1
|
Trinel PA, Maes E, Zanetta JP, Delplace F, Coddeville B, Jouault T, Strecker G, Poulain D. Candida albicans phospholipomannan, a new member of the fungal mannose inositol phosphoceramide family. J Biol Chem 2002; 277:37260-71. [PMID: 12138092 DOI: 10.1074/jbc.m202295200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathogenic yeast Candida albicans has the ability to synthesize unique sequences of beta-1,2-oligomannosides that act as adhesins, induce cytokine production, and generate protective antibodies. Depending on the growth conditions, beta-1,2-oligomannosides are associated with different carrier molecules in the cell wall. Structural evidence has been obtained for the presence of these residues in the polysaccharide moiety of the glycolipid, phospholipomannan (PLM). In this study, the refinement of purification techniques led to large quantities of PLM being extracted from Candida albicans cells. A combination of methanolysis, gas chromatography, mass spectrometry, and nuclear magnetic resonance analyses allowed the complete structure of PLM to be deduced. The lipid moiety was shown to consist of a phytoceramide associating a C(18)/C(20) phytosphingosine and C(25), C(26), or mainly C(24) hydroxy fatty acids. The spacer linking the glycan part was identified as a unique structure: -Man-P-Man-Ins-P-. Therefore, in contrast to the major class of membranous glycosphingolipids represented by mannose diinositol phosphoceramide, which is derived from mannose inositol phosphoceramide by the addition of inositol phosphate, PLM seems to be derived from mannose inositol phosphoceramide by the addition of mannose phosphate. In relation to a previous study of the glycan part of the molecule, the assignment of the second phosphorus position leads to the definition of PLM beta-1,2-oligomannosides as unbranched linear structures that may reach up to 19 residues in length. Therefore, PLM appears to be a new type of glycosphingolipid, which is glycosylated extensively through a unique spacer. The conferred hydrophilic properties allow PLM to diffuse into the cell wall in which together with mannan it presents C. albicans beta-1,2-oligomannosides to host cells.
Collapse
|
|
23 |
73 |
2
|
Mille C, Janbon G, Delplace F, Ibata-Ombetta S, Gaillardin C, Strecker G, Jouault T, Trinel PA, Poulain D. Inactivation of CaMIT1 inhibits Candida albicans phospholipomannan beta-mannosylation, reduces virulence, and alters cell wall protein beta-mannosylation. J Biol Chem 2004; 279:47952-60. [PMID: 15347680 DOI: 10.1074/jbc.m405534200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies on Candida albicans phospholipomannan have suggested a novel biosynthetic pathway for yeast glycosphingolipids. This pathway is thought to diverge from the usual pathway at the mannose-inositol-phospho-ceramide (MIPC) step. To confirm this hypothesis, a C. albicans gene homologue for the Saccharomyces cerevisiae SUR1 gene was identified and named MIT1 as it coded for GDP-mannose:inositol-phospho-ceramide mannose transferase. Two copies of this gene were disrupted. Western blots of cell extracts revealed that strain mit1Delta contained no PLM. Thin layer chromatography and mass spectrometry confirmed that mit1Delta did not synthesize MIPC, demonstrating a role of MIT1 in the mannosylation of C. albicans IPCs. As MIT1 disruption prevented downstream beta-1,2 mannosylation, mit1Delta represents a new C. albicans mutant affected in the expression of these specific virulence attributes, which act as adhesins/immunomodulators. mit1Delta was less virulent during both the acute and chronic phases of systemic infection in mice (75 and 50% reduction in mortality, respectively). In vitro, mit1Delta was not able to escape macrophage