diet meeting the amino acids requirement levels (CTRL). Fish were sampled for immune status assessment and the remaining fish were challenged with intraperitoneally injected inactivated Photobacterium damselae subsp. piscicida and sampled either 4 or 24 h post-injection. Respiratory burst activity, brain monoamines, plasma cortisol, and immune-related gene expression showed distinct and sometimes opposite patterns regarding the effects of dietary amino acids. While neuroendocrine intermediates were not affected by any dietary treatment at the end of the feeding trial, both supplemented diets led to increased levels of plasma cortisol after the inflammatory insult, while brain monoamine content was higher in TRP-fed fish. Peripheral blood respiratory burst was higher in TRP-fed fish injected with the bacteria inoculum but only compared to those fed MET. However, no changes were detected in total antioxidant capacity. Complement factor 3 was upregulated in MET-fed fish but methionine seemed to poorly affect other genes expression patterns. In contrast, fish fed MET showed increased immune cells numbers both before and after immune challenge, suggesting a strong enhancing effect of methionine on immune cells proliferation. Differently, tryptophan effects on inflammatory transcripts suggested an inhibitory mode of action. This, together with a high production of brain monoamine and cortisol levels, suggests that tryptophan might mediate regulatory mechanisms of neuroendocrine and immune systems cooperation. Overall, more studies are needed to ascertain the role of methionine and tryptophan in modulating (stimulate or regulate) fish immune and neuroendocrine responses.
Collapse
|
Journal Article |
8 |
27 |
4
|
Barrera-Avalos C, Luraschi R, Vallejos-Vidal E, Mella-Torres A, Hernández F, Figueroa M, Rioseco C, Valdés D, Imarai M, Acuña-Castillo C, Reyes-López FE, Sandino AM. The Rapid Antigen Detection Test for SARS-CoV-2 Underestimates the Identification of COVID-19 Positive Cases and Compromises the Diagnosis of the SARS-CoV-2 (K417N/T, E484K, and N501Y) Variants. Front Public Health 2022; 9:780801. [PMID: 35047474 PMCID: PMC8761676 DOI: 10.3389/fpubh.2021.780801] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Timely detection of severe acute respiratory syndrome due to coronavirus 2 (SARS-CoV-2) by reverse transcription quantitative polymerase chain reaction (RT-qPCR) has been the gold- strategy for identifying positive cases during the current pandemic. However, faster and less expensive methodologies are also applied for the massive diagnosis of COVID-19. In this way, the rapid antigen test (RAT) is widely used. However, it is necessary to evaluate its detection efficiency considering the current pandemic context with the circulation of new viral variants. In this study, we evaluated the sensitivity and specificity of RAT (SD BIOSENSOR, South Korea), widely used for testing and SARS-CoV-2 diagnosis in Santiago of Chile. The RAT showed a 90% (amplification range of 20 ≤ Cq <25) and 10% (amplification range of 25 ≤ Cq <30) of positive SARS-CoV-2 cases identified previously by RT-qPCR. Importantly, a 0% detection was obtained for samples within a Cq value>30. In SARS-CoV-2 variant detection, RAT had a 42.8% detection sensitivity in samples with RT-qPCR amplification range 20 ≤ Cq <25 containing the single nucleotide polymorphisms (SNP) K417N/T, N501Y and E484K, associated with beta or gamma SARS-CoV-2 variants. This study alerts for the special attention that must be paid for the use of RAT at a massive diagnosis level, especially in the current scenario of appearance of several new SARS-CoV-2 variants which could generate false negatives and the compromise of possible viral outbreaks.
Collapse
|
|
3 |
24 |
5
|
Khansari AR, Balasch JC, Vallejos-Vidal E, Teles M, Fierro-Castro C, Tort L, Reyes-López FE. Comparative study of stress and immune-related transcript outcomes triggered by Vibrio anguillarum bacterin and air exposure stress in liver and spleen of gilthead seabream (Sparus aurata), zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2019; 86:436-448. [PMID: 30502466 DOI: 10.1016/j.fsi.2018.11.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The stress and immune-related effects of short-term (1, 6 and 24 h) air exposure stress (1 min), bath vaccination with Vibrio anguillarum bacterin, and both stressors combined were evaluated in liver and spleen of Sparus aurata, Danio rerio and Onchorhynchus mykiss. Expression profiles of immune (interleukin 1 beta: il1β; tumor necrosis factor alpha: tnfα; interleukin 10: il10; tumor growth factor beta: tgfβ1; immunoglobulin M: igm; lysozyme: lys; complement protein c3: c3) and stress-related genes (glucocorticoid receptor: gr; heat shock protein 70: hsp70; and enolase) were analysed by RT-qPCR. Cortisol level was assessed by radioimmunoassay. The gene expression patterns in liver and spleen were found to be differentially regulated in a time- and organ-dependent manner among species. In seabream, a higher il1β-driven inflammatory response was recorded. In zebrafish, air exposure stress but not bath vaccination alone modulated most of the changes in liver and spleen immune transcripts. Stressed and vaccinated trout showed an intermediate pattern of gene expression, with a lower upregulation of immune-related genes in liver and the absence of changes in the expression of hsp70 and enolase in spleen (as it was observed in seabream but not in zebrafish). Following air exposure, cortisol levels increased in plasma 1 h post-stress (hps) and then decreased at 6 hps in O. mykiss and D. rerio. By contrast, in S.aurata the cortisol level remained higher at 6 hps suggesting a greater degree of responsiveness to this stressor. When fish were exposed to combined air exposure plus bath vaccination cortisol levels were also augmented at 1 and 6 hps in O. mykiss and S.aurata and restored to basal level at 24 hps, whereas in D. rerio the response was higher in response to the combination of both stressors. In addition, V. anguillarum bacterin vaccination triggered cortisol secretion only in D. rerio, suggesting a greater responsiveness of D. rerio hypothalamic-pituitary-interrenal axis. Overall, comparing the tissue transcription responsiveness, liver was found to be more implicated in the response to handling stress compared to spleen. These results also indicate that a species-specific response accounts for the deviations of stress and immune onset in the liver and spleen in these fish species.
