1
|
Hosford DA, Clark S, Cao Z, Wilson WA, Lin FH, Morrisett RA, Huin A. The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. Science 1992; 257:398-401. [PMID: 1321503 DOI: 10.1126/science.1321503] [Citation(s) in RCA: 232] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lethargic (lh/lh) mice, which function as an animal model of absence seizures, have spontaneous seizures that have behavioral and electrographic features and anticonvulsant sensitivity similar to those of human absence seizures. Antagonists of the gamma-aminobutyric acidB (GABAB) receptor suppressed these seizures in lethargic mice, whereas agonists of GABAB receptors exacerbated them. Furthermore, GABAB receptor binding and synaptically evoked GABAB receptor-mediated inhibition of N-methyl-D-aspartate responses were selectively increased in lh/lh mice. Therefore, enhanced GABAB receptor-mediated synaptic responses may underlie absence seizures in lh/lh mice, and GABAB receptor antagonists hold promise as anticonvulsants for absence seizures.
Collapse
|
|
33 |
232 |
2
|
Yang SJ, Lin FH, Tsai KC, Wei MF, Tsai HM, Wong JM, Shieh MJ. Folic Acid-Conjugated Chitosan Nanoparticles Enhanced Protoporphyrin IX Accumulation in Colorectal Cancer Cells. Bioconjug Chem 2010; 21:679-89. [DOI: 10.1021/bc9004798] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
15 |
220 |
3
|
Hou CH, Hou SM, Hsueh YS, Lin J, Wu HC, Lin FH. The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials 2009; 30:3956-60. [DOI: 10.1016/j.biomaterials.2009.04.020] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 04/13/2009] [Indexed: 11/16/2022]
|
|
16 |
202 |
4
|
Su WY, Chen YC, Lin FH. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration. Acta Biomater 2010; 6:3044-55. [PMID: 20193782 DOI: 10.1016/j.actbio.2010.02.037] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
Injectable hydrogel allows irregular surgical defects to be completely filled, lessens the risk of implant migration, and minimizes surgical defects due to the solution-gel state transformation. Here, we first propose a method for preparing oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) injectable hydrogel by chemical cross-linking under physiological conditions. Fourier transform infrared spectrometry and trinitrobenzene sulfonate assay were used to confirm the oxidation of hyaluronic acid. Rheological properties were measured to evaluate the working ability of the hydrogel for further clinical application. The oxi-HA/ADH in situ forming hydrogel can transform from liquid form into a gel-like matrix within 3-8 min, depending on the operational temperature. Furthermore, hydrogel degradation and cell assessment is also a concern for clinical application. Injectable oxi-HA/ADH8 hydrogel can maintain its gel-like state for at least 5 weeks with a degradation percentage of 40%. Importantly, oxi-HA/ADH8 hydrogel can assist in nucleus pulposus cell synthesis of type II collagen and aggrecan mRNA gene expression according to the results of real-time PCR analysis, and shows good biocompatibility based on cell viability and cytotoxicity assays. Based on the results of the current study, oxi-HA/ADH hydrogel may possess several advantages for future application in nucleus pulposus regeneration.
Collapse
|
|
15 |
180 |
5
|
Chang CH, Liu HC, Lin CC, Chou CH, Lin FH. Gelatin–chondroitin–hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 2003; 24:4853-8. [PMID: 14530082 DOI: 10.1016/s0142-9612(03)00383-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism by which the cell synthesizes and secretes extracellular matrix (ECM) and is, in turn, regulated by the ECM is termed dynamic reciprocity. The aim of the present work was to produce a gelatin/chondoitin-6-sulfate/hyaluronan tri-copolymer to mimic natural cartilage matrix for use as a scaffold for cartilage tissue engineering. The scaffold produced had a uniform pore size of about 180 microm and adequate porosity of 75%. Porcine chondrocytes were seeded onto the tri-copolymer scaffold and cultured in Petri dishes or spinner flasks for 2, 3, 4, or 5 weeks. Chondrocytes were uniformly distributed in the scaffold in the spinner flask cultures, but less so in the Petri dish cultures. Secretion of ECM was found under histology examination. In spinner flask cultures, chondrocytes retained their phenotype for at least 5 weeks, as shown immunohistochemically, and synthesized type II collagen. These results show that gelatin/chondroitin sulfate/hyaluronan tri-copolymer has potential for use as a cartilage tissue engineering scaffold.
