1
|
Nugent FS, Penick EC, Kauer JA. Opioids block long-term potentiation of inhibitory synapses. Nature 2007; 446:1086-90. [PMID: 17460674 DOI: 10.1038/nature05726] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 03/09/2007] [Indexed: 11/08/2022]
Abstract
Excitatory brain synapses are strengthened or weakened in response to specific patterns of synaptic activation, and these changes in synaptic strength are thought to underlie persistent pathologies such as drug addiction, as well as learning. In contrast, there are few examples of synaptic plasticity of inhibitory GABA (gamma-aminobutyric acid)-releasing synapses. Here we report long-term potentiation of GABA(A)-mediated synaptic transmission (LTP(GABA)) onto dopamine neurons of the rat brain ventral tegmental area, a region required for the development of drug addiction. This novel form of LTP is heterosynaptic, requiring postsynaptic NMDA (N-methyl-d-aspartate) receptor activation at glutamate synapses, but resulting from increased GABA release at neighbouring inhibitory nerve terminals. NMDA receptor activation produces nitric oxide, a retrograde signal released from the postsynaptic dopamine neuron. Nitric oxide initiates LTP(GABA) by activating guanylate cyclase in GABA-releasing nerve terminals. Exposure to morphine both in vitro and in vivo prevents LTP(GABA). Whereas brief treatment with morphine in vitro blocks LTP(GABA) by inhibiting presynaptic glutamate release, in vivo exposure to morphine persistently interrupts signalling from nitric oxide to guanylate cyclase. These neuroadaptations to opioid drugs might contribute to early stages of addiction, and may potentially be exploited therapeutically using drugs targeting GABA(A) receptors.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
233 |
2
|
Nugent FS, Kauer JA. LTP of GABAergic synapses in the ventral tegmental area and beyond. J Physiol 2007; 586:1487-93. [PMID: 18079157 DOI: 10.1113/jphysiol.2007.148098] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
One of the mechanisms by which the experience-dependent reorganization of neural circuitry can occur is through changes in synaptic strength. Almost every excitatory synapse in the mammalian brain exhibits LTP (long-term potentiation) or LTD (long-term depression), two cellular mechanisms of synaptic plasticity. However, LTP and LTD have been reported much more rarely at fast inhibitory GABA(A) receptor synapses. Our recent study suggests that in vivo morphine initiates a long-lasting alteration of GABAergic synapses in the ventral tegmental area (VTA) by blocking the mechanisms required for LTP of GABAergic synapses. Here we put this work into the context of other examples of synaptic plasticity at GABAergic synapses.
Collapse
|
Review |
18 |
66 |
3
|
Abstract
Drugs of abuse usurp the mechanisms underlying synaptic plasticity in areas of the brain, a process that may contribute to the development of addiction. We previously reported that GABAergic synapses onto dopaminergic neurons in the ventral tegmental area (VTA) exhibit long-term potentiation (LTP(GABA)) blocked by in vivo exposure to morphine. The presynaptically maintained LTP requires the retrogradely released nitric oxide (NO) to activate a presynaptic cGMP signaling cascade. Previous work reported that inhibitory GABA(A) receptor synapses in the VTA are also potentiated by cAMP. Here, we explored the interactions between cGMP-dependent (PKG) and cAMP-dependent (PKA) protein kinases in the regulation of these GABAergic synapses and LTP(GABA). Activation of PKG was required for NO-cGMP signaling and was also essential for the induction of synaptically elicited LTP(GABA), but not for its maintenance. Synapses containing GABA(A) receptors were potentiated by NO-cGMP signaling, whereas synapses containing GABA(B) receptors on the same cells were not potentiated. Moreover, although the cAMP-PKA system potentiated GABA(A) synapses, synaptically induced LTP(GABA) was independent of PKA activation. Surprisingly, however, raising cGMP levels saturated potentiation of these synapses, precluding further potentiation by cAMP and suggesting a convergent end point for both signaling pathways in the regulation of GABAergic release. We further found that persistent GABAergic synaptic modifications observed with in vivo morphine did not involve the presynaptic cAMP-PKA cascade. Taken together, our data suggest a synapse-specific role for NO-cGMP-PKG signaling pathway in opioid-induced plasticity of VTA GABA(A) synapses.