Collapse
|
Comparative Study |
6 |
24 |
6
|
Khansari AR, Parra D, Reyes-López FE, Tort L. Modulatory in vitro effect of stress hormones on the cytokine response of rainbow trout and gilthead sea bream head kidney stimulated with Vibrio anguillarum bacterin. FISH & SHELLFISH IMMUNOLOGY 2017; 70:736-749. [PMID: 28882798 DOI: 10.1016/j.fsi.2017.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
In fish, the stress response and their consequences in the immune system have been widely described. Recently, a differential cytokine regulation between rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) was reported after treatment with stress hormones together with their receptor antagonists. Nevertheless, there is no evidence of whether antagonists for stress hormone receptors may influence the interaction between hormones and cytokines after bacterial administration. Thus, the aim of our study was to evaluate the cytokine expression in the presence of stress hormones (cortisol, ACTH, adrenaline), hormone receptor antagonists and inactivated Vibrio anguillarum bacterin in rainbow trout and gilthead sea bream head kidney primary cell culture (HKPCC). Mifepristone, spironolactone, propranolol and phentolamine were used to block GR, MR, MC2R, and β-/α-adrenoreceptors. Our results showed an expected increase of the pro-inflammatory and anti-inflammatory response after inactivated V. anguillarum bacterin treatment in both species. Cortisol, ACTH and adrenaline did not modulate the expression of immune-related genes in rainbow trout, while in sea bream cortisol was able to reduce the stimulated gene expression of all cytokines. This effect was only restored to basal expression level in IL-1β and TNF-α by mifepristone. ACTH reduced both pro-inflammatory and anti-inflammatory cytokine expression, excluding IL-1β, only in sea bream. Adrenaline enhanced the expression of IL-1β and TGF-β1 stimulated by inactivated V. anguillarum in sea bream, and the effect was diminished by propranolol. In sum, our results confirm that the immunoendocrine differences reported at gene expression profile between two teleost species are also observed after exposure to inactivated V. anguillarum bacterin, suggesting that stress hormones would differentially modulate the immune response against pathogens in teleost species.
Collapse
|
|
8 |
23 |
7
|
Reyes-López FE, Romeo JS, Vallejos-Vidal E, Reyes-Cerpa S, Sandino AM, Tort L, Mackenzie S, Imarai M. Differential immune gene expression profiles in susceptible and resistant full-sibling families of Atlantic salmon (Salmo salar) challenged with infectious pancreatic necrosis virus (IPNV). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:210-221. [PMID: 26123889 DOI: 10.1016/j.dci.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
This study aims to identify at the expression level the immune-related genes associated with IPN-susceptible and resistant phenotypes in Atlantic salmon full-sibling families. We have analyzed thirty full-sibling families infected by immersion with IPNV and then classified as resistant or susceptible using a multivariate survival analysis based on a gamma-Cox frailty model and the Kaplan-Meier mortality curves. In four families within each group head kidneys were pooled for real-time PCR and one-color salmon-specific oligonucleotide microarray (21K) analysis at day 1 and 5 post-infection. Transcripts involved in innate response (IL-6, IFN-α), antigen presentation (HSP-70, HSP-90, MHC-I), TH1 response (IL-12, IFN-γ, CRFB6), immunosuppression (IL-10, TGF-β1) and leukocyte activation and migration (CCL-19, CD18) showed a differential expression pattern between both phenotypes, except in IL-6. In susceptible families, except for IFN-γ, the expressions dropped to basal values at day 5 post-infection. In resistant families, unlike susceptible families, levels remained high or increased (except for IL-6) at day 5. Transcriptomic analysis showed that both families have a clear differential expression pattern, resulting in a marked down-regulation in immune related genes involved in innate response, complement system, antigen recognition and activation of immune response in IPN-resistant. Down-regulation of genes, mainly related to tissue differentiation and protein degradation metabolism, was also observed in resistant families. We have identified an immune-related gene patterns associated with susceptibility and resistance to IPNV infection of Atlantic salmon. This suggests that a limited immune response is associated with resistant fish phenotype to IPNV challenge while a highly inflammatory but short response is associated with susceptibility.
Collapse
|
|
10 |
23 |
8
|
Vallejos-Vidal E, Reyes-Cerpa S, Rivas-Pardo JA, Maisey K, Yáñez JM, Valenzuela H, Cea PA, Castro-Fernandez V, Tort L, Sandino AM, Imarai M, Reyes-López FE. Single-Nucleotide Polymorphisms (SNP) Mining and Their Effect on the Tridimensional Protein Structure Prediction in a Set of Immunity-Related Expressed Sequence Tags (EST) in Atlantic Salmon ( Salmo salar). Front Genet 2020; 10:1406. [PMID: 32174954 PMCID: PMC7056891 DOI: 10.3389/fgene.2019.01406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are single genetic code variations considered one of the most common forms of nucleotide modifications. Such SNPs can be located in genes associated to immune response and, therefore, they may have direct implications over the phenotype of susceptibility to infections affecting the productive sector. In this study, a set of immune-related genes (cc motif chemokine 19 precursor [ccl19], integrin β2 (itβ2, also named cd18), glutathione transferase omega-1 [gsto-1], heat shock 70 KDa protein [hsp70], major histocompatibility complex class I [mhc-I]) were analyzed to identify SNPs by data mining. These genes were chosen based on their previously reported expression on infectious pancreatic necrosis virus (IPNV)-infected Atlantic salmon phenotype. The available EST sequences for these genes were obtained from the Unigene database. Twenty-eight SNPs were found in the genes evaluated and identified most of them as transition base changes. The effect of the SNPs located on the 5'-untranslated region (UTR) or 3'-UTR upon transcription factor binding sites and alternative splicing regulatory motifs was assessed and ranked with a low-medium predicted FASTSNP score risk. Synonymous SNPs were found on itβ2 (c.2275G > A), gsto-1 (c.558G > A), and hsp70 (c.1950C > T) with low FASTSNP predicted score risk. The difference in the relative synonymous codon usage (RSCU) value between the variant codons and the wild-type codon (ΔRSCU) showed one negative (hsp70 c.1950C > T) and two positive ΔRSCU values (itβ2 c.2275G > A; gsto-1 c.558G > A), suggesting that these synonymous SNPs (sSNPs) may be associated to differences in the local rate of elongation. Nonsynonymous SNPs (nsSNPs) in the gsto-1 translatable gene region were ranked, using SIFT and POLYPHEN web-tools, with the second highest (c.205A > G; c484T > C) and the highest (c.499T > C; c.769A > C) predicted score risk possible. Using homology modeling to predict the effect of these nonsynonymous SNPs, the most relevant nucleotide changes for gsto-1 were observed for the nsSNPs c.205A > G, c484T > C, and c.769A > C. Molecular dynamics was assessed to analyze if these GSTO-1 variants have significant differences in their conformational dynamics, suggesting these SNPs could have allosteric effects modulating its catalysis. Altogether, these results suggest that candidate SNPs identified may play a crucial potential role in the immune response of Atlantic salmon.
