1
|
Martín-Rojas T, Gil-Dones F, Lopez-Almodovar LF, Padial LR, Vivanco F, Barderas MG. Proteomic profile of human aortic stenosis: insights into the degenerative process. J Proteome Res 2012; 11:1537-50. [PMID: 22276806 DOI: 10.1021/pr2005692] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Degenerative aortic stenosis is the most common worldwide cause of valve replacement. While it shares certain risk factors with coronary artery disease, it is not delayed or reversed by reducing exposure to risk factors (e.g., therapies that lower lipids). Therefore, it is necessary to better understand its pathophysiology for preventive measures to be taken. In this work, aortic valve samples were collected from 20 patients that underwent aortic valve replacement (55% males, mean age of 74 years) and 20 normal control valves were obtained from necropsies (40% males, mean age of 69 years). The proteome of the samples was analyzed by quantitative differential electrophoresis (2D-DIGE) and mass spectrometry, and 35 protein species were clearly increased in aortic valves, including apolipoprotein AI, alpha-1-antitrypsin, serum albumin, lumican, alfa-1-glycoprotein, vimentin, superoxide dismutase Cu-Zn, serum amyloid P-component, glutathione S-transferase-P, fatty acid-binding protein, transthyretin, and fibrinogen gamma. By contrast, 8 protein species were decreased (transgelin, haptoglobin, glutathione peroxidase 3, HSP27, and calreticulin). All of the proteins identified play a significant role in cardiovascular processes, such as fibrosis, homeostasis, and coagulation. The significant changes observed in the abundance of key cardiovascular proteins strongly suggest that they can be involved in the pathogenesis of degenerative aortic stenosis. Further studies are warranted to better understand this process before we can attempt to modulate it.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
47 |
2
|
de la Cuesta F, Barderas MG, Calvo E, Zubiri I, Maroto AS, Darde VM, Martin-Rojas T, Gil-Dones F, Posada-Ayala M, Tejerina T, Lopez JA, Vivanco F, Alvarez-Llamas G. Secretome analysis of atherosclerotic and non-atherosclerotic arteries reveals dynamic extracellular remodeling during pathogenesis. J Proteomics 2011; 75:2960-71. [PMID: 22197968 DOI: 10.1016/j.jprot.2011.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/05/2011] [Accepted: 12/10/2011] [Indexed: 10/14/2022]
Abstract
AIMS Early detection of cardiovascular diseases and knowledge of underlying mechanisms is essential. Tissue secretome studies resemble more closely to the in vivo situation, showing a much narrower protein concentrations dynamic range than plasma. This study was aimed to the analysis of human arterial tissue secretome and to the quantitative comparison of healthy and atherosclerotic secretome to discover proteins with key roles in atherosclerosis development. METHODS AND RESULTS Secretomes from three biological replicates of human atherosclerotic coronary arteries (APC), preatherosclerotic coronaries (PC) and mammaries (M) were analyzed by LC-MS/MS. The identified proteins were submitted to Ingenuity Pathway Analysis (IPA) tool. Label-free MS/MS based quantification was performed and validated by immunohistochemistry. 64 proteins were identified in the 3 replicates of at least one of the 3 groups and 15 secreted proteins have not been previously reported in plasma. Four proteins were significantly released in higher amounts by mammary tissue: gelsolin, vinculin, lamin A/C and phosphoglucomutase 5. CONCLUSION The study of tissue secretome reveals key proteins involved in atherosclerosis which have not been previously reported in plasma. Novel proteins are here highlighted which could be potential therapeutic targets in clinical practice. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
|
Validation Study |
14 |
41 |
3
|
Laborde CM, Mourino-Alvarez L, Akerstrom F, Padial LR, Vivanco F, Gil-Dones F, Barderas MG. Potential blood biomarkers for stroke. Expert Rev Proteomics 2013; 9:437-49. [PMID: 22967080 DOI: 10.1586/epr.12.33] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stroke is one of the most common causes of death worldwide and a major cause of acquired disability in adults. Despite advances in research during the last decade, prevention and treatment strategies still suffer from significant limitations, and therefore new theoretical and technical approaches are required. Technological advances in the proteomic and metabolomic areas, during recent years, have permitted a more effective search for novel biomarkers and therapeutic targets that may allow for effective risk stratification and early diagnosis with subsequent rapid treatment. This review provides a comprehensive overview of the latest candidate proteins and metabolites proposed as new potential biomarkers in stroke.