Collapse
|
research-article |
16 |
54 |
4
|
Authement ME, Langlois LD, Shepard RD, Browne CA, Lucki I, Kassis H, Nugent FS. A role for corticotropin-releasing factor signaling in the lateral habenula and its modulation by early-life stress. Sci Signal 2018; 11:11/520/eaan6480. [PMID: 29511121 DOI: 10.1126/scisignal.aan6480] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Centrally released corticotropin-releasing factor or hormone (extrahypothalamic CRF or CRH) in the brain is involved in the behavioral and emotional responses to stress. The lateral habenula (LHb) is an epithalamic brain region involved in value-based decision-making and stress evasion. Through its inhibition of dopamine-mediated reward circuitry, the increased activity of the LHb is associated with addiction, depression, schizophrenia, and behavioral disorders. We found that extrahypothalamic CRF neurotransmission increased neuronal excitability in the LHb. Through its receptor CRFR1 and subsequently protein kinase A (PKA), CRF application increased the intrinsic excitability of LHb neurons by affecting changes in small-conductance SK-type and large-conductance BK-type K+ channels. CRF also reduced inhibitory γ-aminobutyric acid-containing (GABAergic) synaptic transmission onto LHb neurons through endocannabinoid-mediated retrograde signaling. Maternal deprivation is a severe early-life stress that alters CRF neural circuitry and is likewise associated with abnormal mental health later in life. LHb neurons from pups deprived of maternal care exhibited increased intrinsic excitability, reduced GABAergic transmission, decreased abundance of SK2 channel protein, and increased activity of PKA, without any substantial changes in Crh or Crhr1 expression. Furthermore, maternal deprivation blunted the response of LHb neurons to subsequent, acute CRF exposure. Activating SK channels or inhibiting postsynaptic PKA activity prevented the effects of both CRF and maternal deprivation on LHb intrinsic excitability, thus identifying potential pharmacological targets to reverse central CRF circuit dysregulation in patients with associated disorders.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
52 |
5
|
Dacher M, Nugent FS. Opiates and plasticity. Neuropharmacology 2011; 61:1088-96. [DOI: 10.1016/j.neuropharm.2011.01.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/07/2011] [Accepted: 01/17/2011] [Indexed: 11/30/2022]
|
|
14 |
48 |
6
|
Dacher M, Nugent FS. Morphine-induced modulation of LTD at GABAergic synapses in the ventral tegmental area. Neuropharmacology 2010; 61:1166-71. [PMID: 21129388 DOI: 10.1016/j.neuropharm.2010.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/02/2010] [Accepted: 11/11/2010] [Indexed: 11/26/2022]
Abstract
Adaptive behaviors often require the learning of appropriate responses to rewarding stimuli, yet aberrant learning processes can lead to serious diseases such as addiction. Dopamine (DA) neurons of the ventral tegmental area (VTA) play an essential role in the treatment of rewarding stimuli, and they exhibit plasticity in response to such stimuli, but also to drugs of abuse. Previously we discovered a form of presynaptic nitric oxide (NO)-mediated long-term potentiation (LTP(GABA)) at GABAergic synapses onto VTA DA neurons that is prevented with morphine in vivo 24 h after exposure. Here we investigated whether the same GABAergic synapses are capable of exhibiting long-term depression (LTD in addition to LTP(GABA)) and its possible modulation by morphine in vivo. We found that indeed the efficacy of VTA GABAergic synapses can be down-regulated through induction of a novel form of LTD (i.e., LTD(GABA)) in response to synaptic stimulation. Paired pulse ratio (PPR) and coefficient of variance (CV) analyses of evoked IPSCs confirmed that this plasticity may be postsynaptic. Consistently, LTD(GABA) did not involve presynaptic cannabinoid CB₁ receptors (CB₁Rs). Moreover, NMDAR activation was not necessary for LTD(GABA). However, blockade of D₂ dopamine receptors (D₂R) significantly attenuated LTD(GABA) proposing a novel synaptic mechanism for the regulation of excitability of DA neurons by endogenous DA and D₂R activation. Interestingly, 24 h after a single in vivo exposure to morphine, LTD(GABA) was absent in slices from morphine-treated rats but unaffected in slices from saline-treated rats, confirming a bidirectional impact of morphine on GABAergic synaptic plasticity in the VTA. The control of bidirectional GABAergic plasticity by morphine in the VTA may represent the neural correlates necessary for the addictive properties of opiates.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
35 |
7
|
Shepard RD, Gouty S, Kassis H, Berenji A, Zhu W, Cox BM, Nugent FS. Targeting histone deacetylation for recovery of maternal deprivation-induced changes in BDNF and AKAP150 expression in the VTA. Exp Neurol 2018; 309:160-168. [PMID: 30102916 DOI: 10.1016/j.expneurol.2018.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/17/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Severe early life stressors increase the probability of developing psychiatric disorders later in life through modifications in neuronal circuits controlling brain monoaminergic signaling. Our previous work demonstrated that 24 h maternal deprivation (MD) in male Sprague Dawley rats modifies dopamine (DA) signaling from the ventral tegmental area (VTA) through changes at GABAergic synapses that were reversible by in vitro histone deacetylase (HDAC) inhibition which led to restoration of the scaffold A-kinase anchoring protein (AKAP150) signaling and subsequently recovered GABAergic plasticity (Authement et al., 2015). Using a combination of in situ hybridization, Western blots and immunohistochemistry, we confirmed that MD-induced epigenetic modifications at the level of histone acetylation were associated with an upregulation of HDAC2. MD also increased Akap5 mRNA levels in the VTA. Western blot analysis of AKAP150 protein expression showed an increase in synaptic levels of AKAP150 protein in the VTA with an accompanying decrease in synaptic levels of protein kinase A (PKA). Moreover, the abundance of mature brain-derived neurotrophic factor (BDNF) protein of VTA tissues from MD rats was significantly lower than in control groups. In vivo systemic injection with a selective class I HDAC inhibitor (CI-994) was sufficient to reverse MD-induced histone hypoacetylation in the VTA for 24 h after the injection. Furthermore, HDAC inhibition normalized the levels of mBDNF and AKAP150 proteins at 24 h. Our data suggest that HDAC-mediated targeting of BDNF and AKAP-dependent local signaling within VTA could provide novel therapeutics for prevention of later-life psychopathology.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
32 |
8
|
Shepard RD, Langlois LD, Browne CA, Berenji A, Lucki I, Nugent FS. Ketamine Reverses Lateral Habenula Neuronal Dysfunction and Behavioral Immobility in the Forced Swim Test Following Maternal Deprivation in Late Adolescent Rats. Front Synaptic Neurosci 2018; 10:39. [PMID: 30425634 PMCID: PMC6218426 DOI: 10.3389/fnsyn.2018.00039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence suggests that the long-term effects of adverse early life stressors on vulnerability to drug addiction and mood disorders are related to dysfunction of brain monoaminergic signaling in reward circuits. Recently, there has been a growing interest in the lateral habenula (LHb) as LHb dysfunction is linked to the development of mental health disorders through monoaminergic dysregulation within brain reward/motivational circuits and may represent a critical target for novel anti-depressants, such as ketamine. Here, we show that maternal deprivation (MD), a severe early life stressor, increases LHb intrinsic excitability and LHb bursting activity, and is associated with the development of increased immobility in the forced swim test (FST) in late-adolescent male rats. A single in vivo injection of ketamine is sufficient to exert prolonged antidepressant effects through reversal of this early life stress-induced LHb neuronal dysfunction and the response in the FST. Our assessment of ketamine’s long-lasting beneficial effects on reversal of MD-associated changes in LHb neuronal function and behavior highlights the critical role of the LHb in pathophysiology of depression associated with severe early life stress and in response to novel fast-acting antidepressants.
