1
|
Brunner K, Harder J, Halbach T, Willibald J, Spada F, Gnerlich F, Sparrer K, Beil A, Möckl L, Bräuchle C, Conzelmann KK, Carell T. Cell-Penetrating and Neurotargeting Dendritic siRNA Nanostructures. Angew Chem Int Ed Engl 2014; 54:1946-9. [DOI: 10.1002/anie.201409803] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/30/2014] [Indexed: 12/25/2022]
|
|
11 |
39 |
2
|
Dallmann A, Beribisky AV, Gnerlich F, Rübbelke M, Schiesser S, Carell T, Sattler M. Site-Specific Isotope-Labeling of Inosine Phosphoramidites and NMR Analysis of an Inosine-Containing RNA Duplex. Chemistry 2016; 22:15350-15359. [DOI: 10.1002/chem.201602784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Indexed: 01/09/2023]
|
|
9 |
8 |
3
|
Helms MW, Jahn-Hofmann K, Gnerlich F, Metz-Weidmann C, Braun M, Dietert G, Scherer P, Grandien K, Theilhaber J, Cao H, Wagenaar TR, Schnurr MM, Endres S, Wiederschain D, Scheidler S, Rothenfußer S, Brunner B, König LM. Utility of the RIG-I Agonist Triphosphate RNA for Melanoma Therapy. Mol Cancer Ther 2019; 18:2343-2356. [PMID: 31515294 DOI: 10.1158/1535-7163.mct-18-1262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/05/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
The pattern recognition receptor RIG-I plays an important role in the recognition of nonself RNA and antiviral immunity. RIG-I's natural ligand, triphosphate RNA (ppp-RNA), is proposed to be a valuable addition to the growing arsenal of cancer immunotherapy treatment options. In this study, we present comprehensive data validating the concept and utility of treatment with synthetic RIG-I agonist ppp-RNA for the therapy of human cancer, with melanoma as potential entry indication amenable to intratumoral treatment. Using mRNA expression data of human tumors, we demonstrate that RIG-I expression is closely correlated to cellular and cytokine immune activation in a wide variety of tumor types. Furthermore, we confirm susceptibility of cancer cells to ppp-RNA treatment in different cellular models of human melanoma, revealing unexpected heterogeneity between cell lines in their susceptibility to RNA agonist features, including sequence, secondary structures, and presence of triphosphate. Cellular responses to RNA treatment (induction of type I IFN, FasR, MHC-I, and cytotoxicity) were demonstrated to be RIG-I dependent using KO cells. Following ppp-RNA treatment of a mouse melanoma model, we observed significant local and systemic antitumor effects and survival benefits. These were associated with type I IFN response, tumor cell apoptosis, and innate and adaptive immune cell activation. For the first time, we demonstrate systemic presence of tumor antigen-specific CTLs following treatment with RIG-I agonists. Despite potential challenges in the generation and formulation of potent RIG-I agonists, ppp-RNA or analogues thereof have the potential to play an important role for cancer treatment in the next wave of immunotherapy.
Collapse
|
|
6 |
8 |
4
|
Brunner K, Harder J, Halbach T, Willibald J, Spada F, Gnerlich F, Sparrer K, Beil A, Möckl L, Bräuchle C, Conzelmann KK, Carell T. Dendritische Nanostrukturen zur rezeptorvermittelten Aufnahme von siRNA in neurale Zellen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
11 |
8 |
5
|
Weidner J, Kolosionek E, Holmila R, Ax E, Garreau M, Gnerlich F, Olsson H, Czechtizky W, Vollmer S, Rydzik AM. Gymnotic uptake of AntimiRs alter microRNA-34a levels in 2D and 3D epithelial cell culture. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:898-907. [PMID: 37680982 PMCID: PMC10480572 DOI: 10.1016/j.omtn.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
MicroRNAs are attractive therapeutic targets in many diseases, including chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Among microRNA inhibitors antimiRs have been proven successful in lowering aberrant microRNA levels in the clinic. We present a set of antimiRs targeting miR-34a, which has been shown to be dysregulated in chronic lung diseases. The tool compounds were taken up by a bronchial epithelial cell line and primary human bronchial epithelial cells, followed by efficient knockdown of miR-34a. Similar results were observed in 3D differentiated primary human bronchial epithelial cells cultured at the air-liquid interface. Varying chemical properties of antimiRs had significant impact on cellular uptake and potency, resulting in effective tool compounds for use in lung-relevant cellular systems. This report demonstrates gymnotic antimiR uptake and activity in 3D epithelial cell culture after apical administration, mimicking inhalation conditions.