Collapse
|
|
22 |
179 |
6
|
Lin FH, Lee YH, Jian CH, Wong JM, Shieh MJ, Wang CY. A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials 2002; 23:1981-7. [PMID: 11996039 DOI: 10.1016/s0142-9612(01)00325-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since its introduction over 40 years ago, 5-fluorouracil (5-FU) has remained the only effective chemotherapy option available for the treatment of colorectal cancer (CRC). However, this cytotoxic anticancer drug often causes severe side effects because it does not act selectively on the tumor. It has been reported that the 5-FU showed considerable toxicity when administered by intravenous injections or via alimentary tract. Although, many materials have been developed for carrying 5-FU, there has been no clinically acceptable carrier for 5-FU till now. Montmorillonite, one of the clay minerals, consists of hydrated aluminum silicates with fine grains and large spaces between the layers. Isomorphous substitution of cations is common. In the study, we attempt to intercalate 5-FU into interlayers of montmorillonite through ion exchange. Montmorillonite was purified from crude clays of bentonite in Tai-dong, Taiwan by filtration and sedimentation. Solutions of 5-FU with different concentrations were prepared by dissolving various amounts of 5-FU into 10 ml NaOH solution. Purified montmorillonite powder was soaked in 5-FU solution for a period of time with different pH values and temperatures. In this study, we try to intercalate 5-FU into interlayers of montmorillonite to find out optimum conditions, such as soaking time, temperature, pH value, initial 5-FU concentration, etc., to prepare composites of 5-FU and montmorillonite (5-FU/mont). UV, SDT, FTIR, XRD are used to characterize the 5-FU/mont composite. From the results. 5-FU was successfully intercalated into the interlayer of montmorillonite both by free surface absorption and OH replacement. The optimum condition for 5-FU/mont preparations is 1.185 wt% of 5-FU as initial concentration under a pH value of 11.6 at a temperature of 80 degrees C and a soaking time of 2 h. The total amount of 5-FU in montmorillonite is about 87.5 mg for each gram of montmorillonite, which can be proved by thermal gravimetric analysis. The composite of 5-FU/mont is expected to achieve in situ release for colorectal cancer therapy in future applications.
Collapse
|
|
23 |
162 |
7
|
Lee YL, Lee BS, Lin FH, Yun Lin A, Lan WH, Lin CP. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 2004; 25:787-93. [PMID: 14609667 DOI: 10.1016/s0142-9612(03)00591-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Utilizing scanning electron microscope, X-ray diffraction (XRD) and microhardness tests, we evaluated how various physiological environments affect the hydration behavior and physical properties of mineral trioxide aggregate (MTA). We found that the microstructure of hydrated MTA consists of cubic and needle-like crystals. The former comprised the principal structure of MTA, whereas the later were less prominent and formed in the inter-grain spaces between the cubic crystals. MTA samples were hydrated in distilled water, normal saline, pH 7, and pH 5. However, no needle-like crystals were observed in the pH 5 specimens, and erosion of the cubic crystal surfaces was noted. XRD indicated a peak corresponding to Portlandite, a hydration product of MTA, and the peak decreased noticeably in the pH 5 group. The pH 5 specimens' microhardness was also significantly weaker compared to the other three groups (p<0.0001). These findings suggest that physiological environmental effects on MTA formation are determined, in part, by environmental pH and the presence of ions. In particular, an acidic environment of pH 5 adversely affects both the physical properties and the hydration behavior of MTA.
Collapse
|
|
21 |
158 |
8
|
Yang YH, Liu CH, Liang YH, Lin FH, Wu KCW. Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. J Mater Chem B 2013; 1:2447-2450. [DOI: 10.1039/c3tb20365d] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
|
12 |
137 |
9
|
Liao CJ, Lin FH, Chen KS, Sun JS. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials 1999; 20:1807-13. [PMID: 10509191 DOI: 10.1016/s0142-9612(99)00076-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this paper, the decomposition and reconstruction behavior of hydroxyapatite (HAP) during heating and cooling in air atmosphere were studied. The commercial HAP were chosen and gradually heated to 1500 degrees C and cooled to room temperature by a program controlled SiC heated furnace. X-ray diffraction (XRD) and Fourier-transformed infrared (FTIR) analysis were used to investigate the change of crystalline phases and functional groups of HAP at different temperatures. Weight change of samples was recorded by thermogravimetric analysis (TGA) during heating and cooling. The results revealed that HAP gradually releases its OH- ions and transforms into OHAP in the temperature of 1000-1360 degrees C. Above 1360 degrees C, the OHAP would decompose into TTCP and alpha TCP phase. The OH- stretching bands of HAP could be traced by FTIR even at the temperature of 1350 degrees C which indicates HAP decomposition. HAP does not dehydrate completely before decomposition. We speculated that some oxyapatite (OAP) might be formed during dehydration with a great amount of OHAP still left in the system even up to the temperature of decomposition. In the temperature range of 1400-1500 degrees C, there was no significant difference in XRD patterns, only TTCP and alpha TCP crystalline phases were observed. When the HAP gradually cools from 1500 degrees C, a part of TTCP and alpha TCP would directly reconstruct into OAP around 1350 degrees C. OAP existed in the temperature range of 1350-1300 degrees C during cooling. When the temperature decreased to 1290 degrees C, a part of TTCP and alpha TCP reconstructed into OHAP by rehydration reaction and OAP were rehydrated into OHAP as well. At 1100 degrees C, the rest of TTCP and alpha TCP reconstitutes into HAP. As the temperature decreases, the OHAP is gradually rehydrated and reconstituted into HAP.
