1
|
Aprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Anthony M, Arneodo F, Baudis L, Bauermeister B, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, de Perio P, Di Gangi P, Di Giovanni A, Diglio S, Elykov A, Eurin G, Fei J, Ferella AD, Fieguth A, Fulgione W, Gallo Rosso A, Galloway M, Gao F, Garbini M, Geis C, Grandi L, Greene Z, Qiu H, Hasterok C, Hogenbirk E, Howlett J, Itay R, Joerg F, Kaminsky B, Kazama S, Kish A, Koltman G, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, Mahlstedt J, Manfredini A, Marrodán Undagoitia T, Masbou J, Masson D, Messina M, Micheneau K, Miller K, Molinario A, Morå K, Murra M, Naganoma J, Ni K, Oberlack U, Pelssers B, Piastra F, Pienaar J, Pizzella V, Plante G, Podviianiuk R, Priel N, Ramírez García D, Rauch L, Reichard S, Reuter C, Riedel B, Rizzo A, Rocchetti A, Rupp N, Dos Santos JMF, Sartorelli G, Scheibelhut M, Schindler S, Schreiner J, Schulte D, Schumann M, Scotto Lavina L, Selvi M, et alAprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Anthony M, Arneodo F, Baudis L, Bauermeister B, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, de Perio P, Di Gangi P, Di Giovanni A, Diglio S, Elykov A, Eurin G, Fei J, Ferella AD, Fieguth A, Fulgione W, Gallo Rosso A, Galloway M, Gao F, Garbini M, Geis C, Grandi L, Greene Z, Qiu H, Hasterok C, Hogenbirk E, Howlett J, Itay R, Joerg F, Kaminsky B, Kazama S, Kish A, Koltman G, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, Mahlstedt J, Manfredini A, Marrodán Undagoitia T, Masbou J, Masson D, Messina M, Micheneau K, Miller K, Molinario A, Morå K, Murra M, Naganoma J, Ni K, Oberlack U, Pelssers B, Piastra F, Pienaar J, Pizzella V, Plante G, Podviianiuk R, Priel N, Ramírez García D, Rauch L, Reichard S, Reuter C, Riedel B, Rizzo A, Rocchetti A, Rupp N, Dos Santos JMF, Sartorelli G, Scheibelhut M, Schindler S, Schreiner J, Schulte D, Schumann M, Scotto Lavina L, Selvi M, Shagin P, Shockley E, Silva M, Simgen H, Thers D, Toschi F, Trinchero G, Tunnell C, Upole N, Vargas M, Wack O, Wang H, Wang Z, Wei Y, Weinheimer C, Wittweg C, Wulf J, Ye J, Zhang Y, Zhu T. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. PHYSICAL REVIEW LETTERS 2018; 121:111302. [PMID: 30265108 DOI: 10.1103/physrevlett.121.111302] [Show More Authors] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/14/2018] [Indexed: 06/08/2023]
Abstract
We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keV_{ee} ([4.9,40.9] keV_{nr}), exhibits an ultralow electron recoil background rate of [82_{-3}^{+5}(syst)±3(stat)] events/(ton yr keV_{ee}). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c^{2}, with a minimum of 4.1×10^{-47} cm^{2} at 30 GeV/c^{2} and a 90% confidence level.
Collapse
|
|
7 |
184 |
2
|
Aprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Antochi VC, Angelino E, Arneodo F, Barge D, Baudis L, Bauermeister B, Bellagamba L, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, de Perio P, Depoian A, Di Gangi P, Di Giovanni A, Diglio S, Elykov A, Eurin G, Fei J, Ferella AD, Fieguth A, Fulgione W, Gaemers P, Gallo Rosso A, Galloway M, Gao F, Garbini M, Grandi L, Greene Z, Hasterok C, Hils C, Hogenbirk E, Howlett J, Iacovacci M, Itay R, Joerg F, Kazama S, Kish A, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, López Fune E, Macolino C, Mahlstedt J, Manfredini A, Marignetti F, Marrodán Undagoitia T, Masbou J, Mastroianni S, Messina M, Micheneau K, Miller K, Molinario A, Morå K, Mosbacher Y, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Palacio J, Pelssers B, Peres R, Pienaar J, Pizzella V, Plante G, Podviianiuk R, Qin J, Qiu H, Ramírez García D, Reichard S, Riedel B, Rocchetti A, Rupp N, et alAprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Antochi VC, Angelino E, Arneodo F, Barge D, Baudis L, Bauermeister B, Bellagamba L, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, de Perio P, Depoian A, Di Gangi P, Di Giovanni A, Diglio S, Elykov A, Eurin G, Fei J, Ferella AD, Fieguth A, Fulgione W, Gaemers P, Gallo Rosso A, Galloway M, Gao F, Garbini M, Grandi L, Greene Z, Hasterok C, Hils C, Hogenbirk E, Howlett J, Iacovacci M, Itay R, Joerg F, Kazama S, Kish A, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, López Fune E, Macolino C, Mahlstedt J, Manfredini A, Marignetti F, Marrodán Undagoitia T, Masbou J, Mastroianni S, Messina M, Micheneau K, Miller K, Molinario A, Morå K, Mosbacher Y, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Palacio J, Pelssers B, Peres R, Pienaar J, Pizzella V, Plante G, Podviianiuk R, Qin J, Qiu H, Ramírez García D, Reichard S, Riedel B, Rocchetti A, Rupp N, Dos Santos JMF, Sartorelli G, Šarčević N, Scheibelhut M, Schindler S, Schreiner J, Schulte D, Schumann M, Scotto Lavina L, Selvi M, Shagin P, Shockley E, Silva M, Simgen H, Therreau C, Thers D, Toschi F, Trinchero G, Tunnell C, Upole N, Vargas M, Volta G, Wack O, Wang H, Wei Y, Weinheimer C, Wenz D, Wittweg C, Wulf J, Ye J, Zhang Y, Zhu T, Zopounidis JP. Light Dark Matter Search with Ionization Signals in XENON1T. PHYSICAL REVIEW LETTERS 2019; 123:251801. [PMID: 31922764 DOI: 10.1103/physrevlett.123.251801] [Show More Authors] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/07/2019] [Indexed: 06/10/2023]
Abstract
We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keV_{ee}, we observe <1 event/(tonne day keV_{ee}), which is more than 1000 times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses m_{χ} within 3-6 GeV/c^{2}, DM-electron scattering for m_{χ}>30 MeV/c^{2}, and absorption of dark photons and axionlike particles for m_{χ} within 0.186-1 keV/c^{2}.