Collapse
|
research-article |
2 |
1 |
6
|
Helms MW, Parmantier E, Jahn-Hofmann K, Gnerlich F, König L, Metz-Weidmann C, Braun M, Dietert G, Grandien K, Theilhaber J, Cao H, Wagenaar T, Schnurr M, Endres S, Wiederschain D, Scheidler S, Rothenfusser S, Brunner B. Abstract 5024: Treatment with synthetic RIG-I agonist triphosphate RNA leads to local and systemic anti-tumor effects in a mouse melanoma tumor model. Cancer Res 2019. [DOI: 10.1158/1538-7445.am2019-5024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
RIG-I is a highly important cytosolic pattern recognition receptor (PRR) involved in sensing RNA virus infection and inducing interferon (IFN) production. RIG-I’s natural ligand, triphosphate RNA (ppp-RNA), is proposed to be a valuable addition to the growing arsenal of cancer immunotherapy treatment options. This study validates the use of intratumoral treatment with synthetic RIG-I agonist ppp-RNA for the therapy of human cancer, with melanoma as potential entry indication amenable to intratumoral treatment. Firstly, we demonstrate that RIG-I expression is closely correlated to cellular and cytokine immune activation in a wide variety of tumor types. Secondly, cellular models of human melanoma confirm susceptibility of cancer cells to ppp-RNA treatment, revealing unexpected heterogeneity between cell lines in their selectivity for RNA features, including sequence, secondary structures and presence of triphosphate. Cellular RNA treatment responses (type I IFN, FasR, MHC-I, cytotoxicity) were demonstrated to be RIG-I dependent using RIG-I KO cells. Thirdly, we show that ppp-RNA treatment of a mouse melanoma tumor model, leads to significant local and systemic anti-tumor effects and survival benefits, associated with a type I IFN response, tumor cell apoptosis and innate and adaptive immune cell activation. For the first time, we demonstrate systemic presence of tumor antigen specific CTLs following treatment with RIG-I agonist. Overall our study demonstrates that ppp-RNA or analogs thereof have the potential to play an important role for cancer treatment in the next wave of immunotherapy. However, potential challenges in the generation and formulation of potent RIG-I agonists remain to be solved.
Citation Format: Mike W. Helms, Eric Parmantier, Kerstin Jahn-Hofmann, Felix Gnerlich, Lars König, Christiane Metz-Weidmann, Monika Braun, Gabriele Dietert, Kaj Grandien, Joachim Theilhaber, Hui Cao, Tim Wagenaar, Max Schnurr, Stefan Endres, Dmitri Wiederschain, Sabine Scheidler, Simon Rothenfusser, Bodo Brunner. Treatment with synthetic RIG-I agonist triphosphate RNA leads to local and systemic anti-tumor effects in a mouse melanoma tumor model [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 5024.
Collapse
|
|
6 |
|
7
|
Garreau M, Weidner J, Hamilton R, Kolosionek E, Toki N, Stavenhagen K, Paris C, Bonetti A, Czechtizky W, Gnerlich F, Rydzik A. Chemical modification patterns for microRNA therapeutic mimics: a structure-activity relationship (SAR) case-study on miR-200c. Nucleic Acids Res 2024; 52:2792-2807. [PMID: 38421619 PMCID: PMC11014349 DOI: 10.1093/nar/gkae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
microRNA (miRNA) mimics are an emerging class of oligonucleotide therapeutics, with a few compounds already in clinical stages. Synthetic miRNAs are able to restore downregulated levels of intrinsic miRNAs, allowing for parallel regulation of multiple genes involved in a particular disease. In this work, we examined the influence of chemical modifications patterns in miR-200c mimics, assessing the regulation of a selection of target messenger RNAs (mRNA) and, subsequently, of the whole transcriptome in A549 cells. We have probed 37 mimics and provided an initial set of instructions for designing miRNA mimics with potency and selectivity similar to an unmodified miRNA duplex. Additionally, we have examined the stability of selected mimics in serum. Finally, the selected two modification patterns were translated to two other miRNAs, miR-34a and miR-155. To differing degrees, these designs acted on target mRNAs in a similar manner to the unmodified mimic. Here, for the first time, we describe a structured overview of 'miRNA mimics modification templates' that are chemically stabilised and optimised for use in an in vitro set up and highlight the need of further sequence specific optimization when mimics are to be used beyond in vitro tool experiments.
Collapse
|
research-article |
1 |
|
8
|
Lardeux H, Stavenhagen K, Paris C, Dueholm R, Kurek C, De Maria L, Gnerlich F, Leek T, Czechtizky W, Guillarme D, Jora M. Unravelling the Link between Oligonucleotide Structure and Diastereomer Separation in Hydrophilic Interaction Chromatography. Anal Chem 2024; 96:9994-10002. [PMID: 38855895 PMCID: PMC11190878 DOI: 10.1021/acs.analchem.4c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Therapeutic oligonucleotides (ONs) commonly incorporate phosphorothioate (PS) modifications. These introduce chiral centers and generate ON diastereomers. The increasing number of ONs undergoing clinical trials and reaching the market has led to a growing interest to better characterize the ON diastereomer composition, especially for small interfering ribonucleic acids (siRNAs). In this study, and for the first time, we identify higher-order structures as the major cause of ON diastereomer separation in hydrophilic interaction chromatography (HILIC). We have used conformational predictions and melting profiles of several representative full-length ONs to first analyze ON folding and then run mass spectrometry and HILIC to underpin the link between their folding and diastereomer separation. On top, we show how one can either enhance or suppress diastereomer separation depending on chromatographic settings, such as column temperature, pore size, stationary phase, mobile-phase ionic strength, and organic modifier. This work will significantly facilitate future HILIC-based characterization of PS-containing ONs; e.g., enabling monitoring of batch-to-batch diastereomer distributions in full-length siRNAs, a complex task that is now for the first time shown as possible on this delicate class of therapeutic double-stranded ONs.
Collapse
|
research-article |
1 |
|