Collapse
|
|
26 |
131 |
10
|
Chen PY, Sun JS, Tsuang YH, Chen MH, Weng PW, Lin FH. Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway. Nutr Res 2010; 30:191-9. [PMID: 20417880 DOI: 10.1016/j.nutres.2010.03.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/21/2010] [Accepted: 03/24/2010] [Indexed: 02/08/2023]
Abstract
Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A reductase, which catalyzes the conversion of 3-hydroxy-3-methylglutaryl-coenzyme A to mevalonate, a rate-limiting step in cholesterol synthesis. Statins are able to reduce cardiovascular risk in hypercholesterolemic patients. In recent years, the possible effect of statins on bone tissue has received particular attention. The present study was undertaken to understand the events of osteoblast differentiation induced by statins. Our hypothesis is that simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/bone morphogenic protein (BMP)-2 signaling pathway. The viability and differentiation of osteoblasts were examined by mitochondrial activity assay, alkaline phosphatase (ALP) activity, and gene expression. The associated signaling pathways were analyzed by cytoplasmic and membrane proteins manifestation. After administration of 10(-6) M simvastatin, the ALP activity was significantly enhanced, and the expression of BMP-2, ALP, sialoprotein, and type I collagen genes were up-regulated. After simvastatin treatment, both the RasGRF1 and phospho-RasGRF1 in the cytoplasm decreased significantly, whereas those on the plasma membrane increased. A marked increase in membranous GAP-associated protein (P190) and the activated form of both phospho-extracellular signal-regulated kinase1/2 and phospho-Smad1 were also noted. In conclusion, this study shows that statins pose a positive effect on the metabolism of osteoblasts. Simvastatin can promote osteoblast viability and differentiation via membrane-bound Ras/Smad/Erk/BMP-2 pathway. Statins stimulate osteoblast differentiation in vitro and may be a promising drug for the treatment of osteoporosis in the future.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
129 |
11
|
Wang CC, Yang KC, Lin KH, Liu HC, Lin FH. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials 2011; 32:7118-26. [PMID: 21724248 DOI: 10.1016/j.biomaterials.2011.06.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/09/2011] [Indexed: 01/15/2023]
Abstract
Osteoarthritis is a degenerative disease and frequently involves the knee, hip and phalangeal joints. Current treatments used in small cartilage defects including multiple drilling, abrasion arthroplasty, mosaicplasty, and autogenous chondrocyte transplantation, however, there are problems needed to be solved. The standard treatment for severe osteoarthritis is total joint arthroplasty. The disadvantages of this surgery are the possibility of implant loosening. Therefore, tissue engineering for cartilage regeneration has become a promising topic. We have developed a new method to produce a highly organized single polymer (alginate) scaffold using microfluidic device. Scanning electron microscope and confocal fluoroscope examinations showed that the scaffold has a regular interconnected porous structure in the scale of 250 μm and high porosity. The scaffold is effective in chondrocyte culture; the cell viability test (WST-1 assay), cell toxicity (lactate dehydrogenase assay), cell survival rate, extracellular matrix production (glycosaminoglycans contents), cell proliferation (DNA quantification), and gene expression (real-time PCR) all revealed good results for chondrocyte culture. The chondrocytes can maintain normal phenotypes, highly express aggrecan and type II collagen, and secrete a great deal of extracellular matrix when seeded in the alginate scaffold. This study demonstrated that a highly organized alginate scaffold can be prepared with an economical microfluidic device, and this scaffold is effective in cartilage tissue engineering.