Collapse
|
research-article |
5 |
19 |
9
|
Reyes-Cerpa S, Reyes-López FE, Toro-Ascuy D, Ibañez J, Maisey K, Sandino AM, Imarai M. IPNV modulation of pro and anti-inflammatory cytokine expression in Atlantic salmon might help the establishment of infection and persistence. FISH & SHELLFISH IMMUNOLOGY 2012; 32:291-300. [PMID: 22142704 DOI: 10.1016/j.fsi.2011.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/15/2011] [Accepted: 11/20/2011] [Indexed: 05/20/2023]
Abstract
IPNV is the agent of a well-characterized acute disease that produces a systemic infection and high mortality in farmed fish species and persistent infection in surviving fish after outbreaks. Because modulation of the host expression of pro and anti-inflammatory cytokines can help establish persistence, in this study, we examined the expression of IL-1β, IL-8, IFNα1 and IL-10 during acute and persistent IPNV infection of Atlantic salmon. Results showed that IPNV infection induces an increase of the IFNα1 and IL-10 mRNA levels in the spleen and head kidney (HK) of fish after acute experimental infection. Levels of the pro-inflammatory cytokines IL-1β and IL-8 did not rise in the spleen although an increase of IL-1β, but not of IL-8, was observed in head kidney. In carrier asymptomatic salmon, cytokine gene expression of IFNα1 in the spleen and IL-10 in head kidney were also significantly higher than expression in non-carrier fish. Interestingly, a decrease of IL-8 expression was also observed. IPNV infection of SHK-1, which is a macrophage-like cell line of salmon, also induced an increase of expression of the anti-inflammatory cytokine IL-10 with no effects on the expression of IL-1β and IL-8. The effects are induced by an unknown mechanism during viral infection because poly I:C and the viral genomic dsRNA showed the opposite effects on cytokine expression in SHK-1 cells. In summary, IPNV always induces up-regulation of the anti-inflammatory cytokine IL-10 in Atlantic salmon. As this is accompanied by a lack of induction of the pro-inflammatory cytokines IL-1β and IL-8, the anti-inflammatory milieu may explain the high frequency, prevalence and persistence of IPNV in salmon. Effects might be part of the viral mechanisms of immune evasion.
Collapse
|
|
13 |
19 |
10
|
Khansari AR, Parra D, Reyes-López FE, Tort L. Cytokine modulation by stress hormones and antagonist specific hormonal inhibition in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) head kidney primary cell culture. Gen Comp Endocrinol 2017. [PMID: 28634082 DOI: 10.1016/j.ygcen.2017.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A tight interaction between endocrine and immune systems takes place mainly due to the key role of head kidney in both hormone and cytokine secretion, particularly under stress situations in which the physiological response promotes the synthesis and release of stress hormones which may lead into immunomodulation as side effect. Although such interaction has been previously investigated, this study evaluated for the first time the effect of stress-associated hormones together with their receptor antagonists on the expression of cytokine genes in head kidney primary cell culture (HKPCC) of the freshwater rainbow trout (Oncorhynchus mykiss) and the seawater gilthead sea bream (Sparus aurata). The results showed a striking difference when comparing the response obtained in trout and seabream. Cortisol and adrenocorticotropic hormone (ACTH) decreased the expression of immune-related genes in sea bream but not in rainbow trout and this cortisol effect was reverted by the antagonist mifepristone but not spironolactone. On the other hand, while adrenaline reduced the expression of pro-inflammatory cytokines (IL-1β, IL-6) in rainbow trout, the opposite effect was observed in sea bream showing an increased expression (IL-1β, IL-6). Interestingly, this effect was reverted by antagonist propranolol but not phentolamine. Overall, our results confirm the regional interaction between endocrine and cytokine messengers and a clear difference in the sensitivity to the hormonal stimuli between the two species.
Collapse
|
|
8 |
19 |
11
|
Hernández-Cabanyero C, Sanjuán E, Fouz B, Pajuelo D, Vallejos-Vidal E, Reyes-López FE, Amaro C. The Effect of the Environmental Temperature on the Adaptation to Host in the Zoonotic Pathogen Vibrio vulnificus. Front Microbiol 2020; 11:489. [PMID: 32296402 PMCID: PMC7137831 DOI: 10.3389/fmicb.2020.00489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a zoonotic pathogen that lives in temperate, tropical and subtropical aquatic ecosystems whose geographical distribution is expanding due to global warming. The species is genetically variable and only the strains that belong to the zoonotic clonal-complex can cause vibriosis in both humans and fish (being its main host the eel). Interestingly, the severity of the vibriosis in the eel and the human depends largely on the water temperature (highly virulent at 28°C, avirulent at 20°C or below) and on the iron content in the blood, respectively. The objective of this work was to unravel the role of temperature in the adaptation to the host through a transcriptomic and phenotypic approach. To this end, we obtained the transcriptome of a zoonotic strain grown in a minimum medium (CM9) at 20, 25, 28, and 37°C, and confirmed the transcriptomic results by RT-qPCR and phenotypic tests. In addition, we compared the temperature stimulon with those previously obtained for iron and serum (from eel and human, respectively). Our results suggest that warm temperatures activate adaptive traits that would prepare the bacteria for host colonization (metabolism, motility, chemotaxis, and the protease activity) and fish septicemia (iron-uptake from transferrin and production of O-antigen of high molecular weight) in a generalized manner, while environmental iron controls the expression of a host-adapted virulent phenotype (toxins and the production of a protective envelope). Finally, our results confirm that beyond the effect of temperature on the V. vulnificus distribution in the environment, it also has an effect on the infectious capability of this pathogen that must be taken into account to predict the real risk of V. vulnificus infection caused by global warming.