Collapse
|
|
6 |
67 |
3
|
Aprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Antochi VC, Angelino E, Arneodo F, Barge D, Baudis L, Bauermeister B, Bellagamba L, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, de Perio P, Depoian A, Di Gangi P, Di Giovanni A, Diglio S, Elykov A, Eurin G, Fei J, Ferella AD, Fieguth A, Fulgione W, Gaemers P, Gallo Rosso A, Galloway M, Gao F, Garbini M, Grandi L, Greene Z, Hasterok C, Hils C, Hogenbirk E, Howlett J, Iacovacci M, Itay R, Joerg F, Kazama S, Kish A, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, López Fune E, Macolino C, Mahlstedt J, Manenti M, Manfredini A, Marignetti F, Marrodán Undagoitia T, Masbou J, Mastroianni S, Messina M, Micheneau K, Miller K, Molinario A, Morå K, Mosbacher Y, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Palacio J, Pelssers B, Peres R, Pienaar J, Pizzella V, Plante G, Podviianiuk R, Qin J, Qiu H, Ramírez García D, Reichard S, Riedel B, Rocchetti A, et alAprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Antochi VC, Angelino E, Arneodo F, Barge D, Baudis L, Bauermeister B, Bellagamba L, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, de Perio P, Depoian A, Di Gangi P, Di Giovanni A, Diglio S, Elykov A, Eurin G, Fei J, Ferella AD, Fieguth A, Fulgione W, Gaemers P, Gallo Rosso A, Galloway M, Gao F, Garbini M, Grandi L, Greene Z, Hasterok C, Hils C, Hogenbirk E, Howlett J, Iacovacci M, Itay R, Joerg F, Kazama S, Kish A, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, López Fune E, Macolino C, Mahlstedt J, Manenti M, Manfredini A, Marignetti F, Marrodán Undagoitia T, Masbou J, Mastroianni S, Messina M, Micheneau K, Miller K, Molinario A, Morå K, Mosbacher Y, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Palacio J, Pelssers B, Peres R, Pienaar J, Pizzella V, Plante G, Podviianiuk R, Qin J, Qiu H, Ramírez García D, Reichard S, Riedel B, Rocchetti A, Rupp N, Dos Santos JMF, Sartorelli G, Šarčević N, Scheibelhut M, Schindler S, Schreiner J, Schulte D, Schumann M, Scotto Lavina L, Selvi M, Shagin P, Shockley E, Silva M, Simgen H, Therreau C, Thers D, Toschi F, Trinchero G, Tunnell C, Upole N, Vargas M, Volta G, Wack O, Wang H, Wei Y, Weinheimer C, Wenz D, Wittweg C, Wulf J, Ye J, Zhang Y, Zhu T, Zopounidis JP. Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T. PHYSICAL REVIEW LETTERS 2019; 123:241803. [PMID: 31922867 DOI: 10.1103/physrevlett.123.241803] [Show More Authors] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above ∼5 GeV/c^{2}, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c^{2} by looking for electronic recoils induced by the Migdal effect and bremsstrahlung using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach.
Collapse
|
|
6 |
34 |
4
|
Aprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Anthony M, Antochi VC, Arneodo F, Baudis L, Bauermeister B, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, de Perio P, Di Gangi P, Di Giovanni A, Diglio S, Elykov A, Eurin G, Fei J, Ferella AD, Fieguth A, Fulgione W, Gallo Rosso A, Galloway M, Gao F, Garbini M, Grandi L, Greene Z, Hasterok C, Hogenbirk E, Howlett J, Iacovacci M, Itay R, Joerg F, Kazama S, Kish A, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, López Fune E, Macolino C, Mahlstedt J, Manfredini A, Marignetti F, Marrodán Undagoitia T, Masbou J, Masson D, Mastroianni S, Messina M, Micheneau K, Miller K, Molinario A, Morå K, Mosbacher Y, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Pelssers B, Piastra F, Pienaar J, Pizzella V, Plante G, Podviianiuk R, Priel N, Qiu H, Ramírez García D, Reichard S, Riedel B, Rizzo A, Rocchetti A, Rupp N, Dos Santos JMF, Sartorelli G, Šarčević N, Scheibelhut M, et alAprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Anthony M, Antochi VC, Arneodo F, Baudis L, Bauermeister B, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, de Perio P, Di Gangi P, Di Giovanni A, Diglio S, Elykov A, Eurin G, Fei J, Ferella AD, Fieguth A, Fulgione W, Gallo Rosso A, Galloway M, Gao F, Garbini M, Grandi L, Greene Z, Hasterok C, Hogenbirk E, Howlett J, Iacovacci M, Itay R, Joerg F, Kazama S, Kish A, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, López Fune E, Macolino C, Mahlstedt J, Manfredini A, Marignetti F, Marrodán Undagoitia T, Masbou J, Masson D, Mastroianni S, Messina M, Micheneau K, Miller K, Molinario A, Morå K, Mosbacher Y, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Pelssers B, Piastra F, Pienaar J, Pizzella V, Plante G, Podviianiuk R, Priel N, Qiu H, Ramírez García D, Reichard S, Riedel B, Rizzo A, Rocchetti A, Rupp N, Dos Santos JMF, Sartorelli G, Šarčević N, Scheibelhut M, Schindler S, Schreiner J, Schulte D, Schumann M, Scotto Lavina L, Selvi M, Shagin P, Shockley E, Silva M, Simgen H, Therreau C, Thers D, Toschi F, Trinchero G, Tunnell C, Upole N, Vargas M, Wack O, Wang H, Wang Z, Wei Y, Weinheimer C, Wenz D, Wittweg C, Wulf J, Xu Z, Ye J, Zhang Y, Zhu T, Zopounidis JP. Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T. PHYSICAL REVIEW LETTERS 2019; 122:141301. [PMID: 31050482 DOI: 10.1103/physrevlett.122.141301] [Show More Authors] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Indexed: 06/09/2023]
Abstract
We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3×10^{-42} cm^{2} at 30 GeV/c^{2} and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.
Collapse
|
|
6 |
17 |
5
|
Aprile E, Abe K, Agostini F, Ahmed Maouloud S, Althueser L, Andrieu B, Angelino E, Angevaare JR, Antochi VC, Antón Martin D, Arneodo F, Baudis L, Baxter AL, Bazyk M, Bellagamba L, Biondi R, Bismark A, Brookes EJ, Brown A, Bruenner S, Bruno G, Budnik R, Bui TK, Cai C, Cardoso JMR, Cichon D, Cimental Chavez AP, Colijn AP, Conrad J, Cuenca-García JJ, Cussonneau JP, D'Andrea V, Decowski MP, Di Gangi P, Di Pede S, Diglio S, Eitel K, Elykov A, Farrell S, Ferella AD, Ferrari C, Fischer H, Flierman M, Fulgione W, Fuselli C, Gaemers P, Gaior R, Gallo Rosso A, Galloway M, Gao F, Glade-Beucke R, Grandi L, Grigat J, Guan H, Guida M, Hammann R, Higuera A, Hils C, Hoetzsch L, Hood NF, Howlett J, Iacovacci M, Itow Y, Jakob J, Joerg F, Joy A, Kato N, Kara M, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Kuger F, Landsman H, Lang RF, Levinson L, Li I, Li S, Liang S, Lindemann S, Lindner M, Liu K, Loizeau J, Lombardi F, Long J, Lopes JAM, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Masson E, Mastroianni S, Messina M, et alAprile E, Abe K, Agostini F, Ahmed Maouloud S, Althueser L, Andrieu B, Angelino E, Angevaare JR, Antochi VC, Antón Martin D, Arneodo F, Baudis L, Baxter AL, Bazyk M, Bellagamba L, Biondi R, Bismark A, Brookes EJ, Brown A, Bruenner S, Bruno G, Budnik R, Bui TK, Cai C, Cardoso JMR, Cichon D, Cimental Chavez AP, Colijn AP, Conrad J, Cuenca-García JJ, Cussonneau JP, D'Andrea V, Decowski MP, Di Gangi P, Di Pede S, Diglio S, Eitel K, Elykov A, Farrell S, Ferella AD, Ferrari C, Fischer H, Flierman M, Fulgione W, Fuselli C, Gaemers P, Gaior R, Gallo Rosso A, Galloway M, Gao F, Glade-Beucke R, Grandi L, Grigat J, Guan H, Guida M, Hammann R, Higuera A, Hils C, Hoetzsch L, Hood NF, Howlett J, Iacovacci M, Itow Y, Jakob J, Joerg F, Joy A, Kato N, Kara M, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Kuger F, Landsman H, Lang RF, Levinson L, Li I, Li S, Liang S, Lindemann S, Lindner M, Liu K, Loizeau J, Lombardi F, Long J, Lopes JAM, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Masson E, Mastroianni S, Messina M, Miuchi K, Mizukoshi K, Molinario A, Moriyama S, Morå K, Mosbacher Y, Murra M, Müller J, Ni K, Oberlack U, Paetsch B, Palacio J, Peres R, Peters C, Pienaar J, Pierre M, Pizzella V, Plante G, Qi J, Qin J, Ramírez García D, Singh R, Sanchez L, Dos Santos JMF, Sarnoff I, Sartorelli G, Schreiner J, Schulte D, Schulte P, Schulze Eißing H, Schumann M, Scotto Lavina L, Selvi M, Semeria F, Shagin P, Shi S, Shockley E, Silva M, Simgen H, Takeda A, Tan PL, Terliuk A, Thers D, Toschi F, Trinchero G, Tunnell C, Tönnies F, Valerius K, Volta G, Weinheimer C, Weiss M, Wenz D, Wittweg C, Wolf T, Wu VHS, Xing Y, Xu D, Xu Z, Yamashita M, Yang L, Ye J, Yuan L, Zavattini G, Zhong M, Zhu T. First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment. PHYSICAL REVIEW LETTERS 2023; 131:041003. [PMID: 37566859 DOI: 10.1103/physrevlett.131.041003] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 08/13/2023]
Abstract
We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment, which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of 5.9 ton. During the (1.09±0.03) ton yr exposure used for this search, the intrinsic ^{85}Kr and ^{222}Rn concentrations in the liquid target are reduced to unprecedentedly low levels, giving an electronic recoil background rate of (15.8±1.3) events/ton yr keV in the region of interest. A blind analysis of nuclear recoil events with energies between 3.3 and 60.5 keV finds no significant excess. This leads to a minimum upper limit on the spin-independent WIMP-nucleon cross section of 2.58×10^{-47} cm^{2} for a WIMP mass of 28 GeV/c^{2} at 90% confidence level. Limits for spin-dependent interactions are also provided. Both the limit and the sensitivity for the full range of WIMP masses analyzed here improve on previous results obtained with the XENON1T experiment for the same exposure.