Collapse
|
Journal Article |
14 |
127 |
12
|
Peng CL, Lai PS, Lin FH, Yueh-Hsiu Wu S, Shieh MJ. Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles. Biomaterials 2009; 30:3614-25. [PMID: 19395020 DOI: 10.1016/j.biomaterials.2009.03.048] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/17/2009] [Indexed: 11/15/2022]
Abstract
Chlorin-core star-shaped block copolymer (CSBC) may self-assemble to form micelles, which act as nanosized photosensitizing agents for photodynamic therapy (PDT) and further encapsulate hydrophobic drugs. This functionalized micellar delivery system is a potential dual carrier for the synergistic combination of photodynamic therapy and chemotherapy for the treatment of cancer. In this study, SN-38 encapsulated CSBC micelles were successfully prepared using a lyophilization-hydration method. Our results show that the prolonged plasma residence time of SN-38/CSBC micelles as compared with free CPT-11 permit increased tumor accumulation and consequently, improved antitumor activity. The combined effects of SN-38/CSBC micelles with PDT were evaluated in an HT-29 human colon cancer xenograft model. Interesting, SN-38/CSBC-mediated PDT synergistically inhibited tumor growth, resulting in up to 60% complete regression of well-established tumors after 3 treatments. These treatments also decreased the microvessel density (MVD) and cell proliferation within the subcutaneous tumors. Therefore, this SN-38/CBSC delivery system has the potential to offer dual therapies for the synergistic combination of PDT and chemotherapy for the treatment of cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
124 |
13
|
Chang WHS, Chen LT, Sun JS, Lin FH. Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 2004; 25:457-65. [PMID: 15300732 DOI: 10.1002/bem.20016] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electric stimulation has been used successfully to treat a wide range of bone disorders. However, the mechanism by which the electric fields can influence the bone cells behavior remains poorly understood. The purpose of this research was to assess the possible mechanism of the stimulatory effect of pulsed electromagnetic field (PEMF) on bone cells. A PEMF with a frequency of 15 Hz (1 G [0.1 mT]; electric field strength 2 mV/cm) were applied to neonatal mouse calvarial bone cell cultures for 14 days. The temporal effects of PEMF on the osteoblasts were evaluated by the status of proliferation, differentiation, mineralization, and gene expression on the 3rd, 5th, 7th, and 14th days of culture. Our results demonstrated that PEMF stimulation significantly increased the osteoblasts' proliferation by 34.0, 11.5, and 13.3% over the control group after 3, 5, and 7 days' culture. Although the alkaline phosphatase (ALP) staining and the mineralization nodules formation did not change, the ALP activity of the bone cells decreased significantly after PEMF stimulation. Under the PEMF stimulation, there was no effect on the extracellular matrix synthesis, while the osteoprotegerin (OPG) mRNA expression was up regulated and the receptor activator of NF-kappaB ligand (RANKL) mRNA expression were down regulated, compared to the control. In conclusion, the treatment by PEMF of osteoblasts may accelerate cellular proliferation, but did not affect the cellular differentiation. The effect of PEMF stimulation on the bone tissue formation was most likely associated with the increase in the number of cells, but not with the enhancement of the osteoblasts' differentiation.
Collapse
|
|
21 |
111 |
14
|
Tseng CL, Wang TW, Dong GC, Yueh-Hsiu Wu S, Young TH, Shieh MJ, Lou PJ, Lin FH. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials 2007; 28:3996-4005. [PMID: 17570484 DOI: 10.1016/j.biomaterials.2007.05.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 05/09/2007] [Indexed: 11/16/2022]
Abstract
Since lung cancer is the most malignant cancer today, a specific drug-delivery system has been developed for superior outcome. In this study, gelatin nanoparticles (GPs) employed as native carriers were grafted with NeutrAvidin(FITC) on the particle's surface (GP-Av). Next, the biotinylated epithelial growth factor (EGF) molecules were conjugated with NeutrAvidin(FITC), forming a core-shell-like structure (GP-Av-bEGF) to achieve the enhancement of targeting efficiency. These nanoparticles were applied as an EGF receptor (EGFR)-seeking agent to detect lung adenocarcinoma. The results showed that the modification process had no significant influence on particle size (220 nm) and zeta potential (-9.3 mV). By the in vitro cell culture test, GP-Av-bEGF resulted in higher entrance efficiency on adenocarcinoma cells (A549) than that on normal lung cells (HFL1) because A549 possessed greater amounts of EGFR. We also found that uptake of GP-Av-bEGF by A549 cells was time and dose dependent. Confocal microscopy confirmed the cellular internalization of GP-Av-bEGF, and more fluorescent spots of GP-Av-bEGF nanoparticles were obviously observed as well as lysosomal entrapment in A549. Finally, the delivery was demonstrated by in vivo aerosol administration to cancerous lung of the SCID mice model, and specific accumulation in cancerous lung was confirmed by image quantification. The targeting ability of GP-Av-bEGF was proved in vitro and in vivo, which holds promise for further anti-cancer drug applications.