Collapse
|
research-article |
5 |
19 |
12
|
Reyes-López FE, Aerts J, Vallejos-Vidal E, Ampe B, Dierckens K, Tort L, Bossier P. Modulation of Innate Immune-Related Genes and Glucocorticoid Synthesis in Gnotobiotic Full-Sibling European Sea Bass ( Dicentrarchus labrax) Larvae Challenged With Vibrio anguillarum. Front Immunol 2018; 9:914. [PMID: 29867929 PMCID: PMC5953322 DOI: 10.3389/fimmu.2018.00914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/12/2018] [Indexed: 01/02/2023] Open
Abstract
Although several efforts have been made to describe the immunoendocrine interaction in fish, there are no studies to date focusing on the characterization of the immune response and glucocorticoid synthesis using the host-pathogen interaction on larval stage as an early developmental stage model of study. Therefore, the aim of this study was to evaluate the glucocorticoid synthesis and the modulation of stress- and innate immune-related genes in European sea bass (Dicentrarchus labrax) larvae challenged with Vibrio anguillarum. For this purpose, we challenged by bath full-sibling gnotobiotic sea bass larvae with 107 CFU mL-1 of V. anguillarum strain HI 610 on day 5 post-hatching (dph). The mortality was monitored up to the end of the experiment [120 hours post-challenge (hpc)]. While no variations were registered in non-challenged larvae maintained under gnotobiotic conditions (93.20% survival at 120 hpc), in the challenged group a constant and sustained mortality was observed from 36 hpc onward, dropping to 18.31% survival at 120 hpc. Glucocorticoid quantification and expression analysis of stress- and innate immunity-related genes were carried out in single larvae. The increase of cortisol, cortisone and 20β-dihydrocortisone was observed at 120 hpc, although did not influence upon the modulation of stress-related genes (glucocorticoid receptor 1 [gr1], gr2, and heat shock protein 70 [hsp70]). On the other hand, the expression of lysozyme, transferrin, and il-10 differentially increased at 120 hpc together with a marked upregulation of the pro-inflammatory cytokines (il-1β and il-8) and hepcidin, suggesting a late activation of defense mechanisms against V. anguillarum. Importantly, this response coincided with the lowest survival observed in challenged groups. Therefore, the increase in markers associated with glucocorticoid synthesis together with the upregulation of genes associated with the anti-inflammatory response suggests that in larvae infected with V. anguillarum a pro-inflammatory response at systemic level takes place, which then leads to the participation of other physiological mechanisms at systemic level to counteract the effect and the consequences of such response. However, this late systemic response could be related to the previous high mortality observed in sea bass larvae challenged with V. anguillarum.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
18 |
13
|
Álvarez-Rodríguez M, Pereiro P, Reyes-López FE, Tort L, Figueras A, Novoa B. Analysis of the Long-Lived Responses Induced by Immunostimulants and Their Effects on a Viral Infection in Zebrafish ( Danio rerio). Front Immunol 2018; 9:1575. [PMID: 30038625 PMCID: PMC6047052 DOI: 10.3389/fimmu.2018.01575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
In recent years, the innate immune response has gained importance since evidence indicates that after an adequate priming protocol, it is possible to obtain some prolonged and enhanced immune responses. Nevertheless, several factors, such as the timing and method of administration of the immunostimulants, must be carefully considered. An inappropriate protocol can transform the treatments into a double-edged sword for the teleost immune system, resulting in a stressful and immunosuppressive state. In this work, we analyzed the long-term effects of different stimuli (β-glucans, lipopolysaccharide, and polyinosinic:polycytidylic acid) on the transcriptome modulation induced by Spring Viremia Carp Virus (SVCV) in adult zebrafish (Danio rerio) and on the mortality caused by this infection. At 35 days post-immunostimulation, the transcriptome was found to be highly altered compared to that of the control fish, and these stimuli also conditioned the response to SVCV challenge, especially in the case of β-glucans. No protection against SVCV was found with any of the stimuli, and non-significant higher mortalities were even observed, especially with β-glucans. However, in the short term (pre-stimulation with β-glucan and infection after 7 days), slight protection was observed after infection. The transcriptome response in the zebrafish kidney at 35 days posttreatment with β-glucans revealed a significant response associated with stress and immunosuppression. The identification of genes that were differentially expressed before and after the infection seemed to indicate a high energy cost of the immunostimulation that was prolonged over time and could explain the lack of protection against SVCV. Differential responses to stress and alterations in lipid metabolism, the tryptophan–kynurenine pathway, and interferon-gamma signaling seem to be some of the mechanisms involved in this response, which represents the end of trained immunity and the beginning of a stressful state characterized by immunosuppression.