Collapse
|
|
2 |
16 |
6
|
Westermayr J, Gastegger M, Vörös D, Panzenboeck L, Joerg F, González L, Marquetand P. Deep learning study of tyrosine reveals that roaming can lead to photodamage. Nat Chem 2022; 14:914-919. [PMID: 35655007 DOI: 10.1038/s41557-022-00950-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/13/2022] [Indexed: 01/12/2023]
Abstract
Amino acids are among the building blocks of life, forming peptides and proteins, and have been carefully 'selected' to prevent harmful reactions caused by light. To prevent photodamage, molecules relax from electronic excited states to the ground state faster than the harmful reactions can occur; however, such photochemistry is not fully understood, in part because theoretical simulations of such systems are extremely expensive-with only smaller chromophores accessible. Here, we study the excited-state dynamics of tyrosine using a method based on deep neural networks that leverages the physics underlying quantum chemical data and combines different levels of theory. We reveal unconventional and dynamically controlled 'roaming' dynamics in excited tyrosine that are beyond chemical intuition and compete with other ultrafast deactivation mechanisms. Our findings suggest that the roaming atoms are radicals that can lead to photodamage, offering a new perspective on the photostability and photodamage of biological systems.
Collapse
|
|
3 |
13 |
7
|
Aprile E, Aalbers J, Agostini F, Ahmed Maouloud S, Alfonsi M, Althueser L, Amaro FD, Andaloro S, Antochi VC, Angelino E, Angevaare JR, Arneodo F, Baudis L, Bauermeister B, Bellagamba L, Benabderrahmane ML, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Cimmino B, Clark M, Coderre D, Colijn AP, Conrad J, Cuenca J, Cussonneau JP, Decowski MP, Depoian A, Di Gangi P, Di Giovanni A, Di Stefano R, Diglio S, Elykov A, Ferella AD, Fulgione W, Gaemers P, Gaior R, Galloway M, Gao F, Grandi L, Hils C, Hiraide K, Hoetzsch L, Howlett J, Iacovacci M, Itow Y, Joerg F, Kato N, Kazama S, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Liang S, Lindemann S, Lindner M, Lombardi F, Long J, Lopes JAM, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Manfredini A, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Mastroianni S, Messina M, Miuchi K, Mizukoshi K, Molinario A, Morå K, Moriyama S, Mosbacher Y, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Palacio J, Pelssers B, Peres R, Pierre M, Pienaar J, Pizzella V, Plante G, Qi J, Qin J, Ramírez García D, et alAprile E, Aalbers J, Agostini F, Ahmed Maouloud S, Alfonsi M, Althueser L, Amaro FD, Andaloro S, Antochi VC, Angelino E, Angevaare JR, Arneodo F, Baudis L, Bauermeister B, Bellagamba L, Benabderrahmane ML, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Cimmino B, Clark M, Coderre D, Colijn AP, Conrad J, Cuenca J, Cussonneau JP, Decowski MP, Depoian A, Di Gangi P, Di Giovanni A, Di Stefano R, Diglio S, Elykov A, Ferella AD, Fulgione W, Gaemers P, Gaior R, Galloway M, Gao F, Grandi L, Hils C, Hiraide K, Hoetzsch L, Howlett J, Iacovacci M, Itow Y, Joerg F, Kato N, Kazama S, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Liang S, Lindemann S, Lindner M, Lombardi F, Long J, Lopes JAM, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Manfredini A, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Mastroianni S, Messina M, Miuchi K, Mizukoshi K, Molinario A, Morå K, Moriyama S, Mosbacher Y, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Palacio J, Pelssers B, Peres R, Pierre M, Pienaar J, Pizzella V, Plante G, Qi J, Qin J, Ramírez García D, Reichard S, Rocchetti A, Rupp N, Dos Santos JMF, Sartorelli G, Schreiner J, Schulte D, Schulze Eißing H, Schumann M, Scotto Lavina L, Selvi M, Semeria F, Shagin P, Shockley E, Silva M, Simgen H, Takeda A, Therreau C, Thers D, Toschi F, Trinchero G, Tunnell C, Valerius K, Vargas M, Volta G, Wei Y, Weinheimer C, Weiss M, Wenz D, Wittweg C, Wolf T, Xu Z, Yamashita M, Ye J, Zavattini G, Zhang Y, Zhu T, Zopounidis JP. Search for Coherent Elastic Scattering of Solar ^{8}B Neutrinos in the XENON1T Dark Matter Experiment. PHYSICAL REVIEW LETTERS 2021; 126:091301. [PMID: 33750173 DOI: 10.1103/physrevlett.126.091301] [Show More Authors] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
We report on a search for nuclear recoil signals from solar ^{8}B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant ^{8}B neutrinolike excess is found in an exposure of 0.6 t×y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11 GeV c^{-2} by as much as an order of magnitude.