Collapse
|
|
18 |
108 |
15
|
Cheng YH, Yang SH, Su WY, Chen YC, Yang KC, Cheng WTK, Wu SC, Lin FH. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitro study. Tissue Eng Part A 2010; 16:695-703. [PMID: 19769528 DOI: 10.1089/ten.tea.2009.0229] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Injectable hydrogel is one of the great interests for tissue engineering and cell encapsulation. In the study, the gelatin molecules were added to the thermosensitive chitosan/beta-glycerol phosphate (C/GP) disodium salt hydrogels to form chitosan/gelatin/beta-glycerol phosphate (C/G/GP) disodium salt hydrogels which were applied as a cell carrier for nucleus pulposus (NP) regeneration. The gelation temperature, gelation time, and gel strength of the C/G/GP hydrogels were analyzed by the rheometer. NP cells were then harvested from the intervertebral discs of the adult New Zealand white rabbits and cultured in monolayer or in C/G/GP hydrogel, respectively. The cell viability, material-mediated cytotoxicity, cell proliferation, production of sulfated glycosaminoglycans, anabolic/catabolic gene expressions, and extracellular matrix-related gene expressions of the NP cells were demonstrated. The results show that the sol/gel transition temperature of the C/G/GP hydrogel was in the range of 31.1-33.8 degrees C at neutral pH value, the gelation time was shortened, and the gel strength also improved at body temperature when compared with the C/GP hydrogel. Among those, C/GP with 1% gelatin addition showed the most promising gelation time and gel strength and were utilized in the later experiments. From the results of cell activity, cytotoxicity, and cell proliferation assays, NP cells cultured in C/G/GP hydrogel had normal cell viability and cell proliferation that indicated the hydrogel was noncytotoxicity. The amounts of sulfated glycosaminoglycans of NP cells cultured in C/G/GP hydrogels were significantly higher than monolayer cultured. Considering the extracellular matrix-related gene expression, type II collagen and aggrecan of NP cells cultured in the hydrogels greatly increased than those in monolayer culture. On the contrary, the unfavorable gene expression, such as that of type I collagen, was decreased significantly. The results reveal that gelatin added into C/GP hydrogel significantly shortened the gelation time and improved the gel strength without influencing the biocompatibility. NP cells cultured in the C/G/GP hydrogel also displayed better gene expressions when compared with the monolayer culture. This study indicates that using chitosan/gelatin hydrogel for NP cell culture is feasible and may apply in minimal invasive intervertebral disc surgery in the future.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
102 |
16
|
Lin TC, Lin FH, Lin JC. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater 2012; 8:2704-11. [PMID: 22484694 DOI: 10.1016/j.actbio.2012.03.045] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/22/2012] [Accepted: 03/28/2012] [Indexed: 11/25/2022]
Abstract
Hyperthermia has been reported to be an effective cancer treatment modality, as tumor cells are more temperature-sensitive than their normal counterparts. Since the ambient temperature can be increased by placing magnetic nanoparticles in an alternating magnetic field it has become of interest to incorporate these magnetic nanoparticles into biodegradable nanofibers for possible endoscopic hyperthermia treatment of malignant tumors. In this preliminary investigation we have explored various characteristics of biodegradable electrospun chitosan nanofibers containing magnetic nanoparticles prepared by different methods. These methods included: (1) E-CHS-Fe(3)O(4), with electrospun chitosan nanofibers directly immersed in a magnetic nanoparticle solution; (2) E-CHS-Fe(2+), with the electrospun chitosan nanofibers initially immersed in Fe(+2)/Fe(+3) solution, followed by chemical co-precipitation of the magnetic nanoparticles. The morphology and crystalline phase of the magnetic electrospun nanofiber matrices were determined by scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray diffraction spectroscopy. The magnetic characteristics were measured using a superconducting quantum interference device. The heating properties of these magnetic electrospun nanofiber matrices in an alternating magnetic field were investigated at a frequency of 750 kHz and magnetic intensity of 6.4 kW. In vitro cell incubation experiments indicated that these magnetic electrospun nanofiber matrices are non-cytotoxic and can effectively reduce tumor cell proliferation upon application of a magnetic field.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
100 |
17
|
Lin FH, Lin R, Wisniewski HM, Hwang YW, Grundke-Iqbal I, Healy-Louie G, Iqbal K. Detection of point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 in alzheimer's brains. Biochem Biophys Res Commun 1992; 182:238-46. [PMID: 1370613 DOI: 10.1016/s0006-291x(05)80136-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 (ND2) were detected in 10 of 19 Alzheimer's brains but not in 11 normal brains. The same mutations were also detected in 2 of 6 patients with amyotrophic lateral sclerosis (ALS). However, neurofibrillary tangles and neuritic plaques characteristic of Alzheimer's disease were found histologically in the brain of one ALS patient who was positive of the mutation. The finding suggests that a point mutation in ND2 is a potential risk factor for Alzheimer's disease.