lysis through down-regulation of the ERK1/2 phosphorylation pathway previously shown to be triggered by PLM. Phenotypic analysis also revealed pleiotropic effects of MIT1 disruption. The most striking observation was a reduced beta-mannosylation of phosphopeptidomannan. Increased beta-mannosylation of mannoproteins was observed under growth conditions that prevented the association of beta-oligomannosides with phosphopeptidomannan, but not with PLM. This suggests that C. albicans has strong regulatory mechanisms associating beta-oligomannoses with different cell wall carrier molecules. These mechanisms and the impact of the different presentations of beta-oligomannoses on the host response need to be defined.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
53 |
3
|
Trinel PA, Plancke Y, Gerold P, Jouault T, Delplace F, Schwarz RT, Strecker G, Poulain D. The Candida albicans phospholipomannan is a family of glycolipids presenting phosphoinositolmannosides with long linear chains of beta-1,2-linked mannose residues. J Biol Chem 1999; 274:30520-6. [PMID: 10521433 DOI: 10.1074/jbc.274.43.30520] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a series of studies, we have shown that Candida albicans synthesizes a glycolipid, phospholipomannan (PLM), which reacted with antibodies specific for beta-1,2-oligomannosides and was biosynthetically labeled by [(3)H]mannose, [(3)H]palmitic acid, and [(32)P]phosphorus. PLM has also been shown to be released from the C. albicans cell wall and to bind to and stimulate macrophage cells. In this study, we show by thin layer chromatography scanning of metabolically radiolabeled extracts that the C. albicans PLM corresponds to a family of mannose and inositol co-labeled glycolipids. We describe the purification process of the molecule and the release of its glycan fraction through alkaline hydrolysis. Analysis of this glycan fraction by radiolabeling and methylation-methanolysis confirmed the presence of inositol and of 1, 2-linked mannose units. NMR studies evidenced linear chains of beta-1,2-oligomannose as the major PLM components. Mass spectrometry analysis revealed that these chains were present in phosphoinositolmannosides with degrees of polymerization varying from 8 to 18 sugar residues. The PLM appears as a new type of eukaryotic inositol-tagged glycolipid in relationship to both the absence of glucosamine and the organization of its glycan chains. This first structural evidence for the presence of beta-1, 2-oligomannosides in a glycoconjugate other than the C. albicans phosphopeptidomannan may have some pathophysiological relevance to the adhesive, protective epitope, and signaling properties thus far established for these residues.
Collapse
|
|
26 |
39 |
4
|
Delplace F, Leuliet J, Leviex D. A reaction engineering approach to the analysis of fouling by whey proteins of a six-channels-per-pass plate heat exchanger. J FOOD ENG 1997. [DOI: 10.1016/s0260-8774(97)00068-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
|
28 |
27 |
5
|
Maes E, Florea D, Delplace F, Lemoine J, Plancke Y, Strecker G. Structural analysis of the oligosaccharide-alditols released by reductive beta-elimination from oviducal mucins of Rana temporaria. Glycoconj J 1997; 14:127-46. [PMID: 9076522 DOI: 10.1023/a:1018577302255] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The carbohydrate chains of the mucins which constitute the jelly coat surrounding the eggs of Rana temporaria were released by alkaline borohydride treatment. Neutral and acidic oligosaccharide-alditols were purified by ion-exchange chromatography and HPLC. From the structural analysis, based upon 1H and 13C-NMR spectroscopy in combination with MALDI-TOF, the following glycan units are proposed.