Collapse
|
|
4 |
12 |
8
|
Aprile E, Abe K, Agostini F, Ahmed Maouloud S, Althueser L, Andrieu B, Angelino E, Angevaare JR, Antochi VC, Antón Martin D, Arneodo F, Baudis L, Baxter AL, Bellagamba L, Biondi R, Bismark A, Brown A, Bruenner S, Bruno G, Budnik R, Bui TK, Cai C, Capelli C, Cardoso JMR, Cichon D, Clark M, Colijn AP, Conrad J, Cuenca-García JJ, Cussonneau JP, D'Andrea V, Decowski MP, Di Gangi P, Di Pede S, Di Giovanni A, Di Stefano R, Diglio S, Eitel K, Elykov A, Farrell S, Ferella AD, Ferrari C, Fischer H, Fulgione W, Gaemers P, Gaior R, Gallo Rosso A, Galloway M, Gao F, Gardner R, Glade-Beucke R, Grandi L, Grigat J, Guida M, Hammann R, Higuera A, Hils C, Hoetzsch L, Howlett J, Iacovacci M, Itow Y, Jakob J, Joerg F, Joy A, Kato N, Kara M, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Kuger F, Landsman H, Lang RF, Levinson L, Li I, Li S, Liang S, Lindemann S, Lindner M, Liu K, Loizeau J, Lombardi F, Long J, Lopes JAM, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Masson E, Mastroianni S, Messina M, Miuchi K, Mizukoshi K, et alAprile E, Abe K, Agostini F, Ahmed Maouloud S, Althueser L, Andrieu B, Angelino E, Angevaare JR, Antochi VC, Antón Martin D, Arneodo F, Baudis L, Baxter AL, Bellagamba L, Biondi R, Bismark A, Brown A, Bruenner S, Bruno G, Budnik R, Bui TK, Cai C, Capelli C, Cardoso JMR, Cichon D, Clark M, Colijn AP, Conrad J, Cuenca-García JJ, Cussonneau JP, D'Andrea V, Decowski MP, Di Gangi P, Di Pede S, Di Giovanni A, Di Stefano R, Diglio S, Eitel K, Elykov A, Farrell S, Ferella AD, Ferrari C, Fischer H, Fulgione W, Gaemers P, Gaior R, Gallo Rosso A, Galloway M, Gao F, Gardner R, Glade-Beucke R, Grandi L, Grigat J, Guida M, Hammann R, Higuera A, Hils C, Hoetzsch L, Howlett J, Iacovacci M, Itow Y, Jakob J, Joerg F, Joy A, Kato N, Kara M, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Kuger F, Landsman H, Lang RF, Levinson L, Li I, Li S, Liang S, Lindemann S, Lindner M, Liu K, Loizeau J, Lombardi F, Long J, Lopes JAM, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Masson E, Mastroianni S, Messina M, Miuchi K, Mizukoshi K, Molinario A, Moriyama S, Morå K, Mosbacher Y, Murra M, Müller J, Ni K, Oberlack U, Paetsch B, Palacio J, Paschos P, Peres R, Peters C, Pienaar J, Pierre M, Pizzella V, Plante G, Qi J, Qin J, Ramírez García D, Reichard S, Rocchetti A, Rupp N, Sanchez L, Dos Santos JMF, Sarnoff I, Sartorelli G, Schreiner J, Schulte D, Schulte P, Schulze Eißing H, Schumann M, Scotto Lavina L, Selvi M, Semeria F, Shagin P, Shi S, Shockley E, Silva M, Simgen H, Stephen J, Takeda A, Tan PL, Terliuk A, Thers D, Toschi F, Trinchero G, Tunnell C, Tönnies F, Valerius K, Volta G, Wei Y, Weinheimer C, Weiss M, Wenz D, Wittweg C, Wolf T, Xu D, Xu Z, Yamashita M, Yang L, Ye J, Yuan L, Zavattini G, Zhong M, Zhu T. Search for New Physics in Electronic Recoil Data from XENONnT. PHYSICAL REVIEW LETTERS 2022; 129:161805. [PMID: 36306777 DOI: 10.1103/physrevlett.129.161805] [Show More Authors] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3) events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.
Collapse
|
|
3 |
12 |
9
|
Joerg F, Schröder C. Polarizable molecular dynamics simulations on the conductivity of pure 1-methylimidazolium acetate systems. Phys Chem Chem Phys 2022; 24:15245-15254. [PMID: 35703101 DOI: 10.1039/d2cp01501c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protic ionic liquid 1-methylimidazolium acetate is in equilibrium with its neutral species 1-methylimidazole and acetic acid. Although several experimental data indicate that the equilibrium favors the neutral species, the system exhibits a significant conductivity. We developed a polarizable force field to describe the ionic liquid accurately and applied it to several mixtures of the neutral and charged species. In addition to comparing single values, such as density, diffusion coefficients, and conductivity, with experimental data, the complete frequency-dependent dielectric spectrum ranging from several MHz to THz can be used to determine the equilibrium composition of the reaction mentioned above.
Collapse
|
|
3 |
5 |
10
|
Aprile E, Abe K, Agostini F, Ahmed Maouloud S, Alfonsi M, Althueser L, Angelino E, Angevaare JR, Antochi VC, Antón Martin D, Arneodo F, Baudis L, Baxter AL, Bellagamba L, Biondi R, Bismark A, Brown A, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Cimmino B, Clark M, Colijn AP, Conrad J, Cuenca-García JJ, Cussonneau JP, D'Andrea V, Decowski MP, Gangi PD, Pede SD, Giovanni AD, Stefano RD, Diglio S, Elykov A, Farrell S, Ferella AD, Fischer H, Fulgione W, Gaemers P, Gaior R, Galloway M, Gao F, Glade-Beucke R, Grandi L, Grigat J, Higuera A, Hils C, Hiraide K, Hoetzsch L, Howlett J, Iacovacci M, Itow Y, Jakob J, Joerg F, Kato N, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Li I, Liang S, Lindemann S, Lindner M, Liu K, Lombardi F, Long J, Lopes JAM, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Manfredini A, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Masson E, Mastroianni S, Messina M, Miuchi K, Mizukoshi K, Molinario A, Moriyama S, Morå K, Mosbacher Y, Murra M, Ni K, Oberlack U, Palacio J, Peres R, Pienaar J, et alAprile E, Abe K, Agostini F, Ahmed Maouloud S, Alfonsi M, Althueser L, Angelino E, Angevaare JR, Antochi VC, Antón Martin D, Arneodo F, Baudis L, Baxter AL, Bellagamba L, Biondi R, Bismark A, Brown A, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Cimmino B, Clark M, Colijn AP, Conrad J, Cuenca-García JJ, Cussonneau JP, D'Andrea V, Decowski MP, Gangi PD, Pede SD, Giovanni AD, Stefano RD, Diglio S, Elykov A, Farrell S, Ferella AD, Fischer H, Fulgione W, Gaemers P, Gaior R, Galloway M, Gao F, Glade-Beucke R, Grandi L, Grigat J, Higuera A, Hils C, Hiraide K, Hoetzsch L, Howlett J, Iacovacci M, Itow Y, Jakob J, Joerg F, Kato N, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Li I, Liang S, Lindemann S, Lindner M, Liu K, Lombardi F, Long J, Lopes JAM, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Manfredini A, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Masson E, Mastroianni S, Messina M, Miuchi K, Mizukoshi K, Molinario A, Moriyama S, Morå K, Mosbacher Y, Murra M, Ni K, Oberlack U, Palacio J, Peres R, Pienaar J, Pierre M, Pizzella V, Plante G, Qi J, Qin J, Ramírez García D, Reichard S, Rocchetti A, Rupp N, Sanchez L, Dos Santos JMF, Sartorelli G, Schreiner J, Schulte D, Schulze Eißing H, Schumann M, Lavina LS, Selvi M, Semeria F, Shagin P, Shockley E, Silva M, Simgen H, Takeda A, Tan PL, Terliuk A, Therreau C, Thers D, Toschi F, Trinchero G, Tunnell C, Tönnies F, Valerius K, Volta G, Wei Y, Weinheimer C, Weiss M, Wenz D, Westermann J, Wittweg C, Wolf T, Xu Z, Yamashita M, Yang L, Ye J, Yuan L, Zavattini G, Zhang Y, Zhong M, Zhu T, Zopounidis JP, Laubenstein M, Nisi S. Material radiopurity control in the XENONnT experiment. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2022; 82:599. [PMID: 35821975 PMCID: PMC9270421 DOI: 10.1140/epjc/s10052-022-10345-6] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{222}$$\end{document}222Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim $$\end{document}∼17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{222}$$\end{document}222Rn activity concentration in XENONnT is determined to be 4.2 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{+0.5}_{-0.7}$$\end{document}-0.7+0.5) \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μBq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system.