Collapse
|
Journal Article |
7 |
17 |
14
|
Firmino JP, Vallejos-Vidal E, Sarasquete C, Ortiz-Delgado JB, Balasch JC, Tort L, Estevez A, Reyes-López FE, Gisbert E. Unveiling the effect of dietary essential oils supplementation in Sparus aurata gills and its efficiency against the infestation by Sparicotyle chrysophrii. Sci Rep 2020; 10:17764. [PMID: 33082387 PMCID: PMC7576129 DOI: 10.1038/s41598-020-74625-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
A microencapsulated feed additive composed by garlic, carvacrol and thymol essential oils (EOs) was evaluated regarding its protective effect in gills parasitized by Sparicotyle chrysophrii in Sparus aurata. A nutritional trial (65 days) followed by a cohabitation challenge with parasitized fish (39 days) were performed. Transcriptomic analysis by microarrays of gills of fish fed the EOs diet showed an up-regulation of genes related to biogenesis, vesicular transport and exocytosis, leukocyte-mediated immunity, oxidation–reduction and overall metabolism processes. The functional network obtained indicates a tissue-specific pro-inflammatory immune response arbitrated by degranulating acidophilic granulocytes, sustained by antioxidant and anti-inflammatory responses. The histochemical study of gills also showed an increase of carboxylate glycoproteins containing sialic acid in mucous and epithelial cells of fish fed the EOs diet, suggesting a mucosal defence mechanism through the modulation of mucin secretions. The outcomes of the in vivo challenge supported the transcriptomic results obtained from the nutritional trial, where a significant reduction of 78% in the abundance of S. chrysophrii total parasitation and a decrease in the prevalence of most parasitic developmental stages evaluated were observed in fish fed the EOs diet. These results suggest that the microencapsulation of garlic, carvacrol and thymol EOs could be considered an effective natural dietary strategy with antiparasitic properties against the ectoparasite S. chrysophrii.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
15 |
15
|
Pérez-Stuardo D, Morales-Reyes J, Tapia S, Ahumada DE, Espinoza A, Soto-Herrera V, Brianson B, Ibaceta V, Sandino AM, Spencer E, Vallejos-Vidal E, Reyes-López FE, Valdés J, Reyes-Cerpa S. Non-lysosomal Activation in Macrophages of Atlantic Salmon ( Salmo salar) After Infection With Piscirickettsia salmonis. Front Immunol 2019; 10:434. [PMID: 30941123 PMCID: PMC6433878 DOI: 10.3389/fimmu.2019.00434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/19/2019] [Indexed: 01/29/2023] Open
Abstract
Piscirickettsia salmonis is a facultative intracellular pathogen and etiological agent of the systemic disease salmonid rickettsial septicemia. It has been suggested that P. salmonis is able to survive in host macrophages, localized within a vacuole like-compartment which prevents lysosomal degradation. However, the relevant aspects of the pathogenesis of P. salmonis as the host modulation that allow its intracellular survival have been poorly characterized. In this study, we evaluated the role of lysosomes in the response to P. salmonis infection in macrophage-enriched cell cultures established from Atlantic salmon head kidneys. Bacterial infection was confirmed using confocal microscopy. A gentamicin protection assay was performed to recover intracellular bacteria and the 16S rDNA copy number was quantified through quantitative polymerase chain reaction in order to determine the replication of P. salmonis within macrophages. Lysosomal activity in Atlantic salmon macrophage-enriched cell cultures infected with P. salmonis was evaluated by analyzing the lysosomal pH and proteolytic ability through confocal microscopy. The results showed that P. salmonis can survive ≥120 h in Atlantic salmon macrophage-enriched cell cultures, accompanied by an increase in the detection of the 16S rDNA copy number/cell. The latter finding suggests that P. salmonis also replicates in Atlantic salmon macrophage-enriched cell cultures. Moreover, this bacterial survival and replication appears to be favored by a perturbation of the lysosomal degradation system. We observed a modulation in the total number of lysosomes and lysosomal acidification following infection with P. salmonis. Collectively, the results of this study showed that infection of Atlantic salmon macrophages with P. salmonis induced limited lysosomal response which may be associated with host immune evasion mechanisms of P. salmonis that have not been previously reported.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
14 |
16
|
Schaeck M, Reyes-López FE, Vallejos-Vidal E, Van Cleemput J, Duchateau L, Van den Broeck W, Tort L, Decostere A. Cellular and transcriptomic response to treatment with the probiotic candidate Vibrio lentus in gnotobiotic sea bass (Dicentrarchus labrax) larvae. FISH & SHELLFISH IMMUNOLOGY 2017; 63:147-156. [PMID: 28119147 DOI: 10.1016/j.fsi.2017.01.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
The present study aimed at evaluating the cellular and transcriptomic responses induced by the probiotic candidate Vibrio lentus with gnotobiotic European sea bass (Dicentrarchus labrax, Linnaeus 1785) larvae. For this, a histomorphological analysis was performed using the terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) and the anti-proliferating cell nuclear antigen (PCNA) assay. In addition, a global transcriptomic approach was adopted to study the whole body mRNA changes upon administration of V. lentus by microarrays with the custom Agilent sea bass oligonucleotide-microarray v2.0 (4 × 44 K). Following V. lentus administration, the apoptotic and cell proliferative indexes did not show significant differences between treatments for hindgut nor for midgut. However, V. lentus treatment did significantly modify the gene expression related not only to cell proliferation and cell death, but also to cell adhesion, reactive oxygen species metabolism, iron transport, and immune response. Our data represent the first global analysis of the effects of the probiotic candidate V. lentus on the gene expression profile in gnotobiotic European sea bass, and as such, provides a first delineation of the mechanisms by which this agent interacts with its host and exerts its beneficial effects.
Collapse
|
|
8 |
14 |
17
|
Firmino JP, Vallejos-Vidal E, Balebona MC, Ramayo-Caldas Y, Cerezo IM, Salomón R, Tort L, Estevez A, Moriñigo MÁ, Reyes-López FE, Gisbert E. Diet, Immunity, and Microbiota Interactions: An Integrative Analysis of the Intestine Transcriptional Response and Microbiota Modulation in Gilthead Seabream ( Sparus aurata) Fed an Essential Oils-Based Functional Diet. Front Immunol 2021; 12:625297. [PMID: 33746962 PMCID: PMC7969985 DOI: 10.3389/fimmu.2021.625297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Essential oils (EOs) are promising alternatives to chemotherapeutics in animal production due to their immunostimulant, antimicrobial, and antioxidant properties, without associated environmental or hazardous side effects. In the present study, the modulation of the transcriptional immune response (microarray analysis) and microbiota [16S Ribosomal RNA (rRNA) sequencing] in the intestine of the euryhaline fish gilthead seabream (Sparus aurata) fed a dietary supplementation of garlic, carvacrol, and thymol EOs was evaluated. The transcriptomic functional analysis showed the regulation of genes related to processes of proteolysis and inflammatory modulation, immunity, transport and secretion, response to cyclic compounds, symbiosis, and RNA metabolism in fish fed the EOs-supplemented diet. Particularly, the activation of leukocytes, such as acidophilic granulocytes, was suggested to be the primary actors of the innate immune response promoted by the tested functional feed additive in the gut. Fish growth performance and gut microbiota alpha diversity indices were not affected, while dietary EOs promoted alterations in bacterial abundances in terms of phylum, class, and genus. Subtle, but significant alterations in microbiota composition, such as the decrease in Bacteroidia and Clostridia classes, were suggested to participate in the modulation of the intestine transcriptional immune profile observed in fish fed the EOs diet. Moreover, regarding microbiota functionality, increased bacterial sequences associated with glutathione and lipid metabolisms, among others, detected in fish fed the EOs supported the metabolic alterations suggested to potentially affect the observed immune-related transcriptional response. The overall results indicated that the tested dietary EOs may promote intestinal local immunity through the impact of the EOs on the host-microbial co-metabolism and consequent regulation of significant biological processes, evidencing the crosstalk between gut and microbiota in the inflammatory regulation upon administration of immunostimulant feed additives.