Collapse
|
|
28 |
27 |
6
|
Mille C, Fradin C, Delplace F, Trinel PA, Masset A, François N, Coddeville B, Bobrowicz P, Jouault T, Guerardel Y, Wildt S, Janbon G, Poulain D. Members 5 and 6 of the Candida albicans BMT family encode enzymes acting specifically on β-mannosylation of the phospholipomannan cell-wall glycosphingolipid. Glycobiology 2012; 22:1332-42. [PMID: 22745283 DOI: 10.1093/glycob/cws097] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A family of nine genes encoding proteins involved in the synthesis of β-1,2 mannose adhesins of Candida albicans has been identified. Four of these genes, BMT1-4, encode enzymes acting stepwise to add β-mannoses on to cell-wall phosphopeptidomannan (PPM). None of these acts on phospholipomannan (PLM), a glycosphingolipid member of the mannose-inositol-phosphoceramide family, which contributes with PPM to β-mannose surface expression. We show that deletion of BMT5 and BMT6 led to a dramatic reduction of PLM glycosylation and accumulation of PLM with a truncated β-oligomannoside chain, respectively. Disruptions had no effect on sphingolipid biosynthesis and on PPM β-mannosylation. β-Mannose surface expression was not affected, confirming that β-mannosylation is a process based on specificity of acceptor molecules, but liable to global regulation.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
23 |
7
|
Trinel PA, Delplace F, Maes E, Zanetta JP, Mille C, Coddeville B, Jouault T, Strecker G, Poulain D. Candida albicans serotype B strains synthesize a serotype-specific phospholipomannan overexpressing a beta-1,2-linked mannotriose. Mol Microbiol 2006; 58:984-98. [PMID: 16262785 DOI: 10.1111/j.1365-2958.2005.04890.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Candida albicans strains consist of serotypes A and B depending on the presence of terminal beta-1,2-linked mannose residues in the acid-stable part of serotype A phosphopeptidomannan (PPM). The distribution of C. albicans serotypes varies according to country and human host genetic and infectious backgrounds. However, these epidemiological traits have not yet been related to a phenotypically stable molecule as cell surface expression of the serotype A epitope depends on the growth conditions. We have shown that C. albicans serotype A associates beta-mannose residues with another molecule, phospholipomannan (PLM), which is a member of the mannoseinositolphosphoceramide family. In this study, PLM from serotype B strains was analysed in order to provide structural bases for the differences in molecular mass and antigenicity observed between PLMs from both serotypes. Through these analyses, carbon 10 was shown to be the location of a second hydroxylation of fatty acids previously unknown in fungal sphingolipids. Minor differences observed in the ceramide moiety appeared to be strain-dependent. More constant features of PLM from serotype B strains were the incorporation of greater amounts of phytosphingosine C20, a twofold reduced glycosylation of PLM and overexpression of a beta-1,2 mannotriose, the epitope of protective antibodies. This specific beta-mannosylation was observed even when growth conditions altered serotype A PPM-specific epitopes, confirming the potential of PLM as a phenotypically stable molecule for serotyping. This study also suggests that the regulation of beta-mannosyltransferases, which define specific immunomodulatory adhesins whose activity depends on the mannosyl chain length, are part of the genetic background that differentiates serotypes.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
12 |
8
|
Delplace F, Maes E, Lemoine J, Strecker G. Species specificity of O-linked carbohydrate chains of the oviducal mucins in amphibians: structural analysis of neutral oligosaccharide alditols released by reductive beta-elimination from the egg-jelly coats of Rana clamitans. Biochem J 2002; 363:457-71. [PMID: 11964146 PMCID: PMC1222498 DOI: 10.1042/0264-6021:3630457] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The extracellular matrix (the so-called jelly coat) surrounding amphibian eggs mainly comprises highly O-glycosylated proteins. These oviducal mucins have an important role in the fertilization process, and their carbohydrate chains are remarkably species-specific. Alkaline reductive treatment of the jelly-coat material of the frog Rana clamitans led to the release of oligosaccharide alditols. The neutral oligosaccharide alditols were fractionated and purified by successive chromatographic techniques. The structures of 27 of them, ranging from three to sixteen monosaccharides, were established by a combination of NMR spectroscopy, methylation analyses and matrix-assisted laser-desorption ionization-time of flight MS. Typically, some of the neutral compounds appeared to possess the core structure: Gal(beta1-3)[GlcNAc(beta1-6)]Gal(beta1-3)[GlcNAc(beta1-6)]GalNAc-ol (where GalNAc-ol represents N-acetylgalactosaminitol). Moreover, a novel type of chain termination, characterized by an unusual sequence [Fuc(alpha1-2)Gal(alpha1-3)Gal(alpha1-4)Gal(beta1-3/4)] was observed. Indeed, the most complex representative structure of this series was found to be: Fuc(alpha1-2)Gal(alpha1-3)Gal(alpha1-4)Gal(beta1-3)[Fuc(alpha1-2)Gal(alpha1-3)Gal(alpha1-4)Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-3)[Fuc(alpha1-2)Gal(alpha1-3)Gal(alpha1-4)Gal(beta1-4)GlcNAc(beta1-6)]GalNAc-ol.