Collapse
|
|
3 |
5 |
11
|
Jacobi R, Joerg F, Steinhauser O, Schröder C. Emulating proton transfer reactions in the pseudo-protic ionic liquid 1-methylimidazolium acetate. Phys Chem Chem Phys 2022; 24:9277-9285. [PMID: 35403653 PMCID: PMC9020328 DOI: 10.1039/d2cp00643j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proton transfer reactions can enhance conductivity in protic ionic liquids. However, several proton reactions are possible in a multicomponent system of charged and neutral species, resulting in a complex reaction network. Probabilities and equilibrium concentrations of the involved species are modeled by the combination of reducible Markov chains and quantum-mechanical calculations. Proton transfer reactions can enhance conductivity in protic ionic liquids.![]()
Collapse
|
|
3 |
4 |
12
|
Aprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Antochi VC, Angelino E, Angevaare JR, Arneodo F, Barge D, Baudis L, Bauermeister B, Bellagamba L, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Cimmino B, Clark M, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, Depoian A, Di Gangi P, Di Giovanni A, Di Stefano R, Diglio S, Elykov A, Eurin G, Ferella AD, Fulgione W, Gaemers P, Gaior R, Rosso AG, Galloway M, Gao F, Grandi L, Garbini M, Hasterok C, Hils C, Hiraide K, Hoetzsch L, Hogenbirk E, Howlett J, Iacovacci M, Itow Y, Joerg F, Kato N, Kazama S, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, López Fune E, Macolino C, Mahlstedt J, Manenti L, Manfredini A, Marignetti F, Undagoitia TM, Martens K, Masbou J, Masson D, Mastroianni S, Messina M, Miuchi K, Molinario A, Morå K, Moriyama S, Mosbacher Y, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Palacio J, Pelssers B, Peres R, Pienaar J, Pizzella V, Plante G, Qin J, Qiu H, et alAprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Antochi VC, Angelino E, Angevaare JR, Arneodo F, Barge D, Baudis L, Bauermeister B, Bellagamba L, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Cimmino B, Clark M, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, Depoian A, Di Gangi P, Di Giovanni A, Di Stefano R, Diglio S, Elykov A, Eurin G, Ferella AD, Fulgione W, Gaemers P, Gaior R, Rosso AG, Galloway M, Gao F, Grandi L, Garbini M, Hasterok C, Hils C, Hiraide K, Hoetzsch L, Hogenbirk E, Howlett J, Iacovacci M, Itow Y, Joerg F, Kato N, Kazama S, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, López Fune E, Macolino C, Mahlstedt J, Manenti L, Manfredini A, Marignetti F, Undagoitia TM, Martens K, Masbou J, Masson D, Mastroianni S, Messina M, Miuchi K, Molinario A, Morå K, Moriyama S, Mosbacher Y, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Palacio J, Pelssers B, Peres R, Pienaar J, Pizzella V, Plante G, Qin J, Qiu H, García DR, Reichard S, Rocchetti A, Rupp N, Santos JMFD, Sartorelli G, Šarčević N, Scheibelhut M, Schindler S, Schreiner J, Schulte D, Schumann M, Lavina LS, Selvi M, Semeria F, Shagin P, Shockley E, Silva M, Simgen H, Takeda A, Therreau C, Thers D, Toschi F, Trinchero G, Tunnell C, Vargas M, Volta G, Wack O, Wang H, Wei Y, Weinheimer C, Weiss M, Wenz D, Westermann J, Wittweg C, Wulf J, Xu Z, Yamashita M, Ye J, Zavattini G, Zhang Y, Zhu T, Zopounidis JP. 222 Rn emanation measurements for the XENON1T experiment. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2021; 81:337. [PMID: 34720714 PMCID: PMC8550029 DOI: 10.1140/epjc/s10052-020-08777-z] [Show More Authors] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/17/2020] [Indexed: 06/13/2023]
Abstract
The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the 222 Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a 222 Rn activity concentration of 10 μ Bq / kg in 3.2 t of xenon. The knowledge of the distribution of the 222 Rn sources allowed us to selectively eliminate problematic components in the course of the experiment. The predictions from the emanation measurements were compared to data of the 222 Rn activity concentration in XENON1T. The final 222 Rn activity concentration of ( 4.5 ± 0.1 ) μ Bq / kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.
Collapse
|
research-article |
4 |
4 |
13
|
Joerg F, Wieder M, Schröder C. Protex-A Python utility for proton exchange in molecular dynamics simulations. Front Chem 2023; 11:1140896. [PMID: 36874061 PMCID: PMC9981665 DOI: 10.3389/fchem.2023.1140896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Protex is an open-source program that enables proton exchanges of solvent molecules during molecular dynamics simulations. While conventional molecular dynamics simulations do not allow for bond breaking or formation, protex offers an easy-to-use interface to augment these simulations and define multiple proton sites for (de-)protonation using a single topology approach with two different λ-states. Protex was successfully applied to a protic ionic liquid system, where each molecule is prone to (de-)protonation. Transport properties were calculated and compared to experimental values and simulations without proton exchange.
Collapse
|
research-article |
2 |
3 |
14
|
Aprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Anthony M, Antochi VC, Arneodo F, Baudis L, Bauermeister B, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, de Perio P, Di Gangi P, Di Giovanni A, Diglio S, Elykov A, Eurin G, Fei J, Ferella AD, Fieguth A, Fulgione W, Gallo Rosso A, Galloway M, Gao F, Garbini M, Grandi L, Greene Z, Hasterok C, Hogenbirk E, Howlett J, Iacovacci M, Itay R, Joerg F, Kaminsky B, Kazama S, Kish A, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, López Fune E, Macolino C, Mahlstedt J, Manfredini A, Marignetti F, Marrodán Undagoitia T, Masbou J, Masson D, Mastroianni S, Messina M, Micheneau K, Miller K, Molinario A, Morå K, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Pelssers B, Piastra F, Pienaar J, Pizzella V, Plante G, Podviianiuk R, Priel N, Qiu H, Ramírez García D, Reichard S, Riedel B, Rizzo A, Rocchetti A, Rupp N, Dos Santos JMF, Sartorelli G, Šarčević N, Scheibelhut M, et alAprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro FD, Anthony M, Antochi VC, Arneodo F, Baudis L, Bauermeister B, Benabderrahmane ML, Berger T, Breur PA, Brown A, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso JMR, Cichon D, Coderre D, Colijn AP, Conrad J, Cussonneau JP, Decowski MP, de Perio P, Di Gangi P, Di Giovanni A, Diglio S, Elykov A, Eurin G, Fei J, Ferella AD, Fieguth A, Fulgione W, Gallo Rosso A, Galloway M, Gao F, Garbini M, Grandi L, Greene Z, Hasterok C, Hogenbirk E, Howlett J, Iacovacci M, Itay R, Joerg F, Kaminsky B, Kazama S, Kish A, Koltman G, Kopec A, Landsman H, Lang RF, Levinson L, Lin Q, Lindemann S, Lindner M, Lombardi F, Lopes JAM, López Fune E, Macolino C, Mahlstedt J, Manfredini A, Marignetti F, Marrodán Undagoitia T, Masbou J, Masson D, Mastroianni S, Messina M, Micheneau K, Miller K, Molinario A, Morå K, Murra M, Naganoma J, Ni K, Oberlack U, Odgers K, Pelssers B, Piastra F, Pienaar J, Pizzella V, Plante G, Podviianiuk R, Priel N, Qiu H, Ramírez García D, Reichard S, Riedel B, Rizzo A, Rocchetti A, Rupp N, Dos Santos JMF, Sartorelli G, Šarčević N, Scheibelhut M, Schindler S, Schreiner J, Schulte D, Schumann M, Scotto Lavina L, Selvi M, Shagin P, Shockley E, Silva M, Simgen H, Therreau C, Thers D, Toschi F, Trinchero G, Tunnell C, Upole N, Vargas M, Wack O, Wang H, Wang Z, Wei Y, Weinheimer C, Wenz D, Wittweg C, Wulf J, Ye J, Zhang Y, Zhu T, Zopounidis JP, Hoferichter M, Klos P, Menéndez J, Schwenk A. First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment. PHYSICAL REVIEW LETTERS 2019; 122:071301. [PMID: 30848617 DOI: 10.1103/physrevlett.122.071301] [Show More Authors] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 06/09/2023]
Abstract
We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, no significant excess is found, leading to an upper limit cross section of 6.4×10^{-46} cm^{2} (90% confidence level) at 30 GeV/c^{2} WIMP mass.