Collapse
|
research-article |
4 |
13 |
18
|
Reyes-López FE, Ibarz A, Ordóñez-Grande B, Vallejos-Vidal E, Andree KB, Balasch JC, Fernández-Alacid L, Sanahuja I, Sánchez-Nuño S, Firmino JP, Pavez L, Polo J, Tort L, Gisbert E. Skin Multi-Omics-Based Interactome Analysis: Integrating the Tissue and Mucus Exuded Layer for a Comprehensive Understanding of the Teleost Mucosa Functionality as Model of Study. Front Immunol 2021; 11:613824. [PMID: 33613538 PMCID: PMC7890662 DOI: 10.3389/fimmu.2020.613824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/24/2020] [Indexed: 01/13/2023] Open
Abstract
From a general structural perspective, a mucosal tissue is constituted by two main matrices: the tissue and the secreted mucus. Jointly, they fulfill a wide range of functions including the protection of the epithelial layer. In this study, we simultaneously analyzed the epithelial tissue and the secreted mucus response using a holistic interactome-based multi-omics approach. The effect of the gilthead sea bream (Sparus aurata) skin mucosa to a dietary inclusion of spray-dried porcine plasma (SDPP) was evaluated. The epithelial skin microarrays-based transcriptome data showed 194 differentially expressed genes, meanwhile the exuded mucus proteome analysis 35 differentially synthesized proteins. Separately, the skin transcripteractome revealed an expression profile that favored biological mechanisms associated to gene expression, biogenesis, vesicle function, protein transport and localization to the membrane. Mucus proteome showed an enhanced protective role with putatively higher antioxidant and antimicrobial properties. The integrated skin mucosa multi-interactome analysis evidenced the interrelationship and synergy between the metabolism and the exuded mucus functions improving specifically the tissue development, innate defenses, and environment recognition. Histologically, the skin increased in thickness and in number of mucous cells. A positive impact on animal performance, growth and feed efficiency was also registered. Collectively, the results suggest an intimate crosstalk between skin tissue and its exuded mucus in response to the nutritional stimulus (SDPP supplementation) that favors the stimulation of cell protein turnover and the activation of the exudation machinery in the skin mucosa. Thus, the multi-omics-based interactome analysis provides a comprehensive understanding of the biological context of response that takes place in a mucosal tissue. In perspective, this strategy is applicable for evaluating the effect of any experimental variable on any mucosal tissue functionality, including the benefits this assessment may provide on the study of the mammalian mucosa.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
12 |
19
|
Khuyen TD, Mandiki SNM, Cornet V, Douxfils J, Betoulle S, Bossier P, Reyes-López FE, Tort L, Kestemont P. Physiological and immune response of juvenile rainbow trout to dietary bovine lactoferrin. FISH & SHELLFISH IMMUNOLOGY 2017; 71:359-371. [PMID: 29050988 DOI: 10.1016/j.fsi.2017.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Lactoferrin, a large multifunctional glycoprotein, is involved in many physiological functions but its immunomodulatory pathways are not well characterized in fish. The objective of the present study was to investigate the temporal effect of dietary bovine lactoferrin (BLf) at low (0.1%) and high (1%) on immunological organs of rainbow trout juveniles. BLf diets did not affect specific growth rate, haematocrit, splenic index, spleen respiratory burst activity as well as humoral (mIgM) and neutrophils (MPO) gene expressions after short term - 35 days (D35) and long term nutrient test - 51 days (D51) of feeding. Both low and high BLf doses induced enhanced level of plasma alternative complement activity, plasma total immunoglobulin on D35 and D51, lymphocyte plus thrombocyte cell proportion on D35 and monocyte cell proportion in total blood leukocyte cells on D51. On D51 but not on D35, BLf diets upregulated the expression of inflammatory genes in kidney for il-1 at the low BLf dose, il-8 at both BLf doses and il-6 at the high BLf dose in spleen, and il-10 at both BLf doses in kidney. Moreover, the expression of T helper (cd4-2α; cd4-2β) genes was significantly upregulated only on D51 by both BLf doses in both spleen and kidney tissues. On D51, controls and BLf treated fish were intraperitoneally injected with A. salmonicida achromogenes. The expression of 13 immune genes was evaluated at 44 h post-injection (D54). The expression of lysozyme gene was upregulated by both BLf doses after bacterial infection both in spleen and kidney. The expression of mcsfrα (spleen) and tgf-β1 (kidney) was also modulated by both BLf doses. Low and high BLf doses enhanced disease resistance of rainbow trout juveniles with the cumulative survival rate of 36% and 38% respectively while those of the control was 19% after 14 days challenged with bacteria. The results indicate that BLf diets activated the humoral immunity, associated to blood leukocyte cells of rainbow trout after short term BLf administration, and the long term BLf administration was necessary for sensitizing other lymphoid organs such as in spleen and kidney. Only after long term test, BLf diets induced significantly higher levels of innate and adaptive immune gene expressions than those of the control. Dietary BLf activated more markedly the expression of innate immune genes than the adaptive ones; this upregulation of some immune genes could explain the high disease resistance observed in rainbow trout juveniles fed BLf.