Collapse
|
Journal Article |
7 |
32 |
9
|
Abstract
Opioids are among the most effective pain relievers; however, their abuse has been on the rise worldwide evident from an alarming increase in accidental opioid overdoses. This demands for an urgent increase in scientific endeavors for better understanding of main cellular mechanisms and circuits involved in opiate addiction. Preclinical studies strongly suggest that memories associated with positive and negative opioid experiences are critical in promoting compulsive opiate-seeking and opiate-taking behaviors, and relapse. Particular focus on synaptic plasticity as the cellular correlate of learning and memory has rapidly evolved in drug addiction field over the past two decades. Several critical addiction-related brain areas are identified, one of which is the ventral tegmental area (VTA), an area intensively studied as the initial locus for drug reward. Here, we provide an update to our previous review on "Opiates and Plasticity" highlighting the most recent discoveries of synaptic plasticity associated with opiates in the VTA. Electrophysiological studies of plasticity of addiction to date have been invaluable in addressing learning processes and mechanisms that underlie motivated and addictive behaviors, and now with the availability of powerful technologies of transgenic approaches and optogenetics, circuit-based studies hold high promise in fostering synaptic studies of opiate addiction.
Collapse
|
Review |
8 |
32 |
10
|
Edwards JG, Gibson HE, Jensen T, Nugent F, Walther C, Blickenstaff J, Kauer JA. A novel non-CB1/TRPV1 endocannabinoid-mediated mechanism depresses excitatory synapses on hippocampal CA1 interneurons. Hippocampus 2010; 22:209-21. [PMID: 21069781 DOI: 10.1002/hipo.20884] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2010] [Indexed: 11/06/2022]
Abstract
Endocannabinoids (eCBs) mediate various forms of synaptic plasticity at excitatory and inhibitory synapses in the brain. The eCB anandamide binds to several receptors including the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid receptor 1 (CB1). We recently identified that TRPV1 is required for long-term depression at excitatory synapses on CA1 hippocampal stratum radiatum interneurons. Here we performed whole-cell patch clamp recordings from CA1 stratum radiatum interneurons in rat brain slices to investigate the effect of the eCB anandamide on excitatory synapses as well as the involvement of Group I metabotropic glutamate receptors (mGluRs), which have been reported to produce eCBs endogenously. Application of the nonhydrolysable anandamide analog R-methanandamide depressed excitatory transmission to CA1 stratum radiatum interneurons by ∼50%. The Group I mGluR agonist DHPG also depressed excitatory glutamatergic transmission onto interneurons to a similar degree, and this depression was blocked by the mGluR5 antagonist MPEP (10 μM) but not by the mGluR1 antagonist CPCCOEt (50 μM). Interestingly, however, neither DHPG-mediated nor R-methanandamide-mediated depression was blocked by the TRPV1 antagonist capsazepine (10 μM), the CB1 antagonist AM-251 (2 μM) or a combination of both, suggesting the presence of a novel eCB receptor or anandamide target at excitatory hippocampal synapses. DHPG also occluded R-methanandamide depression, suggesting the possibility that the two drugs elicit synaptic depression via a shared signaling mechanism. Collectively, this study illustrates a novel CB1/TRPV1-independent eCB pathway present in the hippocampus that mediates depression at excitatory synapses on CA1 stratum radiatum interneurons.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
31 |
11
|
Authement ME, Langlois LD, Kassis H, Gouty S, Dacher M, Shepard RD, Cox BM, Nugent FS. Morphine-induced synaptic plasticity in the VTA is reversed by HDAC inhibition. J Neurophysiol 2016; 116:1093-103. [PMID: 27306674 DOI: 10.1152/jn.00238.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
Dopamine (DA) dysfunction originating from the ventral tegmental area (VTA) occurs as a result of synaptic abnormalities following consumption of drugs of abuse and underlies behavioral plasticity associated with drug abuse. Drugs of abuse can cause changes in gene expression through epigenetic mechanisms in the brain that underlie some of the lasting neuroplasticity and behavior associated with addiction. Here we investigated the function of histone acetylation and histone deacetylase (HDAC)2 in the VTA in recovery of morphine-induced synaptic modifications following a single in vivo exposure to morphine. Using a combination of immunohistochemistry, Western blot, and whole cell patch-clamp recording in rat midbrain slices, we show that morphine increased HDAC2 activity in VTA DA neurons and reduced histone H3 acetylation at lysine 9 (Ac-H3K9) in the VTA 24 h after the injection. Morphine-induced synaptic changes at glutamatergic synapses involved endocannabinoid signaling to reduce GABAergic synaptic strength onto VTA DA neurons. Both plasticities were recovered by in vitro incubation of midbrain slices with a class I-specific HDAC inhibitor (HDACi), CI-994, through an increase in acetylation of histone H3K9. Interestingly, HDACi incubation also increased levels of Ac-H3K9 and triggered GABAergic and glutamatergic plasticities in DA neurons of saline-treated rats. Our results suggest that acute morphine-induced changes in VTA DA activity and synaptic transmission engage HDAC2 activity locally in the VTA to maintain synaptic modifications through histone hypoacetylation.