Collapse
|
|
6 |
2 |
15
|
Aprile E, Abe K, Agostini F, Ahmed Maouloud S, Alfonsi M, Althueser L, Angelino E, Angevaare J, Antochi V, Antón Martin D, Arneodo F, Baudis L, Baxter A, Bellagamba L, Bernard A, Biondi R, Bismark A, Brown A, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso J, Cichon D, Cimmino B, Clark M, Colijn A, Conrad J, Cuenca-García J, Cussonneau J, D’Andrea V, Decowski M, Di Gangi P, Di Pede S, Di Giovanni A, Di Stefano R, Diglio S, Elykov A, Farrell S, Ferella A, Fischer H, Fulgione W, Gaemers P, Gaior R, Galloway M, Gao F, Glade-Beucke R, Grandi L, Grigat J, Higuera A, Hils C, Hoetzsch L, Howlett J, Iacovacci M, Itow Y, Jakob J, Joerg F, Joy A, Kato N, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang R, Levinson L, Li I, Li S, Liang S, Lindemann S, Lindner M, Liu K, Lombardi F, Long J, Lopes J, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Manfredini A, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Masson E, Mastroianni S, Messina M, Miuchi K, Mizukoshi K, Molinario A, Moriyama S, Morå K, Mosbacher Y, Murra M, Müller J, Ni K, Oberlack U, et alAprile E, Abe K, Agostini F, Ahmed Maouloud S, Alfonsi M, Althueser L, Angelino E, Angevaare J, Antochi V, Antón Martin D, Arneodo F, Baudis L, Baxter A, Bellagamba L, Bernard A, Biondi R, Bismark A, Brown A, Bruenner S, Bruno G, Budnik R, Capelli C, Cardoso J, Cichon D, Cimmino B, Clark M, Colijn A, Conrad J, Cuenca-García J, Cussonneau J, D’Andrea V, Decowski M, Di Gangi P, Di Pede S, Di Giovanni A, Di Stefano R, Diglio S, Elykov A, Farrell S, Ferella A, Fischer H, Fulgione W, Gaemers P, Gaior R, Galloway M, Gao F, Glade-Beucke R, Grandi L, Grigat J, Higuera A, Hils C, Hoetzsch L, Howlett J, Iacovacci M, Itow Y, Jakob J, Joerg F, Joy A, Kato N, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Landsman H, Lang R, Levinson L, Li I, Li S, Liang S, Lindemann S, Lindner M, Liu K, Lombardi F, Long J, Lopes J, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Manfredini A, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Masson E, Mastroianni S, Messina M, Miuchi K, Mizukoshi K, Molinario A, Moriyama S, Morå K, Mosbacher Y, Murra M, Müller J, Ni K, Oberlack U, Paetsch B, Palacio J, Peres R, Pienaar J, Pierre M, Pizzella V, Plante G, Qi J, Qin J, Ramírez García D, Reichard S, Rocchetti A, Rupp N, Sanchez L, dos Santos J, Sarnoff I, Sartorelli G, Schreiner J, Schulte D, Schulze Eißing H, Schumann M, Scotto Lavina L, Selvi M, Semeria F, Shagin P, Shi S, Shockley E, Silva M, Simgen H, Takeda A, Tan PL, Terliuk A, Thers D, Toschi F, Trinchero G, Tunnell C, Tönnies F, Valerius K, Volta G, Wei Y, Weinheimer C, Weiss M, Wenz D, Wittweg C, Wolf T, Xu Z, Yamashita M, Yang L, Ye J, Yuan L, Zavattini G, Zhang Y, Zhong M, Zhu T, Zopounidis J. Emission of single and few electrons in XENON1T and limits on light dark matter. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.106.022001] [Show More Authors] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
3 |
2 |
16
|
Aprile E, Aalbers J, Abe K, Ahmed Maouloud S, Althueser L, Andrieu B, Angelino E, Antón Martin D, Arneodo F, Baudis L, Bazyk M, Bellagamba L, Biondi R, Bismark A, Boese K, Brown A, Bruno G, Budnik R, Cai C, Capelli C, Cardoso JMR, Cimental Chávez AP, Colijn AP, Conrad J, Cuenca-García JJ, D'Andrea V, Daniel Garcia LC, Decowski MP, Deisting A, Di Donato C, Di Gangi P, Diglio S, Eitel K, Elykov A, Ferella AD, Ferrari C, Fischer H, Flehmke T, Flierman M, Fulgione W, Fuselli C, Gaemers P, Gaior R, Galloway M, Gao F, Ghosh S, Giacomobono R, Glade-Beucke R, Grandi L, Grigat J, Guan H, Guida M, Gyorgy P, Hammann R, Higuera A, Hils C, Hoetzsch L, Hood NF, Iacovacci M, Itow Y, Jakob J, Joerg F, Kaminaga Y, Kara M, Kavrigin P, Kazama S, Kobayashi M, Koke D, Kopec A, Kuger F, Landsman H, Lang RF, Levinson L, Li I, Li S, Liang S, Lin YT, Lindemann S, Lindner M, Liu K, Liu M, Loizeau J, Lombardi F, Long J, Lopes JAM, Luce T, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson E, Mastroianni S, Melchiorre A, Merz J, Messina M, et alAprile E, Aalbers J, Abe K, Ahmed Maouloud S, Althueser L, Andrieu B, Angelino E, Antón Martin D, Arneodo F, Baudis L, Bazyk M, Bellagamba L, Biondi R, Bismark A, Boese K, Brown A, Bruno G, Budnik R, Cai C, Capelli C, Cardoso JMR, Cimental Chávez AP, Colijn AP, Conrad J, Cuenca-García JJ, D'Andrea V, Daniel Garcia LC, Decowski MP, Deisting A, Di Donato C, Di Gangi P, Diglio S, Eitel K, Elykov A, Ferella AD, Ferrari C, Fischer H, Flehmke T, Flierman M, Fulgione W, Fuselli C, Gaemers P, Gaior R, Galloway M, Gao F, Ghosh S, Giacomobono R, Glade-Beucke R, Grandi L, Grigat J, Guan H, Guida M, Gyorgy P, Hammann R, Higuera A, Hils C, Hoetzsch L, Hood NF, Iacovacci M, Itow Y, Jakob J, Joerg F, Kaminaga Y, Kara M, Kavrigin P, Kazama S, Kobayashi M, Koke D, Kopec A, Kuger F, Landsman H, Lang RF, Levinson L, Li I, Li S, Liang S, Lin YT, Lindemann S, Lindner M, Liu K, Liu M, Loizeau J, Lombardi F, Long J, Lopes JAM, Luce T, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson E, Mastroianni