Collapse
|
|
8 |
12 |
20
|
Reyes-Cerpa S, Vallejos-Vidal E, Gonzalez-Bown MJ, Morales-Reyes J, Pérez-Stuardo D, Vargas D, Imarai M, Cifuentes V, Spencer E, Sandino AM, Reyes-López FE. Effect of yeast (Xanthophyllomyces dendrorhous) and plant (Saint John's wort, lemon balm, and rosemary) extract based functional diets on antioxidant and immune status of Atlantic salmon (Salmo salar) subjected to crowding stress. FISH & SHELLFISH IMMUNOLOGY 2018; 74:250-259. [PMID: 29305990 DOI: 10.1016/j.fsi.2017.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Salmon farming may face stress due to the intensive culture conditions with negative impacts on overall performance. In this aspect, functional feed improves not only the basic nutritional requirements but also the health status and fish growth. However, to date no studies have been carried out to evaluate the effect of functional diets in salmon subjected to crowding stress. Thus, the aim of this study was to evaluate the effect of yeast extract (Xanthophyllomyces dendrorhous; diet A) and the combination of plant extracts (common Saint John's wort, lemon balm, and rosemary; diet B) on the antioxidant and immune status of Atlantic salmon grown under normal cultured conditions and then subjected to crowding stress. Fish were fed with functional diets during 30 days (12 kg/m3) and then subjected to crowding stress (20 kg/m3) for 10 days. The lipid peroxidation in gut showed that both diets induced a marked decrease on oxidative damage when fish were subjected to crowding stress. The protein carbonylation in muscle displayed at day 30 a marked decrease in both functional diets that was more marked on the stress condition. The expression of immune markers (IFNγ, CD4, IL-10, TGF-β, IgMmb, IgMsec, T-Bet, and GATA-3) indicated the upregulation of those associated to humoral-like response (CD4, IL-10, GATA-3) when fish were subjected to crowding stress. These results were confirmed with the expression of secreted IgM. Altogether, these functional diets improved the antioxidant status and increased the expression of genes related to Th2-like response suggesting a protective role on fish subjected to crowding stress.
Collapse
|
|
7 |
10 |
21
|
Escobar A, Reyes-López FE, Acevedo ML, Alonso-Palomares L, Valiente-Echeverría F, Soto-Rifo R, Portillo H, Gatica J, Flores I, Nova-Lamperti E, Barrera-Avalos C, Bono MR, Vargas L, Simon V, Leiva-Salcedo E, Vial C, Hormazabal J, Cortes LJ, Valdés D, Sandino AM, Imarai M, Acuña-Castillo C. Evaluation of the Immune Response Induced by CoronaVac 28-Day Schedule Vaccination in a Healthy Population Group. Front Immunol 2022; 12:766278. [PMID: 35173705 PMCID: PMC8841433 DOI: 10.3389/fimmu.2021.766278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
CoronaVac vaccine from Sinovac Life Science is currently being used in several countries. In Chile, the effectiveness of preventing hospitalization is higher than 80% with a vaccination schedule. However, to date, there are no data about immune response induction or specific memory. For this reason, we recruited 15 volunteers without previous suspected/diagnosed COVID-19 and with negative PCR over time to evaluate the immune response to CoronaVac 28 and 90 days after the second immunization (dpi). The CoronaVac administration induces total and neutralizing anti-spike antibodies in all vaccinated volunteers at 28 and 90 dpi. Furthermore, using ELISpot analysis to assay cellular immune responses against SARS-CoV-2 spike protein, we found an increase in IFN-gamma- and Granzyme B-producing cells in vaccinated volunteers at 28 and 90 dpi. Together, our results indicate that CoronaVac induces a robust humoral immune response and cellular immune memory of at least 90 dpi.
Collapse
|
|
3 |
10 |
22
|
Liu XH, Khansari AR, Teles M, Martínez-Rodríguez G, Zhang YG, Mancera JM, Reyes-López FE, Tort L. Brain and Pituitary Response to Vaccination in Gilthead Seabream ( Sparus aurata L.). Front Physiol 2019; 10:717. [PMID: 31275156 PMCID: PMC6591443 DOI: 10.3389/fphys.2019.00717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Vaccination is a widely used therapeutical strategy in aquaculture, but whether vaccination elicits stress responses in the central neuroendocrine system and enhances the crosstalk between the immune and endocrine systems in the brain or pituitary after vaccination is unclear. To answer this question two experiments using two different vaccine exposure routes, i.e., bath or intraperitoneal (i.p.) injection, were carried out on gilthead seabream (Sparus aurata L.). In the first one, the stress responses of fish subjected to waterborne Vibrio anguillarum bacterin were compared with responses after air exposure or their combination. In the second experiment, fish were subjected to an intraperitoneal injection of Lactococcus garvieae bacterin and we assessed the central stress response and also whether or not a significant immune response was induced in brain and pituitary. In both experiments, blood, brain and pituitary tissues were collected at 1, 6, and 24 h post stress for plasma hormone determination and gene expression analysis, respectively. Results indicated that bath vaccination induced a decreased central stress response compared to air exposure which stimulated both brain and pituitary stress genes. In the second experiment, injection vaccination kept unchanged plasma stress hormones except cortisol that raised at 6 and 24 h. In agreement, non-significant or slight changes on the transcription of stress-related genes were recorded, including the hormone genes of the hypothalamic pituitary interrenal (HPI) axis and other stress markers such as hsp70, hsp90, and mt genes in either brain or pituitary. Significant changes were observed, however, in crhbp and gr. In this second experiment the immune genes il1β, cox2, and lys, showed a strong expression in both brain and pituitary after vaccination, notably il1β which showed more than 10 fold raise. Overall, vaccination procedures, although showing a cortisol response, did not induce other major stress response in brain or pituitary, regardless the administration route. Other than main changes, the alteration of crhbp and gr suggests that these genes could play a relevant role in the feedback regulation of HPI axis after vaccination. In addition, from the results obtained in this work, it is also demonstrated that the immune system maintains a high activity in both brain and pituitary after vaccine injection.