Collapse
|
Journal Article |
9 |
29 |
12
|
Simmons SC, Shepard RD, Gouty S, Langlois LD, Flerlage WJ, Cox BM, Nugent FS. Early life stress dysregulates kappa opioid receptor signaling within the lateral habenula. Neurobiol Stress 2020; 13:100267. [PMID: 33344720 PMCID: PMC7739170 DOI: 10.1016/j.ynstr.2020.100267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/16/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
The lateral habenula (LHb) is an epithalamic brain region associated with value-based decision making and stress evasion through its modulation of dopamine (DA)-mediated reward circuitry. Specifically, increased activity of the LHb is associated with drug addiction, schizophrenia and stress-related disorders such as depression, anxiety and posttraumatic stress disorder. Dynorphin (Dyn)/Kappa opioid receptor (KOR) signaling is a mediator of stress response in reward circuitry. Previously, we have shown that maternal deprivation (MD), a severe early life stress, increases LHb spontaneous neuronal activity and intrinsic excitability while blunting the response of LHb neurons to extrahypothalamic corticotropin-releasing factor (CRF) signaling, another stress mediator. CRF pathways also interact with Dyn/KOR signaling. Surprisingly, there has been little study of direct KOR regulation of the LHb despite its distinct role in stress, reward and aversion processing. To test the functional role of Dyn/KOR signaling in the LHb, we utilized ex-vivo electrophysiology combined with pharmacological tools in rat LHb slices. We show that activation of KORs by a KOR agonist (U50,488) exerted differential effects on the excitability of two distinct sub-populations of LHb neurons that differed in their expression of hyperpolarization-activated cation currents (HCN, Ih). Specifically, KOR stimulation increased neuronal excitability in LHb neurons with large Ih currents (Ih+) while decreasing neuronal excitability in small/negative Ih (Ih-) neurons. We found that an intact fast-synaptic transmission was required for the effects of U50,488 on the excitability of both Ih- and Ih+ LHb neuronal subpopulations. While AMPAR-, GABAAR-, or NMDAR-mediated synaptic transmission alone was sufficient to mediate the effects of U50,488 on excitability of Ih- neurons, either GABAAR- or NMDAR-mediated synaptic transmission could mediate these effects in Ih+ neurons. Consistently, KOR activation also altered both glutamatergic and GABAergic synaptic transmission where stimulation of presynaptic KORs uniformly suppressed glutamate release onto LHb neurons while primarily decreased or in some cases increased GABA release. We also found that MD significantly increased immunolabeled Dyn (the endogenous KOR agonist) labeling in neuronal fibers in LHb while significantly decreasing mRNA levels of KORs in LHb tissues compared to those from non-maternally deprived (non-MD) control rats. Moreover, the U50,488-mediated increase in LHb neuronal firing observed in non-MD rats was absent following MD. Altogether, this is the first demonstration of the existence of functional Dyn/KOR signaling in the LHb that can be modulated in response to severe early life stressors such as MD.