S, Melchiorre A, Merz J, Messina M, Michael A, Miuchi K, Molinario A, Moriyama S, Morå K, Mosbacher Y, Murra M, Müller J, Ni K, Oberlack U, Paetsch B, Pan Y, Pellegrini Q, Peres R, Peters C, Pienaar J, Pierre M, Plante G, Pollmann TR, Principe L, Qi J, Qin J, Ramírez García D, Rajado M, Singh R, Sanchez L, Dos Santos JMF, Sarnoff I, Sartorelli G, Schreiner J, Schulte P, Schulze Eißing H, Schumann M, Scotto Lavina L, Selvi M, Semeria F, Shagin P, Shi S, Shi J, Silva M, Simgen H, Takeda A, Tan PL, Thers D, Toschi F, Trinchero G, Tunnell CD, Tönnies F, Valerius K, Vecchi S, Vetter S, Villazon Solar FI, Volta G, Weinheimer C, Weiss M, Wenz D, Wittweg C, Wu VHS, Xing Y, Xu D, Xu Z, Yamashita M, Yang L, Ye J, Yuan L, Zavattini G, Zhong M. First Indication of Solar ^{8}B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT. PHYSICAL REVIEW LETTERS 2024; 133:191002. [PMID: 39576901 DOI: 10.1103/physrevlett.133.191002] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 11/24/2024]
Abstract
We present the first measurement of nuclear recoils from solar ^{8}B neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t×yr resulted in 37 observed events above 0.5 keV, with (26.4_{-1.3}^{+1.4}) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73σ. The measured ^{8}B solar neutrino flux of (4.7_{-2.3}^{+3.6})×10^{6} cm^{-2} s^{-1} is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CEνNS cross section on Xe of (1.1_{-0.5}^{+0.8})×10^{-39} cm^{2} is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector.
Collapse
|
|
1 |
1 |
17
|
Aprile E, Abe K, Ahmed Maouloud S, Althueser L, Andrieu B, Angelino E, Angevaare JR, Antochi VC, Antón Martin D, Arneodo F, Baudis L, Baxter AL, Bazyk M, Bellagamba L, Biondi R, Bismark A, Brookes EJ, Brown A, Bruenner S, Bruno G, Budnik R, Bui TK, Cai C, Cardoso JMR, Cichon D, Cimental Chavez AP, Clark M, Colijn AP, Conrad J, Cuenca-García JJ, Cussonneau JP, D'Andrea V, Decowski MP, Di Gangi P, Di Pede S, Diglio S, Eitel K, Elykov A, Farrell S, Ferella AD, Ferrari C, Fischer H, Flierman M, Fulgione W, Fuselli C, Gaemers P, Gaior R, Gallo Rosso A, Galloway M, Gao F, Glade-Beucke R, Grandi L, Grigat J, Guan H, Guida M, Hammann R, Higuera A, Hils C, Hoetzsch L, Hood NF, Howlett J, Iacovacci M, Itow Y, Jakob J, Joerg F, Joy A, Kato N, Kara M, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Kuger F, Landsman H, Lang RF, Levinson L, Li I, Li S, Liang S, Lindemann S, Lindner M, Liu K, Loizeau J, Lombardi F, Long J, Lopes JAM, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Masson E, Mastroianni S, Messina M, et alAprile E, Abe K, Ahmed Maouloud S, Althueser L, Andrieu B, Angelino E, Angevaare JR, Antochi VC, Antón Martin D, Arneodo F, Baudis L, Baxter AL, Bazyk M, Bellagamba L, Biondi R, Bismark A, Brookes EJ, Brown A, Bruenner S, Bruno G, Budnik R, Bui TK, Cai C, Cardoso JMR, Cichon D, Cimental Chavez AP, Clark M, Colijn AP, Conrad J, Cuenca-García JJ, Cussonneau JP, D'Andrea V, Decowski MP, Di Gangi P, Di Pede S, Diglio S, Eitel K, Elykov A, Farrell S, Ferella AD, Ferrari C, Fischer H, Flierman M, Fulgione W, Fuselli C, Gaemers P, Gaior R, Gallo Rosso A, Galloway M, Gao F, Glade-Beucke R, Grandi L, Grigat J, Guan H, Guida M, Hammann R, Higuera A, Hils C, Hoetzsch L, Hood NF, Howlett J, Iacovacci M, Itow Y, Jakob J, Joerg F, Joy A, Kato N, Kara M, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Kuger F, Landsman H, Lang RF, Levinson L, Li I, Li S, Liang S, Lindemann S, Lindner M, Liu K, Loizeau J, Lombardi F, Long J, Lopes JAM, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Marignetti F, Marrodán Undagoitia T, Martens K, Masbou J, Masson D, Masson E, Mastroianni S, Messina M, Miuchi K, Mizukoshi K, Molinario A, Moriyama S, Morå K, Mosbacher Y, Murra M, Müller J, Ni K, Oberlack U, Paetsch B, Palacio J, Pellegrini Q, Peres R, Peters C, Pienaar J, Pierre M, Pizzella V, Plante G, Pollmann TR, Qi J, Qin J, Ramírez García D, Singh R, Sanchez L, Dos Santos JMF, Sarnoff I, Sartorelli G, Schreiner J, Schulte D, Schulte P, Schulze Eißing H, Schumann M, Scotto Lavina L, Selvi M, Semeria F, Shagin P, Shi S, Shockley E, Silva M, Simgen H, Takeda A, Tan PL, Terliuk A, Thers D, Toschi F, Trinchero G, Tunnell C, Tönnies F, Valerius K, Volta G, Weinheimer C, Weiss M, Wenz D, Wittweg C, Wolf T, Wu VHS, Xing Y, Xu D, Xu Z, Yamashita M, Yang L, Ye J, Yuan L, Zavattini G, Zhong M, Zhu T. Searching for Heavy Dark Matter near the Planck Mass with XENON1T. PHYSICAL REVIEW LETTERS 2023; 130:261002. [PMID: 37450817 DOI: 10.1103/physrevlett.130.261002] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023]
Abstract
Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from multiply interacting massive particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This Letter places strong constraints on spin-independent interactions of dark matter particles with a mass between 1×10^{12} and 2×10^{17} GeV/c^{2}. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross sections for dark matter particles with masses close to the Planck scale.