Collapse
|
Review |
12 |
23 |
4
|
Alvarez-Llamas G, Martín-Rojas T, de la Cuesta F, Calvo E, Gil-Dones F, Dardé VM, Lopez-Almodovar LF, Padial LR, Lopez JA, Vivanco F, Barderas MG. Modification of the secretion pattern of proteases, inflammatory mediators, and extracellular matrix proteins by human aortic valve is key in severe aortic stenosis. Mol Cell Proteomics 2013; 12:2426-39. [PMID: 23704777 DOI: 10.1074/mcp.m113.027425] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the major challenges in cardiovascular medicine is to identify candidate biomarker proteins. Secretome analysis is particularly relevant in this search as it focuses on a subset of proteins released by a cell or tissue under certain conditions. The sample can be considered as a plasma subproteome and it provides a more direct approximation to the in vivo situation. Degenerative aortic stenosis is the most common worldwide cause of valve replacement. Using a proteomic analysis of the secretome from aortic stenosis valves we could identify candidate markers related to this pathology, which may facilitate early diagnosis and treatment. For this purpose, we have designed a method to validate the origin of secreted proteins, demonstrating their synthesis and release by the tissue and ruling out blood origin. The nLC-MS/MS analysis showed the labeling of 61 proteins, 82% of which incorporated the label in only one group. Western blot and selective reaction monitoring differential analysis, revealed a notable role of the extracellular matrix. Variation in particular proteins such as PEDF, cystatin and clusterin emphasizes the link between aortic stenosis and atherosclerosis. In particular, certain proteins variation in secretome levels correlates well, not only with label incorporation trend (only labeled in aortic stenosis group) but, more importantly, with alterations found in plasma from an independent cohort of samples, pointing to specific candidate markers to follow up in diagnosis, prognosis, and therapeutic intervention.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
21 |
5
|
Gil-Dones F, Martin-Rojas T, Lopez-Almodovar LF, de la Cuesta F, Darde VM, Alvarez-Llamas G, Juarez-Tosina R, Barroso G, Vivanco F, Padial LR, Barderas MG. Valvular aortic stenosis: a proteomic insight. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2010; 4:1-7. [PMID: 20567634 PMCID: PMC2884338 DOI: 10.4137/cmc.s3884] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED Calcified aortic valve disease is a slowly progressive disorder that ranges from mild valve thickening with no obstruction of blood flow, known as aortic sclerosis, to severe calcification with impaired leaflet motion or aortic stenosis. In the present work we describe a rapid, reproducible and effective method to carry out proteomic analysis of stenotic human valves by conventional 2-DE and 2D-DIGE, minimizing the interference due to high calcium concentrations. Furthermore, the protocol permits the aortic stenosis proteome to be analysed, advancing our knowledge in this area. SUMMARY Until recently, aortic stenosis (AS) was considered a passive process secondary to calcium deposition in the aortic valves. However, it has recently been highlighted that the risk factors associated with the development of calcified AS in the elderly are similar to those of coronary artery disease. Furthermore, degenerative AS shares histological characteristics with atherosclerotic plaques, leading to the suggestion that calcified aortic valve disease is a chronic inflammatory process similar to atherosclerosis. Nevertheless, certain data does not fit with this theory making it necessary to further study this pathology. The aim of this study is to develop an effective protein extraction protocol for aortic stenosis valves such that proteomic analyses can be performed on these structures. In the present work we have defined a rapid, reproducible and effective method to extract proteins and that is compatible with 2-DE, 2D-DIGE and MS techniques. Defining the protein profile of this tissue is an important and challenging task that will help to understand the mechanisms of physiological/pathological processes in aortic stenosis valves.
Collapse
|
Journal Article |
15 |
18 |
6
|
de la Cuesta F, Alvarez-Llamas G, Gil-Dones F, Martin-Rojas T, Zubiri I, Pastor C, Barderas MG, Vivanco F. Tissue proteomics in atherosclerosis: elucidating the molecular mechanisms of cardiovascular diseases. Expert Rev Proteomics 2009; 6:395-409. [PMID: 19681675 DOI: 10.1586/epr.09.60] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atherosclerosis is a disease with higher levels of mortality in developed countries. Comprehension of the molecular mechanisms can yield very useful information in clinics for prevention, diagnosis and recovery monitoring. Proteomics represents an ideal methodology for this purpose, as proteins constitute the effectors of the different biological processes running during pathogenesis. To date, studies in atherosclerosis have been mainly focused on the search for plasma biomarkers. However, tissue proteomics allows going deeper into tissue secretomes, arterial layers or particular cells of interest, which, in turn, constitutes a more direct approximation to in vivo operating mechanisms. The aim of this review is to report latest advances in tissue proteomics in atherosclerosis and related diseases (e.g., aortic stenosis and ischemic injury).