Collapse
|
|
33 |
93 |
18
|
Chang CH, Kuo TF, Lin CC, Chou CH, Chen KH, Lin FH, Liu HC. Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials 2005; 27:1876-88. [PMID: 16278014 DOI: 10.1016/j.biomaterials.2005.10.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 10/09/2005] [Indexed: 11/28/2022]
Abstract
We previously showed that cartilage tissue can be engineered in vitro with porcine chondrocytes and gelatin/chondoitin-6-sulfate/hyaluronan tri-copolymer which mimic natural cartilage matrix for use as a scaffold. In this animal study, 15 miniature pigs were used in a randomized control study to compare tissue engineering with allogenous chondrocytes, autogenous osteochondral (OC) transplantation, and spontaneous repair for OC articular defects. In another study, 6 pigs were used as external controls in which full thickness (FT) and OC defects were either allowed to heal spontaneously or were filled with scaffold alone. After exclusion of cases with infection and secondary arthritis, the best results were obtained with autogenous OC transplantation, except that integration into host cartilage was poor. The results for the tissue engineering-treated group were satisfactory, the repair tissue being hyaline cartilage and/or fibrocartilage. Spontaneous healing and filling with scaffold alone did not result in good repair. With OC defects, the subchondral bone plate was not restored by cartilage tissue engineering. These results show that tri-copolymer can be used in in vivo cartilage tissue engineering for the treatment of FT articular defects.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
88 |
19
|
Abstract
A ribonucleic acid-dependent deoxyribonucleic acid polymerase was found in virions of visna virus. The enzyme product was resistant to ribonuclease and alkaline hydrolysis but susceptible to the digestion of deoxyribonuclease.
Collapse
|
other |
55 |
81 |
20
|
Lin FH, Yao CH, Sun JS, Liu HC, Huang CW. Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin. Biomaterials 1998; 19:905-17. [PMID: 9690832 DOI: 10.1016/s0142-9612(97)00202-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to prepare and evaluate the feasibility and cytocompatibility of a composite (GTG) as a large defect bone substitute. The composite is combined with tricalcium phosphate ceramic particles and glutaraldehyde cross-linked gelatin. Gelatin had been reported as an adhesive and biocompatible binder that could accelerate the recovery of damaged soft tissue, but the effects of gelatin when acting on the bone tissue is not clear. Thus, it is necessary to determine if the substances released from the GTG composite can facilitate the growth of bone cells. The substances released from the GTG composites after being soaked in deionized distilled water were analyzed by gas chromatography (GC), ultraviolet and visible absorption spectroscopy (UV-VIS), and inductive-coupled plasma-atomic emission spectrometry (ICP-AES). The cytotoxicity of the GTG composites was assessed by coculture of rat osteoblasts in vitro. Extracts were obtained by soaking the GTG composites in deionized distilled water for 1, 2, 4, 7, 14, 28 and 42 d. The extract mixed with complete medium in a ratio of 1:1 was added into the cell culture wells containing 1 x 10(4) cells ml(-1) osteoblasts. After culturing for 2 days, the cells attached to the surface of wells were trypsinized and the number calculated by the Neubauer counting-chamber under the optical microscope. Finally, three samples in each GTG group were examined by scanning electron microscopy (SEM) to observe the morphology of the osteoblasts attached to the surfaces of GTG composites. The examinations of osteoblasts cocultured with the developed GTG composites were used to decide the ideal concentration of glutaraldehyde as a cross-linking agent. The results of extracts cocultured with osteoblasts showed that the extracts obtained from the 2, 4 and 8% glutaraldehyde cross-linked GTG composites would inhibit the growth of osteoblasts in the first 4 soaking days. During the 4-7 days soaking, the cell numbers quickly increased with the soaking time, thereafter, the cell numbers almost reached a constant value. In the analyses of substances released from the GTG composites, it was found that the gelatin and calcium were gradually released from the GTG composites, which were supposed to be nutritious for the growth of the osteoblast. The results of osteoblasts cocultured with the GTG composites showed that the concentration of glutaraldehyde used as a cross-linking agent should be lower than 8%. Compared to the GTF (composite combined with tricalcium phosphate ceramic particles and formaldehyde cross-linked gelatin), GTG composites were much suitable for a large defect bone substitute in the near future.