Collapse
Key Words
- Dynorphin
- Early life stress
- KOR
- Kappa opioid receptor
- Kappa opioid receptor, (KOR)
- LHb
- Lateral habenula
- action potential, (AP)
- adverse childhood experiences, (ACE)
- artificial cerebral spinal fluid, (ACSF)
- corticotropin-releasing factor, (CRF)
- dopamine, (DA)
- dynorphin, (Dyn)
- early life stress, (ELS)
- fastafterhyperpolarization, (fAHP)
- hyperpolarization activated cation current, (HCN, Ih)
- input resistance, (Rin)
- inter-event interval, (IEI)
- maternal deprivation, (MD)
- medium afterhyperpolarization, (mAHP)
- miniature excitatory postsynaptic current, (mEPSC)
- miniature inhibitory postsynaptic current, (mIPSC)
- non-maternally deprived, (non-MD)
- nucleus accumbens, (NAc)
- postnatal age, (PN)
- raphe nuclei, (RN)
- rostromedial tegmental area, (RMTg)
- serotonin, (5HT)
- ventral tegmental area, (VTA)
Collapse
|
research-article |
5 |
24 |
13
|
Shepard RD, Langlois LD, Authement ME, Nugent FS. Histone deacetylase inhibition reduces ventral tegmental area dopamine neuronal hyperexcitability involving AKAP150 signaling following maternal deprivation in juvenile male rats. J Neurosci Res 2020; 98:1457-1467. [PMID: 32162391 DOI: 10.1002/jnr.24613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022]
Abstract
Traumatic early life stress (ELS) is linked to dopamine (DA) dysregulation which increases the probability of developing psychiatric disorders in adolescence and adulthood. Our prior studies demonstrated that a severe early life stressor, a 24-hr maternal deprivation (MD) in juvenile male rats, could lead to altered DA signaling from the ventral tegmental area (VTA) due to impairment of GABAergic synaptic plasticity (promoting GABAergic long-term depression, LTD) with concomitant changes in the abundance of synaptic regulators including A-kinase anchoring protein (AKAP150). Importantly, these MD-induced synaptic changes in the VTA were accompanied by upregulation of histone deacetylase 2, histone hypoacetylation, and were reversible by HDAC inhibition. Using cell-attached and whole-cell patch clamp recordings, we found that MD stress also increased spontaneous VTA DA neuronal activity and excitability in juvenile male rats without affecting intrinsic excitability. Postsynaptic chemical disruption of AKAP150 and protein kinase A interaction increased VTA DA neuronal excitability in control non-MD rats mimicking the effects of MD on DA cell excitability with similar changes in membrane properties. Interestingly, this disruption decreased MD-induced VTA DA hyperexcitability. This MD-induced DA neuronal hyperexcitability could also be normalized at 24 hr after injection of the class 1 HDAC inhibitor, CI-994. Altogether, our data suggest that AKAP150 plays a critical role in the regulation of VTA DA neuronal excitability and that HDAC-mediated targeting of AKAP150 signaling could normalize VTA DA dysfunction following ELS thereby providing novel therapeutic targets for prevention of later life psychopathology.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
22 |
14
|
Baker PM, Mathis V, Lecourtier L, Simmons SC, Nugent FS, Hill S, Mizumori SJY. Lateral Habenula Beyond Avoidance: Roles in Stress, Memory, and Decision-Making With Implications for Psychiatric Disorders. Front Syst Neurosci 2022; 16:826475. [PMID: 35308564 PMCID: PMC8930415 DOI: 10.3389/fnsys.2022.826475] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 01/02/2023] Open
Abstract
In this Perspective review, we highlight some of the less explored aspects of lateral habenula (LHb) function in contextual memory, sleep, and behavioral flexibility. We provide evidence that LHb is well-situated to integrate different internal state and multimodal sensory information from memory-, stress-, motivational-, and reward-related circuits essential for both survival and decision making. We further discuss the impact of early life stress (ELS) on LHb function as an example of stress-induced hyperactivity and dysregulation of neuromodulatory systems within the LHb that promote anhedonia and motivational deficits following ELS. We acknowledge that recent technological advancements in manipulation and recording of neural circuits in simplified and well-controlled behavioral paradigms have been invaluable in our understanding of the critical role of LHb in motivation and emotional regulation as well as the involvement of LHb dysfunction in stress-induced psychopathology. However, we also argue that the use of ethologically-relevant behaviors with consideration of complex aspects of decision-making is warranted for future studies of LHb contributions in a wide range of psychiatric illnesses. We conclude this Perspective with some of the outstanding issues for the field to consider where a multi-systems approach is needed to investigate the complex nature of LHb circuitry interactions with environmental stimuli that predisposes psychiatric disorders.
Collapse
|
|
3 |
20 |
15
|
Kodangattil JN, Dacher M, Authement ME, Nugent FS. Spike timing-dependent plasticity at GABAergic synapses in the ventral tegmental area. J Physiol 2013; 591:4699-710. [PMID: 23897235 DOI: 10.1113/jphysiol.2013.257873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Persistent changes in excitatory and inhibitory synaptic strengths to the ventral tegmental area (VTA) dopamine (DA) neurons in response to addictive drugs may underlie the transition from casual to compulsive drug use. While an enormous amount of work has been done in the area of glutamatergic plasticity of the VTA, little is known regarding the learning rules governing GABAergic plasticity in the VTA. Spike timing-dependent plasticity, STDP, has attracted considerable attention primarily due to its potential roles in processing and storage of information in the brain and there is emerging evidence for the existence of STDP at inhibitory synapses. We therefore used whole-cell recordings in rat midbrain slices to investigate whether near-coincident pre- and postsynaptic firing induces a lasting change in synaptic efficacy of VTA GABAergic synapses. We found that a Hebbian form of STDP including long-term potentiation (LTP) and long-term depression (LTD) can be induced at GABAergic synapses onto VTA DA neurons and relies on the precise temporal order of pre- and postsynaptic spiking. Importantly, GABAergic STDP is heterosynaptic (NMDA receptor dependent): triggered by correlated activities of the presynaptic glutamatergic input and postsynaptic DA cells. GABAergic STDP is postsynaptic and has an associative component since pre- or postsynaptic spiking per se did not induce STDP. STDP of GABAergic synapses in the VTA provides physiologically relevant forms of inhibitory plasticity that may underlie natural reinforcement of reward-related behaviours. Moreover, this form of inhibitory plasticity may mediate some of the reinforcing, aversive and addictive properties of drugs of abuse.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