Collapse
|
Review |
16 |
15 |
7
|
Alonso-Orgaz S, Moreno-Luna R, López JA, Gil-Dones F, Padial LR, Moreu J, de la Cuesta F, Barderas MG. Proteomic characterization of human coronary thrombus in patients with ST-segment elevation acute myocardial infarction. J Proteomics 2014; 109:368-81. [DOI: 10.1016/j.jprot.2014.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 01/04/2023]
|
|
11 |
14 |
8
|
Martin-Rojas T, Mourino-Alvarez L, Gil-Dones F, de la Cuesta F, Rosello-Lleti E, Laborde CM, Rivera M, Lopez-Almodovar LF, Lopez JA, Akerstrom F, Padial LR, Barderas MG. A clinical perspective on the utility of alpha 1 antichymotrypsin for the early diagnosis of calcific aortic stenosis. Clin Proteomics 2017; 14:12. [PMID: 28439213 PMCID: PMC5399387 DOI: 10.1186/s12014-017-9147-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 04/05/2017] [Indexed: 12/27/2022] Open
Abstract
Background Calcific aortic stenosis (CAS) is the most common heart valve disease in the elderly, representing an important economic and social burden in developed countries. Currently, there is no way to predict either the onset or progression of CAS, emphasizing the need to identify useful biomarkers for this condition. Methods We performed a multi-proteomic analysis on different kinds of samples from CAS patients and healthy donors: tissue, secretome and plasma. The results were validated in an independent cohort of subjects by immunohistochemistry, western blotting and selected reaction monitoring. Results Alpha 1 antichymotrypsin (AACT) abundance was altered in the CAS samples, as confirmed in the validation phase. The significant changes observed in the amounts of this protein strongly suggest that it could be involved in the molecular mechanisms underlying CAS. In addition, our results suggest there is enhanced release of AACT into the extracellular fluids when the disease commences. Conclusions The significant increase of AACT in CAS patients suggests it fulfils an important role in the physiopathology of this disease. These results permit us to propose that AACT may serve as a potential marker for the diagnosis of CAS, with considerable clinical value.
Collapse
|
Journal Article |
8 |
14 |
9
|
Gil-Dones F, Alonso-Orgaz S, Avila G, Martin-Rojas T, Moral-Darde V, Barroso G, Vivanco F, Scott-Taylor J, Barderas MG. An optimal protocol to analyze the rat spinal cord proteome. Biomark Insights 2009; 4:135-64. [PMID: 20029654 PMCID: PMC2796866 DOI: 10.4137/bmi.s2965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Since the function of the spinal cord depends on the proteins found there, better defing the normal Spinal Cord Proteome is an important and challenging task. Although brain and cerebrospinal fluid samples from patients with different central nervous system (CNS) disorders have been studied, a thorough examination of specific spinal cord proteins and the changes induced by injury or associated to conditions such as neurodegeneration, spasticity and neuropathies has yet to be performed. In the present study, we aimed to describe total protein content in the spinal cord of healthy rats, employing different proteomics tools. Accordingly, we have developed a fast, easy, and reproducible sequential protocol for protein extraction from rat spinal cords. We employed conventional two dimensional electrophoresis (2DE) in different pH ranges (eg. 4–7, 3–11 NL) combined with identification by mass spectrometry (MALDI-TOF/TOF), as well as first dimension protein separation combined with Liquid Chromatography Mass Spectrometry/Mass Spectrometry (LC-MS/MS) to maximise the benefits of this technology. The value of these techniques is demonstrated here by the identification of several proteins known to be associated with neuroglial structures, neurotransmission, cell survival and nerve growth in the central nervous system. Furthermore this study identified many spinal proteins that have not previously been described in the literature and which may play an important role as either sensitive biomarkers of dysfunction or of recovery after Spinal Cord Injury.
Collapse
|
Journal Article |
16 |
9 |
10
|
Baldan-Martin M, Martin-Rojas T, Corbacho-Alonso N, Lopez JA, Sastre-Oliva T, Gil-Dones F, Vazquez J, Arevalo JM, Mourino-Alvarez L, Barderas MG. Comprehensive Proteomic Profiling of Pressure Ulcers in Patients with Spinal Cord Injury Identifies a Specific Protein Pattern of Pathology. Adv Wound Care (New Rochelle) 2020; 9:277-294. [PMID: 32226651 PMCID: PMC7099418 DOI: 10.1089/wound.2019.0968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: Severe pressure ulcers (PUs) do not respond to conservative wound therapy and need surgical repair. To better understand the pathogenesis and to advance on new therapeutic options, we focused on the proteomic analysis of PU, which offers substantial opportunities to identify significant changes in protein abundance during the course of PU formation in an unbiased manner. Approach: To better define the protein pattern of this pathology, we performed a proteomic approach in which we compare severe PU tissue from spinal cord injury (SCI) patients with control tissue from the same patients. Results: We found 76 proteins with difference in abundance. Of these, 10 proteins were verified as proteins that define the pathology: antithrombin-III, alpha-1-antitrypsin, kininogen-1, alpha-2-macroglobulin, fibronectin, apolipoprotein A-I, collagen alpha-1 (XII) chain, haptoglobin, apolipoprotein B-100, and complement factor B. Innovation: This is the first study to analyze differential abundance protein of PU tissue from SCI patients using high-throughput protein identification and quantification by tandem mass tags followed by liquid chromatography tandem mass spectrometry. Conclusion: Differential abundance proteins are mainly involved in tissue regeneration. These proteins might be considered as future therapeutic options to enhance the physiological response and permit cellular repair of damaged tissue.