Collapse
|
Comparative Study |
27 |
79 |
21
|
Sun JS, Hong RC, Chang WH, Chen LT, Lin FH, Liu HC. In vitro effects of low-intensity ultrasound stimulation on the bone cells. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 57:449-56. [PMID: 11523040 DOI: 10.1002/1097-4636(20011205)57:3<449::aid-jbm1188>3.0.co;2-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mechanical perturbations serve as extracellular signals to a variety of cells, including bone cells. Low-intensity pulsed ultrasound produces significant multifunctional effects that are directly relevant to bone formation and resorption. Ultrasound stimulation has been shown to accelerate bone-defect healing and trabecular bone regeneration. In this study, we use an in vitro bone cell culture model to investigate the effect of low-intensity pulsed ultrasound. The rat alveolar mononuclear cell-calvaria osteoblast coculture system was used in this study. Before treatment, the bone cells were cultured for 3 days to facilitate their attachment and differentiation. Then, ultrasound exposure (frequency = 1 MHz, intensity = 0.068 W/cm(2)) or sham exposure for 20 min per day was applied until the end of the experiment. Half of the culture media were obtained on the 4th, 5th, 6th, 7th, 8th, 9th, and 10th days for the analysis of cytokines and biochemical parameters. At the end of the experiment, cells were fixed and stained for identification and quantification of the osteoblast and osteoclast cells. After low-intensity pulse ultrasound stimulation, the osteoblast cell counts were significantly increased, whereas the osteoclast cell counts were significantly decreased. The total alkaline phosphatase amount in the culture medium was increased after 7 days of ultrasound stimulation, and tumor necrosis factor-alpha in ultrasound-stimulated bone cells was significantly increased after the 7th day of culture and reached 474.77% of the control medium on the 10th day of culture. The results of this study suggest that low-intensity ultrasound treatment may have a stimulatory effect on bone-healing processes.
Collapse
|
|
24 |
77 |
22
|
Sun JS, Tsuang YH, Liao CJ, Liu HC, Hang YS, Lin FH. The effects of calcium phosphate particles on the growth of osteoblasts. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1997; 37:324-34. [PMID: 9368137 DOI: 10.1002/(sici)1097-4636(19971205)37:3<324::aid-jbm3>3.0.co;2-n] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
With advances in ceramics technology, calcium phosphate bioceramics have been applied as bone substitutes for several decades. The focus of this work is to elucidate the biocompatibility of the particulates of various calcium phosphate cytotoxicities. Four different kinds of calcium phosphate powders, including beta-tricalcium phosphate (beta-TCP), hydroxyapatite (HA), beta-dicalcium pyrophosphate (beta-DCP), and sintered beta-dicalcium pyrophosphate (SDCP), were tested by osteoblast cell culture. The results were analyzed by cell count, concentration of transforming growth factor-beta 1 (TGF-beta 1), alkaline phosphatase (ALP), and prostaglandin E2 (PGE2) in culture media. The changes were most significant when osteoblasts were cultured with beta-TCP and HA bioceramics. The changes in cell population of the beta-TCP and HA were quite low in the first 3 days, then increased gradually toward the seventh day. The changes in TGF-beta 1 concentration in culture medium inversely related to the changes in cell population. The ALP titer in the culture media of the beta-TCP and HA were quite high in the first 3 days, then decreased rapidly between the third and seventh days. The concentrations of PGE2 in the culture media tested were quite high on the first day, decreased rapidly to the third day, and then gradually until the seventh day. The changes in the beta-DCP and SDCP were quite similar to those of HA and beta-TCP but much less significant. We conclude that HA and beta-TCP have an inhibitory effect on the growth of osteoblasts. The inhibitins effects of the HA and beta-TCP powders on the osteoblast cell cultures possibly are mediated by the increased synthesis of PGE2.