19 |
16
|
Nugent FS, Hwong AR, Udaka Y, Kauer JA. High-frequency afferent stimulation induces long-term potentiation of field potentials in the ventral tegmental area. Neuropsychopharmacology 2008; 33:1704-12. [PMID: 17851541 DOI: 10.1038/sj.npp.1301561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Excitatory synapses on dopamine neurons in the VTA can undergo both long-term potentiation and depression. Additionally, drug-induced plasticity has been found at VTA synapses, and is proposed to play a role in reward-related learning and addiction by modifying dopamine cell firing. LTP at these synapses is difficult to generate experimentally in that it requires an undisturbed intracellular milieu and is often small in magnitude. Here, we demonstrate the induction of LTP as a property of evoked field potentials within the VTA. Excitatory field potentials were recorded extracellularly from VTA neurons in acute horizontal midbrain slices. Using extracellular and intracellular recording techniques, we found that evoked field potentials originate within the VTA itself and are largely composed of AMPA receptor-mediated EPSPs and action potentials triggered by activation of glutamatergic synapses on both dopamine and GABA neurons. High-frequency afferent stimulation (HFS) induced LTP of the field potential. The induction of this LTP was blocked by application of the NMDAR antagonist, d-APV, prior to HFS. As reported previously, glutamatergic synapses on GABA neurons did not express LTP while those on dopamine neurons did. We conclude that the potentiation of glutamatergic synapses on dopamine neurons is a major contributor to NMDA receptor-dependent LTP of the field potential. Field potential recordings may provide a convenient approach to explore the basic electrophysiological properties of VTA neurons and the development of addiction-related processes in this brain region.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
18 |
17
|
Shepard RD, Nugent FS. Early Life Stress- and Drug-Induced Histone Modifications Within the Ventral Tegmental Area. Front Cell Dev Biol 2020; 8:588476. [PMID: 33102491 PMCID: PMC7554626 DOI: 10.3389/fcell.2020.588476] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Psychiatric illnesses are a major public health concern due to their prevalence and heterogeneity of symptom presentation resulting from a lack of efficacious treatments. Although dysregulated dopamine (DA) signaling has been observed in a myriad of psychiatric conditions, different pathophysiological mechanisms have been implicated which impede the development of adequate treatments that work across all patient populations. The ventral tegmental area (VTA), a major source of DA neurons in the brain reward pathway, has been shown to have altered activity that contributes to reward dysregulation in mental illnesses and drug addiction. It has now become better appreciated that epigenetic mechanisms contribute to VTA DA dysfunction, such as through histone modifications, which dynamically regulate transcription rates of critical genes important in synaptic plasticity underlying learning and memory. Here, we provide a focused review on differential histone modifications within the VTA observed in both humans and animal models, as well as their relevance to disease-based phenotypes, specifically focusing on epigenetic dysregulation of histones in the VTA associated with early life stress (ELS) and drugs of abuse. Locus- and cell-type-specific targeting of individual histone modifications at specific genes within the VTA presents novel therapeutic targets which can result in greater efficacy and better long-term health outcomes in susceptible individuals that are at increased risk for substance use and psychiatric disorders.
Collapse
|
Review |
5 |
17 |
18
|
Costelloe EM, Guinane M, Nugent F, Halley O, Parsons C. An audit of drug shortages in a community pharmacy practice. Ir J Med Sci 2014; 184:435-40. [PMID: 24859372 DOI: 10.1007/s11845-014-1139-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/05/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND There are no firm data on drug shortages in Irish community pharmacy. This prospective observational study aimed to characterise the drug shortage problem in an Irish community pharmacy. AIMS The primary aim was to determine numbers and durations of drug shortages. Secondary aims included comparing these shortages with Irish Pharmacy Union (IPU) drug shortage lists and determining the frequency with which notifications were received prior to shortages. Further secondary aims were to examine relationships between causes of drug shortages and drug costs and between causes of drug shortages and shortage durations. METHODS The study took place in a community pharmacy in a Limerick City suburb between October 2012 and February 2013. Data were collected daily regarding drugs that were dispensed, but unavailable to purchase. Suppliers/manufacturers provided data on the reasons for shortages. RESULTS 65/1,232 dispensed drugs (5.3%) were in short supply over the study period. Median shortage duration was 13 days (interquartile range 4-32 days) and median cost was <euro>8.10. Numbers of unavailable drugs by month varied from 13 to 38. Monthly IPU drug shortage lists identified between six and eight of these shortages depending on the month. Two notifications were received from suppliers/manufacturers regarding shortages. Parallel exports had the highest mean costs (mean <euro>38.05) and manufacturing problems were associated with the longest durations (mean 57.44 days). CONCLUSIONS This study highlights the drug shortage problem in an Irish community pharmacy. We propose that enhanced communication between all stakeholders is the most worthwhile solution. Further studies are needed.