Collapse
|
research-article |
5 |
4 |
11
|
Martin-Rojas T, Sastre-Oliva T, Esclarín-Ruz A, Gil-Dones F, Mourino-Alvarez L, Corbacho-Alonso N, Moreno-Luna R, Hernandez-Fernandez G, Lopez JA, Oliviero A, Barderas MG. Effects of Growth Hormone Treatment and Rehabilitation in Incomplete Chronic Traumatic Spinal Cord Injury: Insight from Proteome Analysis. J Pers Med 2020; 10:jpm10040183. [PMID: 33096745 PMCID: PMC7720149 DOI: 10.3390/jpm10040183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Despite promising advances in the medical management of spinal cord injury (SCI), there is still no available effective therapy to repair the neurological damage in patients who experience this life-transforming condition. Recently, we performed a phase II/III placebo-controlled randomized trial of safety and efficacy of growth hormone (GH) treatment in incomplete chronic traumatic spinal cord injury. The main findings were that the combined treatment of GH plus rehabilitation treatment is feasible and safe, and that GH but not placebo slightly improves the SCI individual motor score. Moreover, we found that an intensive and long-lasting rehabilitation program per se increases the functional outcome of SCI individuals. To understand the possible mechanisms of the improvement due to GH treatment (motor score) and due to rehabilitation (functional outcome), we used a proteomic approach. Here, we used a multiple proteomic strategy to search for recovery biomarkers in blood plasma with the potential to predict response to somatropin treatment and to delayed intensive rehabilitation. Forty-six patients were recruited and followed for a minimum period of 1 year. Patients were classified into two groups based on their treatment: recombinant somatropin (0.4 mg) or placebo. Both groups received rehabilitation treatment. Our strategy allowed us to perform one of the deepest plasma proteomic analyses thus far, which revealed two proteomic signatures with predictive value: (i) response to recombinant somatropin treatment and (ii) response to rehabilitation. The proteins implicated in these signatures are related to homeostasis, inflammation, and coagulation functions. These findings open novel possibilities to assess and therapeutically manage patients with SCI, which could have a positive impact on their clinical response.
Collapse
|
|
5 |
2 |
12
|
Gil-Dones F, Darde VM, Vivanco F, Barderas MG. A comparative study of immunodepletion and equalization methods for aortic stenosis human plasma. Methods Mol Biol 2013; 1005:245-56. [PMID: 23606263 DOI: 10.1007/978-1-62703-386-2_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calcified aortic valve disease is a slowly progressive disorder that ranges from mild valve thickening with no obstruction of blood flow, known as aortic sclerosis, to severe calcification with impaired leaflet motion or aortic stenosis. Until now, aortic stenosis (AS) was thought to result from aging and "wear and tear" of the aortic valve, but nowadays, it is known that it presents the same risk factors as atherosclerosis and cardiovascular diseases.A proteomic analysis of plasma could permit to identify the changes in protein expression induced by AS in this biological sample. However, the characterization of human plasma proteome is a very complicated task, due to the wide dynamic range of concentration that separates the most abundant proteins and the less common ones (10-12 orders of magnitude). For this reason, plasma analysis requires pre-fractionation methods, and several such techniques are currently used to deplete albumin and other abundant plasma proteins.In this work we describe two different and optimized protocols to decrease the plasma proteome complexity for proteomic analysis. With this, comprehensive and systematic characterization of the plasma proteome in the healthy and diseased aortic stenosis (AS) state will greatly facilitate the development of "useful" biomarkers for early disease detection, clinical diagnosis, and therapy.
Collapse
|
Comparative Study |
12 |
1 |
13
|
Gil-Dones F, Laborde C, Alonso-Orgaz S, Moreu J, Vivanco F, Padial L, Barderas M. MS132 QUANTITATIVE PROTEOMIC APPROACH TO IDENTIFY PROTEINS INVOLVED IN ACUTE CORONARY SYNDROME. ATHEROSCLEROSIS SUPP 2010. [DOI: 10.1016/s1567-5688(10)70633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
|
15 |
|