Collapse
|
research-article |
23 |
11 |
9
|
Fontaine MD, Wieruszeski JM, Plancke Y, Delplace F, Strecker G. Structure of six 3-deoxy-D-glycero-D-galacto-nonulosonic acid(Kdn)-containing oligosaccharide-alditols released from oviduct secretions of Ambystoma maculatum. Characterization of the sequence fucosyl(alpha 1-2)[fucosyl(alpha 1-3)]fucosyl(alpha 1-4)-3-deoxy-D-glycero-D-galacto-nonulosonic acid. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:424-33. [PMID: 7635154 DOI: 10.1111/j.1432-1033.1995.tb20715.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The O-linked acidic oligosaccharides of the jelly coat surrounding the eggs of Ambystoma maculatum were analyzed by NMR spectroscopy. The structures of the major oligosaccharides were established as follows where Kdn represents 3-deoxy-D-glycero-D-galacto-nonulsonic acid and GalNAc-ol is N-acetylgalactosaminitol: [sequence: see text] As shown for five other amphibian species, the structures of these carbohydrate chains appear to be species specific and can afford a basis for molecular taxonomy. These new sequences also reflect the occurrence of specific fucosyltransferase activities that are characteristic of Ambystoma maculatum.
Collapse
|
|
30 |
11 |
10
|
Plancke Y, Delplace F, Wieruszeski JM, Maes E, Strecker G. Isolation and structures of glycoprotein-derived free oligosaccharides from the unfertilized eggs of Scyliorhinus caniculus. Characterization of the sequences galactose(alpha 1-4)galactose(beta 1-3)-N-acetylglucosamine and N-acetylneuraminic acid(alpha 2-6)galactose(beta 1-3)-N-acetylglucosamine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:199-206. [PMID: 8631330 DOI: 10.1111/j.1432-1033.1996.00199.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As previously reported [Ishii, K., Iwasaki, M., Inoue, S., Kenny, P. T. M., Komura, H. & Inoue, Y. (1989) J. Biol. Chem. 264, 1623-1630; Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K. & Inoue, Y. (1989) J. Biol. Chem. 264, 18520-185261, the unfertilized eggs of two different species of fresh-water fish, Plecoglossus altivelis and Tribodolon hakonensis, contain relatively large amounts of free sialooligosaccharides. These oligosaccharides were found to derive from glycophosphoproteins, owing to the activity of a peptide - N4-(N-acetyl-beta-D-glucosaminyl)asparagine amidase [Iwasaki, M., Seko, A., Kitajima, K., Inoue, Y. & Inoue, S. (1992) J. Biol. Chem. 267, 24287-24296; Seko, A., Kitajima, K., Inoue, Y. & Inoue, S. (1991) J. Biol. Chem. 266, 22110-22114]. Here we describe a new type of free oligosaccharides, isolated from unfertilized eggs of Scyliorhinus caniculus. From the structural analysis, based upon 1H-NMR spectroscopy, the following glycan units are proposed.[Formula: see text]
Collapse
|
|
29 |
10 |
11
|
Sfihi-Loualia G, Hurtaux T, Fabre E, Fradin C, Mée A, Pourcelot M, Maes E, Bouckaert J, Mallet JM, Poulain D, Delplace F, Guérardel Y. Candida albicans β-1,2-mannosyltransferase Bmt3 prompts the elongation of the cell-wall phosphopeptidomannan. Glycobiology 2015; 26:203-14. [PMID: 26525402 DOI: 10.1093/glycob/cwv094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
β-1,2-Linked mannosides are expressed on numerous cell-wall glycoconjugates of the opportunistic pathogen yeast Candida albicans. Several studies evidenced their implication in the host-pathogen interaction and virulence mechanisms. In the present study, we characterized the in vitro activity of CaBmt3, a β-1,2-mannosyltransferase involved in the elongation of β-1,2-oligomannosides oligomers onto the cell-wall polymannosylated N-glycans. A recombinant soluble enzyme Bmt3p was produced in Pichia pastoris and its enzyme activity was investigated using natural and synthetic oligomannosides as potential acceptor substrates. Bmt3p was shown to exhibit an exquisite enzymatic specificity by adding a single terminal β-mannosyl residue to α-1,2-linked oligomannosides capped by a Manβ1-2Man motif. Furthermore, we demonstrated that the previously identified CaBmt1 and CaBmt3 efficiently act together to generate Manβ1-2Manβ1-2[Manα1-2]n sequence from α-1,2-linked oligomannosides onto exogenous and endogenous substrates.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