Collapse
|
Observational Study |
11 |
15 |
19
|
Flerlage WJ, Langlois LD, Rusnak M, Simmons SC, Gouty S, Armstrong RC, Cox BM, Symes AJ, Tsuda MC, Nugent FS. Involvement of Lateral Habenula Dysfunction in Repetitive Mild Traumatic Brain Injury-Induced Motivational Deficits. J Neurotrauma 2023; 40:125-140. [PMID: 35972745 PMCID: PMC9917318 DOI: 10.1089/neu.2022.0224] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Affective disorders including depression (characterized by reduced motivation, social withdrawal, and anhedonia), anxiety, and irritability are frequently reported as long-term consequences of mild traumatic brain injury (mTBI) in addition to cognitive deficits, suggesting a possible dysregulation within mood/motivational neural circuits. One of the important brain regions that control motivation and mood is the lateral habenula (LHb), whose hyperactivity is associated with depression. Here, we used a repetitive closed-head injury mTBI model that is associated with social deficits in adult male mice and explored the possible long-term alterations in LHb activity and motivated behavior 10-18 days post-injury. We found that mTBI increased the proportion of spontaneous tonically active LHb neurons yet decreased the proportion of LHb neurons displaying bursting activity. Additionally, mTBI diminished spontaneous glutamatergic and GABAergic synaptic activity onto LHb neurons, while synaptic excitation and inhibition (E/I) balance was shifted toward excitation through a greater suppression of GABAergic transmission. Behaviorally, mTBI increased the latency in grooming behavior in the sucrose splash test suggesting reduced self-care motivated behavior following mTBI. To show whether limiting LHb hyperactivity could restore motivational deficits in grooming behavior, we then tested the effects of Gi (hM4Di)-DREADD-mediated inhibition of LHb activity in the sucrose splash test. We found that chemogenetic inhibition of LHb glutamatergic neurons was sufficient to reverse mTBI-induced delays in grooming behavior. Overall, our study provides the first evidence for persistent LHb neuronal dysfunction due to an altered synaptic integration as causal neural correlates of dysregulated motivational states by mTBI.
Collapse
|
research-article |
2 |
14 |
20
|
Moses C, Hodgetts SI, Nugent F, Ben-Ary G, Park KK, Blancafort P, Harvey AR. Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing. Sci Rep 2020; 10:11393. [PMID: 32647121 PMCID: PMC7347541 DOI: 10.1038/s41598-020-68257-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
After damage to the adult mammalian central nervous system (CNS), surviving neurons have limited capacity to regenerate and restore functional connectivity. Conditional genetic deletion of PTEN results in robust CNS axon regrowth, while PTEN repression with short hairpin RNA (shRNA) improves regeneration but to a lesser extent, likely due to suboptimal PTEN mRNA knockdown using this approach. Here we employed the CRISPR/dCas9 system to repress PTEN transcription in neural cells. We targeted the PTEN proximal promoter and 5' untranslated region with dCas9 fused to the repressor protein Krüppel-associated box (KRAB). dCas9-KRAB delivered in a lentiviral vector with one CRISPR guide RNA (gRNA) achieved potent and specific PTEN repression in human cell line models and neural cells derived from human iPSCs, and induced histone (H)3 methylation and deacetylation at the PTEN promoter. The dCas9-KRAB system outperformed a combination of four shRNAs targeting the PTEN transcript, a construct previously used in CNS injury models. The CRISPR system also worked more effectively than shRNAs for Pten repression in rat neural crest-derived PC-12 cells, and enhanced neurite outgrowth after nerve growth factor stimulation. PTEN silencing with CRISPR/dCas9 epigenetic editing may provide a new option for promoting axon regeneration and functional recovery after CNS trauma.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
12 |
21
|
Langlois LD, Berman RY, Shepard RD, Simmons SC, Tsuda MC, Gouty S, Choi KH, Nugent FS. Potentiation of glutamatergic synaptic transmission onto lateral habenula neurons following early life stress and intravenous morphine self-administration in rats. Addict Biol 2022; 27:e13064. [PMID: 34036710 PMCID: PMC8613295 DOI: 10.1111/adb.13064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/06/2023]
Abstract
Early life stress presents an important risk factor for drug addiction and comorbid depression and anxiety through persistent effects on the mesolimbic dopamine pathways. Using an early life stress model for child neglect (a single 24 h episode of maternal deprivation, MD) in rats, recent published works from our lab show that MD induces dysfunction in the ventral tegmental area and its negative controller, the lateral habenula (LHb). MD-induced potentiation of glutamatergic synaptic transmission onto LHb neurons shifts the coordination of excitation/inhibition (E/I) balance towards excitation, resulting in an increase in the overall spontaneous neuronal activity with elevation in bursting and tonic firing, and in the intrinsic excitability of LHb neurons in early adolescent male rats. Here, we explored how MD affects intravenous morphine self-administration (MSA) acquisition and sucrose preference as well as glutamatergic synaptic function in LHb neurons of adult male rats self-administering morphine. We found that MD-induced increases in LHb neuronal and glutamatergic synaptic activity and E/I ratio persisted into adulthood. Moreover, MD significantly reduced morphine intake, triggered anhedonia-like behaviour in the sucrose preference test and was associated with persistent glutamatergic potentiation 24 h after the last MSA session. MSA also altered the decay time kinetics of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) currents in LHb neurons of control rats during this time period. Our data highlight that early life stress-induced glutamatergic plasticity in LHb may dampen the positive reinforcing and motivational properties of both natural rewards and opioids, and may contribute to the development of anhedonia and dysphoric states associated with opioids.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
11 |
22
|
Jacobson ML, Simmons SC, Wulf HA, Cheng H, Feng YH, Nugent FS, Browne CA, Lucki I. Protracted Effects of Ketamine Require Immediate Kappa Opioid Receptor Activation and Long‐Lasting Desensitization. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.04214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
5 |
4 |
23
|
Shepard RD, Nugent FS. Targeting Endocannabinoid Signaling in the Lateral Habenula as an Intervention to Prevent Mental Illnesses Following Early Life Stress: A Perspective. Front Synaptic Neurosci 2021; 13:689518. [PMID: 34122037 PMCID: PMC8194269 DOI: 10.3389/fnsyn.2021.689518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
Adverse events and childhood trauma increase the susceptibility towards developing psychiatric disorders (substance use disorder, anxiety, depression, etc.) in adulthood. Although there are treatment strategies that have utility in combating these psychiatric disorders, little attention is placed on how to therapeutically intervene in children exposed to early life stress (ELS) to prevent the development of later psychopathology. The lateral habenula (LHb) has been a topic of extensive investigation in mental health disorders due to its prominent role in emotion and mood regulation through modulation of brain reward and motivational neural circuits. Importantly, rodent models of ELS have been shown to promote LHb dysfunction. Moreover, one of the potential mechanisms contributing to LHb neuronal and synaptic dysfunction involves endocannabinoid (eCB) signaling, which has been observed to critically regulate emotion/mood and motivation. Many pre-clinical studies targeting eCB signaling suggest that this neuromodulatory system could be exploited as an intervention therapy to halt maladaptive processes that promote dysfunction in reward and motivational neural circuits involving the LHb. In this perspective article, we report what is currently known about the role of eCB signaling in LHb function and discuss our opinions on new research directions to determine whether the eCB system is a potentially attractive therapeutic intervention for the prevention and/or treatment of ELS-associated psychiatric illnesses.