Collapse
|
|
28 |
75 |
23
|
Wang TW, Sun JS, Wu HC, Tsuang YH, Wang WH, Lin FH. The effect of gelatin–chondroitin sulfate–hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 2006; 27:5689-97. [PMID: 16908060 DOI: 10.1016/j.biomaterials.2006.07.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Tissue-engineered skin substitutes provided a feasibility to overcome the shortage of skin autograft by culturing keratinocytes and dermal fibroblasts in vitro. In this study, we applied bi-layer gelatin-chondrointin-6-sulfate-hyaluronic acid (gelatin-C6S-HA) biomatrices onto the severe combined immunodeficiency (SCID) mice to evaluate its effect on promoting wound healing. Human foreskin keratinocytes and dermal fibroblasts were cultured with reconstructed skin equivalent (rSE) for 7 days. The rSE was then grafted to the dorsum of SCID mice to evaluate its biocompatibility by histologic and immunohistochemistry analysis. The results showed that human epidermis were well-developed with the expression of differentiated markers and basement membrane-specific proteins at 4 weeks. After implantation, the percentages of skin graft take were satisfactory, while cell-seeded group was better than non-cell-seeded one. The basement membrane proteins including laminin, type IV collagen, type VII collagen, integrin alpha6, and integrin beta4 were all detected at the dermal-epidermal junction, which showed a continuous structure in the 4 weeks after grafting. This bi-layer gelatin-C6S-HA skin substitute not only has positive effect on promoting wound healing, but also has high rate of graft take. This rSE would have the potential to be applied on the extensively and deeply burned patients who suffer from severe skin defect in the near future.
Collapse
|
|
19 |
74 |
24
|
Chen YC, Su WY, Yang SH, Gefen A, Lin FH. In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration. Acta Biomater 2013; 9:5181-93. [PMID: 23041783 DOI: 10.1016/j.actbio.2012.09.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 01/07/2023]
Abstract
Encapsulation of nucleus pulposus (NP) cells within in situ forming hydrogels is a novel biological treatment for early stage intervertebral disc degeneration. The procedure aims to prolong the life of the degenerating discs and to regenerate damaged tissue. In this study we developed an injectable oxidized hyaluronic acid-gelatin-adipic acid dihydrazide (oxi-HAG-ADH) hydrogel. High molecular weight (1900 kDa) hyaluronic acid was crosslinked with various concentrations of gelatin to synthesize the hydrogels and their viscoelastic properties were analyzed. Interactions between the hydrogels, NP cells, and the extracellular matrix (ECM) were also evaluated, as were the effects of the hydrogels on NP cell gene expression. The hydrogels possess several clinical advantages, including sterilizability, low viscosity for injection, and ease of use. The viscoelastic properties of the hydrogels were similar to native tissue, as reflected in the complex shear modulus (∼11-14 kPa for hydrogels, 11.3 kPa for native NP). Cultured NP cells not only attached to the hydrogels but also survived, proliferated, and maintained their round morphology. Importantly, we found that hydrogels increased NP cell expression of several crucial ECM-related genes, such as COL2A1, AGN, SOX-9, and HIF-1A.
Collapse
|
|
12 |
74 |
25
|
Chang CH, Lin FH, Lin CC, Chou CH, Liu HC. Cartilage tissue engineering on the surface of a novel gelatin-calcium-phosphate biphasic scaffold in a double-chamber bioreactor. J Biomed Mater Res B Appl Biomater 2005; 71:313-21. [PMID: 15386400 DOI: 10.1002/jbm.b.30090] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tissue engineering is a new approach to articular cartilage repair; however, the integration of the engineered cartilage into the host subchondral bone is a major problem in osteochondral injury. The aim of the present work, therefore, was to make a tissue-engineered osteochondral construct from a novel biphasic scaffold in a newly designed double-chamber bioreactor. This bioreactor was designed to coculture chondrocytes and osteoblasts simultaneously. The aim of this study was to prove that engineered cartilage could be formed with the use of this biphasic scaffold. The scaffold was constructed from gelatin and a calcium-phosphate block made from calcined bovine bone. The cartilage part of the scaffold had a uniform pore size of about 180 microm and approximate porosity of 75%, with the trabecular pattern preserved in the bony part of the scaffold. The biphasic scaffolds were seeded with porcine chondrocytes and cultured in a double-chamber bioreactor for 2 or 4 weeks. The chondrocytes were homogeneously distributed in the gelatin part of the scaffold, and secretion of the extracellular matrix was demonstrated histologically. The chondrocytes retained their phenotype after 4 weeks of culture, as proven immunohistochemically. After 4 weeks of culture, hyaline-like cartilage with lacuna formation could be clearly seen in the gelatin scaffold on the surface of the calcium phosphate. The results show that this biphasic scaffold can support cartilage formation on a calcium-phosphate surface in a double-chamber bioreactor, and it seems reasonable to suggest that there is potential for further application in osteochondral tissue engineering.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
73 |