Collapse
|
Journal Article |
6 |
9 |
23
|
Firmino JP, Fernández-Alacid L, Vallejos-Vidal E, Salomón R, Sanahuja I, Tort L, Ibarz A, Reyes-López FE, Gisbert E. Carvacrol, Thymol, and Garlic Essential Oil Promote Skin Innate Immunity in Gilthead Seabream ( Sparus aurata) Through the Multifactorial Modulation of the Secretory Pathway and Enhancement of Mucus Protective Capacity. Front Immunol 2021; 12:633621. [PMID: 33777020 PMCID: PMC7994269 DOI: 10.3389/fimmu.2021.633621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
One of the main targets for the use of phytogenics in aquafeeds is the mucosal tissues as they constitute a physical and biochemical shield against environmental and pathogenic threats, comprising elements from both the innate and acquired immunity. In the present study, the modulation of the skin transcriptional immune response, the bacterial growth capacity in skin mucus, and the overall health condition of gilthead seabream (Sparus aurata) juveniles fed a dietary supplementation of garlic essential oil, carvacrol, and thymol were assessed. The enrichment analysis of the skin transcriptional profile of fish fed the phytogenic-supplemented diet revealed the regulation of genes associated to cellular components involved in the secretory pathway, suggesting the stimulation, and recruitment of phagocytic cells. Genes recognized by their involvement in non-specific immune response were also identified in the analysis. The promotion of the secretion of non-specific immune molecules into the skin mucus was proposed to be involved in the in vitro decreased growth capacity of pathogenic bacteria in the mucus of fish fed the phytogenic-supplemented diet. Although the mucus antioxidant capacity was not affected by the phytogenics supplementation, the regulation of genes coding for oxidative stress enzymes suggested the reduction of the skin oxidative stress. Additionally, the decreased levels of cortisol in mucus indicated a reduction in the fish allostatic load due to the properties of the tested additive. Altogether, the dietary garlic, carvacrol, and thymol appear to promote the gilthead seabream skin innate immunity and the mucus protective capacity, decreasing its susceptibility to be colonized by pathogenic bacteria.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
9 |
24
|
Cornet V, Khuyen TD, Mandiki SNM, Betoulle S, Bossier P, Reyes-López FE, Tort L, Kestemont P. GAS1: A New β-Glucan Immunostimulant Candidate to Increase Rainbow Trout ( Oncorhynchus mykiss) Resistance to Bacterial Infections With Aeromonas salmonicida achromogenes. Front Immunol 2021; 12:693613. [PMID: 34295335 PMCID: PMC8290837 DOI: 10.3389/fimmu.2021.693613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/18/2021] [Indexed: 11/27/2022] Open
Abstract
β-glucans are prebiotic and/or food additives used by the aquaculture industry to enhance the immune response of fish. Their efficiency may vary according to their origin and structure. In this study, the immunostimulant effects of two β-glucan types extracted from wild-type baker’s yeast (Saccharomyces cerevisiae) and its null-mutant Gas1 were investigated. Gas1 has a beta-1,3-glucanosyltransferase activity necessary for cell wall assembly. Using a positive (commercial product MacroGard®) and a negative control (a diet without glucans), we evaluated the immune responses and disease resistance of rainbow trout juveniles (mean weight, ~44 g) fed control, low (0.2%) and high (0.5%) doses of Macrogard®, Gas1, and Wild type-β-glucan after a short-term (15 days, D15) or mid-term (36 days, D36) feeding periods. We found that β-glucan supplemented diets did not affect growth performance, mortality, splenic index, or leukocyte respiratory burst activity on D15 nor D36. However, each β-glucan triggered different immune effectors, depending of the doses or length of exposure compared to others and/or the negative control. Indeed, high dose of MacroGard® significantly increased lysozyme activities at D15 compared with the control and other diets (p<0.05). At D36, MacroGard β-glucan enhanced the production of lymphocytes in comparison with the control diet (p<0.05). Regarding WT β-glucan, at D36, WT-β-glucan, especially the high dose, provided the highest enzymatic activities (lysozyme and ACH50) and Ig level (p<0.01). Furthermore, on D36, Gas1 also increased lysozyme activity, Ig proportion, and some immune genes (mcsfra, hepcidin) compared with MacroGard® (p<0.05). Besides, both doses of Gas1-β-glucans increased the resistance of juveniles to bacterial infection highlighted by a higher survival rate at 14 days post-challenge compared with the control and other types and doses of β-glucans (p<0.05). In conclusion, our results suggest that Gas1-β-glucan could represent a promising immunostimulant that would help to prevent diseases in aquaculture even more efficiently than other β-glucans already in use. Mode of action and particular efficiency of this new Gas1 mutant are debated.
Collapse
|
Journal Article |
4 |
9 |
25
|
Teles M, Reyes-López FE, Fierro-Castro C, Tort L, Soares AMVM, Oliveira M. Modulation of immune genes mRNA levels in mucosal tissues and DNA damage in red blood cells of Sparus aurata by gold nanoparticles. MARINE POLLUTION BULLETIN 2018; 133:428-435. [PMID: 30041332 DOI: 10.1016/j.marpolbul.2018.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles (AuNP) effects on Sparus aurata were evaluated on skin, gills and intestine by assessing the expression of immune genes and in peripheral blood evaluating genetic damage. Fish were exposed to 0.5 and 50 μg/L AuNP for 96 h. Results showed that exposure to 50 μg/L AuNP induced an upregulation in the expression of innate immune genes in gills (c3, lys, il1β, tnfα, il6, il10 and tgfβ) and intestine (il1β, tnfα and il6). Furthermore, mRNA levels of hsp70 and hsp90 were increased in gills after exposure to 0.5 μg/L AuNP, when compared to 50 μg/L. Present data demonstrated the sensitivity of gills and intestines to AuNP exposure supporting their use in the study of fish responses to other nanoparticles. Genotoxic potential of AuNP was demonstrated by increased DNA strand breaks in red blood cells of fish exposed to AuNP, suggesting that AuNP represent a potential hazard to fish.
Collapse
|
|
7 |
9 |