Collapse
|
Journal Article |
4 |
4 |
24
|
Langlois LD, Dacher M, Nugent FS. Dopamine Receptor Activation Is Required for GABAergic Spike Timing-Dependent Plasticity in Response to Complex Spike Pairing in the Ventral Tegmental Area. Front Synaptic Neurosci 2018; 10:32. [PMID: 30297996 PMCID: PMC6160785 DOI: 10.3389/fnsyn.2018.00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/30/2018] [Indexed: 01/06/2023] Open
Abstract
One of the most influential synaptic learning rules explored in the past decades is activity dependent spike-timing-dependent plasticity (STDP). In STDP, synapses are either potentiated or depressed based on the order of pre- and postsynaptic neuronal activation within narrow, milliseconds-long, time intervals. STDP is subject to neuromodulation by dopamine (DA), a potent neurotransmitter that significantly impacts synaptic plasticity and reward-related behavioral learning. Previously, we demonstrated that GABAergic synapses onto ventral tegmental area (VTA) DA neurons are able to express STDP (Kodangattil et al., 2013), however it is still unclear whether DA modulates inhibitory STDP in the VTA. Here, we used whole-cell recordings in rat midbrain slices to investigate whether DA D1-like and/or D2-like receptor (D1R/D2R) activation is required for induction of STDP in response to a complex pattern of spiking. We found that VTA but not Substantia nigra pars compact (SNc) DA neurons exhibit long-term depression (LTDGABA) in response to a combination of positive (pre-post) and negative (post-pre) timing of spiking (a complex STDP protocol). Blockade of either D1Rs or D2Rs prevented the induction of LTDGABA while activation of D1Rs did not affect the plasticity in response to this complex STDP protocol in VTA DA neurons.Our data suggest that this DA-dependent GABAergic STDP is selectively expressed at GABAergic synapses onto VTA DA neurons which could be targeted by drugs of abuse to mediate drug-induced modulation of DA signaling within the VTA, as well as in VTA-projection areas, thereby affecting reward-related learning and drug-associated memories.
Collapse
|
Journal Article |
7 |
3 |
25
|
Langlois LD, Selvaraj P, Simmons SC, Gouty S, Zhang Y, Nugent FS. Repetitive mild traumatic brain injury induces persistent alterations in spontaneous synaptic activity of hippocampal CA1 pyramidal neurons. IBRO Neurosci Rep 2022; 12:157-162. [PMID: 35746968 PMCID: PMC9210462 DOI: 10.1016/j.ibneur.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion is the most common form of TBI which frequently results in persistent cognitive impairments and memory deficits in affected individuals [1]. Although most studies have investigated the role of hippocampal synaptic dysfunction in earlier time points following a single injury, the long-lasting effects of mTBI on hippocampal synaptic transmission following multiple brain concussions have not been well-elucidated. Using a repetitive closed head injury (3XCHI) mouse model of mTBI, we examined the alteration of spontaneous synaptic transmission onto hippocampal CA1 pyramidal neurons by recording spontaneous excitatory AMPA receptor (AMPAR)- and inhibitory GABAAR-mediated postsynaptic currents (sEPSCs and sIPSCs, respectively) in adult male mice 2-weeks following the injury. We found that mTBI potentiated postsynaptic excitatory AMPAR synaptic function while depressed postsynaptic inhibitory GABAAR synaptic function in CA1 pyramidal neurons. Additionally, mTBI slowed the decay time of AMPAR currents while shortened the decay time of GABAAR currents suggesting changes in AMPAR and GABAAR subunit composition by mTBI. On the other hand, mTBI reduced the frequency of sEPSCs while enhanced the frequency of sIPSCs resulting in a lower ratio of sEPSC/sIPSC frequency in CA1 pyramidal neurons of mTBI animals compared to sham animals. Altogether, our results suggest that mTBI induces persistent postsynaptic modifications in AMPAR and GABAAR function and their synaptic composition in CA1 neurons while triggering a compensatory shift in excitation/inhibition (E/I) balance of presynaptic drives towards more inhibitory synaptic drive to hippocampal CA1 cells. The persistent mTBI-induced CA1 synaptic dysfunction and E/I imbalance could contribute to deficits in hippocampal plasticity that underlies long-term hippocampal-dependent learning and memory deficits in mTBI patients long after the initial injury.
Collapse
|
|
3 |
2 |