8 |
12
|
Pourcelot M, Cattiaux L, Sfihi-Loualia G, Fabre E, Krzewinski F, Fradin C, Poulain D, Delplace F, Guérardel Y, Mallet JM. Mantyl tagged oligo α (1 → 2) mannosides as Candida albicans β-mannosyl transferases substrates: a comparison between synthetic strategies. RSC Adv 2013. [DOI: 10.1039/c3ra43340d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
|
12 |
6 |
13
|
Hurtaux T, Sfihi-Loualia G, Brissonnet Y, Bouckaert J, Mallet JM, Sendid B, Delplace F, Fabre E, Gouin SG, Guérardel Y. Evaluation of monovalent and multivalent iminosugars to modulate Candida albicans β-1,2-mannosyltransferase activities. Carbohydr Res 2016; 429:123-7. [PMID: 26852253 DOI: 10.1016/j.carres.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 11/30/2022]
Abstract
β-1,2-Linked oligomannosides substitute the cell wall of numerous yeast species. Several of those including Candida albicans may cause severe infections associated with high rates of morbidity and mortality, especially in immunocompromised patients. β-1,2-Mannosides are known to be involved in the pathogenic process and to elicit an immune response from the host. In C. albicans, the synthesis of β-mannosides is under the control of a family of nine genes coding for putative β-mannosyltransferases. Two of them, CaBmt1 and CaBmt3, have been shown to initiate and prime the elongation of the β-mannosides on the cell-wall mannan core. In the present study, we have assessed the modulating activities of monovalent and multivalent iminosugar analogs on these enzymes in order to control the enzymatic bio-synthesis of β-mannosides. We have identified a monovalent deoxynojirimycin (DNJ) derivative that inhibits the CaBmt1-catalyzed initiating activity, and mono-, tetra- and polyvalent deoxymannojirimycin (DMJ) that modulate the CaBmt1 activity toward the formation of a single major product. Analysis of the aggregating properties of the multivalent iminosugars showed their ability to elicit clusterization of both CaBmt1 and CaBmt3, without affecting their activity. These results suggest promising roles for multivalent iminosugars as controlling agents for the biosynthesis of β-1,2 mannosides and for monovalent DNJ derivative as a first target for the design of future β-mannosyltransferase inhibitors.
Collapse
|
Journal Article |
9 |
6 |
14
|
Cattiaux L, Mée A, Pourcelot M, Sfihi-Loualia G, Hurtaux T, Maes E, Fradin C, Sendid B, Poulain D, Fabre E, Delplace F, Guérardel Y, Mallet JM. Candida albicans β-1,2 mannosyl transferase Bmt3: Preparation and evaluation of a β (1,2), α (1,2)-tetramannosyl fluorescent substrate. Bioorg Med Chem 2016; 24:1362-8. [PMID: 26895658 DOI: 10.1016/j.bmc.2016.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/18/2022]
Abstract
We describe for the first time the chemical synthesis of a tetramannoside, containing both α (1→2) and β (1→2) linkages. Dodecylthio (lauryl) glycosides were prepared from odorless dodecyl thiol and used as donors for the glycosylation steps. This tetramannoside, was coupled to a mantyl group, and revealed to be a perfect substrate of β-mannosyltransferase Bmt3, confirming the proposed specificity and allowing the preparation of a pentamannoside sequence (β Man (1,2) β Man (1,2) α Man (1,2) α Man (1,2) α Man) usable as a novel substrate for further elongation studies.
Collapse
|
|
9 |
1 |