Collapse
|
|
2 |
|
18
|
Joerg R, Itariu BK, Amor M, Bilban M, Langer F, Prager G, Joerg F, Stulnig TM. The effect of long-chain n-3 PUFA on liver transcriptome in human obesity. Prostaglandins Leukot Essent Fatty Acids 2025; 204:102663. [PMID: 39752839 DOI: 10.1016/j.plefa.2024.102663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND AND AIMS Obesity is associated with a higher risk of severe diseases such as atherosclerotic cardiovascular disease, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Polyunsaturated fatty acids, of the omega-3 family (n-3 PUFA), have been shown to reduce adipose tissue inflammation in obesity, as well as to have lipid-lowering effects and improve insulin sensitivity. However, direct effects on liver transcriptome in humans have not been described. Our aim was to understand the impact of n-3 PUFA on gene expression in obese human liver. APPROACH AND RESULTS Patients with obesity (BMI ≥ 40 kg/m2) were treated for eight weeks with 3.36 g n-3 PUFAs (1.84 g eicosapentaenoic acid (EPA) and 1.53 g docosahexaenoic acid (DHA)), or with 5 g of butter as a control (n = 15 per group) before undergoing bariatric surgery where liver biopsies were taken. Liver samples were used for mRNA microarray analyses and subsequently Gene Set Enrichment Analysis (GSEA) was performed. This bioinformatic approach led us to identify 80 significantly dysregulated pathways that were divided into 9 different clusters including insulin and lipid metabolism, and immunity. N-3 PUFA treatment significantly affected pathways related to immunity, metabolism, and inflammation. Specifically, it upregulated pathways involved in T-cell and B-cell functions and lipid metabolism, while downregulating glucagon signalling. These findings highlight the impact of n-3 PUFAs on key metabolic and immune processes in the liver of patients with obesity. CONCLUSION This study provides further insights into the impact on n-3 PUFA on human liver gene expression, particularly in pathways associated with immunity, lipid metabolism, and inflammation, setting basis for further clinical research. SUMMARY Obesity increases the risk of diseases like atherosclerotic- cardiovascular disease, type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease (MASLD). Omega-3 polyunsaturated fatty acids (n-3 PUFA) are known for their anti-inflammatory and metabolic benefits, but their direct impact on liver gene expression in people with obesity, remains unclear. In this study, patients with obesity (BMI ≥ 40 kg/m2) were administered either n-3 PUFAs or butter before bariatric surgery. Liver biopsies were analysed for gene expression via Gene Set Enrichment Analysis (GSEA). The results revealed 80 dysregulated pathways across 9 clusters, including those related to insulin and lipid metabolism, and immunity. This sheds light on how n-3 PUFAs influence gene expression in the liver of patients with obesity, setting the groundwork for further clinical exploration.
Collapse
|
|
1 |
|
19
|
Aprile E, Aalbers J, Abe K, Ahmed Maouloud S, Althueser L, Andrieu B, Angelino E, Angevaare JR, Antochi VC, Antón Martin D, Arneodo F, Balata M, Baudis L, Baxter AL, Bazyk M, Bellagamba L, Biondi R, Bismark A, Brookes EJ, Brown A, Bruenner S, Bruno G, Budnik R, Bui TK, Cai C, Cardoso JMR, Cassese F, Chiarini A, Cichon D, Cimental Chavez AP, Colijn AP, Conrad J, Corrieri R, Cuenca-García JJ, Cussonneau JP, Dadoun O, D’Andrea V, Decowski MP, De Fazio B, Gangi PD, Diglio S, Disdier JM, Douillet D, Eitel K, Elykov A, Farrell S, Ferella AD, Ferrari C, Fischer H, Flierman M, Form S, Front D, Fulgione W, Fuselli C, Gaemers P, Gaior R, Rosso AG, Galloway M, Gao F, Gardner R, Garroum N, Glade-Beucke R, Grandi L, Grigat J, Guan H, Guerzoni M, Guida M, Hammann R, Higuera A, Hils C, Hoetzsch L, Hood NF, Howlett J, Huhmann C, Iacovacci M, Iaquaniello G, Iven L, Itow Y, Jakob J, Joerg F, Joy A, Kara M, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Kuger F, Landsman H, Lang RF, Levinson L, Li I, Li S, Liang S, Lindemann S, Lindner M, Liu K, Loizeau J, Lombardi F, Long J, et alAprile E, Aalbers J, Abe K, Ahmed Maouloud S, Althueser L, Andrieu B, Angelino E, Angevaare JR, Antochi VC, Antón Martin D, Arneodo F, Balata M, Baudis L, Baxter AL, Bazyk M, Bellagamba L, Biondi R, Bismark A, Brookes EJ, Brown A, Bruenner S, Bruno G, Budnik R, Bui TK, Cai C, Cardoso JMR, Cassese F, Chiarini A, Cichon D, Cimental Chavez AP, Colijn AP, Conrad J, Corrieri R, Cuenca-García JJ, Cussonneau JP, Dadoun O, D’Andrea V, Decowski MP, De Fazio B, Gangi PD, Diglio S, Disdier JM, Douillet D, Eitel K, Elykov A, Farrell S, Ferella AD, Ferrari C, Fischer H, Flierman M, Form S, Front D, Fulgione W, Fuselli C, Gaemers P, Gaior R, Rosso AG, Galloway M, Gao F, Gardner R, Garroum N, Glade-Beucke R, Grandi L, Grigat J, Guan H, Guerzoni M, Guida M, Hammann R, Higuera A, Hils C, Hoetzsch L, Hood NF, Howlett J, Huhmann C, Iacovacci M, Iaquaniello G, Iven L, Itow Y, Jakob J, Joerg F, Joy A, Kara M, Kavrigin P, Kazama S, Kobayashi M, Koltman G, Kopec A, Kuger F, Landsman H, Lang RF, Levinson L, Li I, Li S, Liang S, Lindemann S, Lindner M, Liu K, Loizeau J, Lombardi F, Long J, Lopes JAM, Ma Y, Macolino C, Mahlstedt J, Mancuso A, Manenti L, Marignetti F, Marrodán Undagoitia T, Martella P, Martens K, Masbou J, Masson D, Masson E, Mastroianni S, Mele E, Messina M, Michinelli R, Miuchi K, Molinario A, Moriyama S, Morå K, Mosbacher Y, Murra M, Müller J, Ni K, Nisi S, Oberlack U, Orlandi D, Othegraven R, Paetsch B, Palacio J, Parlati S, Paschos P, Pellegrini Q, Peres R, Peters C, Pienaar J, Pierre M, Plante G, Pollmann TR, Qi J, Qin J, García DR, Rynge M, Shi J, Singh R, Sanchez L, Santos JMFD, Sarnoff I, Sartorelli G, Schreiner J, Schulte D, Schulte P, Schulze Eißing H, Schumann M, Scotto Lavina L, Selvi M, Semeria F, Shagin P, Shi S, Shockley E, Silva M, Simgen H, Stephen J, Stern M, Stillwell BK, Takeda A, Tan PL, Tatananni D, Terliuk A, Thers D, Toschi F, Trinchero G, Tunnell C, Tönnies F, Valerius K, Volta G, Weinheimer C, Weiss M, Wenz D, Westermann J, Wittweg C, Wolf T, Wu VHS, Xing Y, Xu D, Xu Z, Yamashita M, Yang L, Ye J, Yuan L, Zavattini G, Zhong M, Zhu T. The XENONnT dark matter experiment. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2024; 84:784. [PMID: 39130092 PMCID: PMC11306575 DOI: 10.1140/epjc/s10052-024-12982-5] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 08/13/2024]
Abstract
The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run.
Collapse
|
research-article |
1 |
|
20
|
Gődény M, Joerg F, Kovar MPP, Schröder C. Updates to Protex for Simulating Proton Transfers in an Ionic Liquid. J Phys Chem B 2024; 128:3416-3426. [PMID: 38557106 PMCID: PMC11017242 DOI: 10.1021/acs.jpcb.3c07356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
The Python-based program Protex was initially developed for simulating proton transfers in a pure protic ionic liquid via polarizable molecular dynamics simulations. This method employs a single topology approach wherein deprotonated species retain a dummy atom, which is transformed into a real hydrogen atom during the protonation process. In this work, we extended Protex to include more intricate systems and to facilitate the simulation of the Grotthuss mechanism to enhance alignment with the empirical findings. The handling of proton transfer events within Protex was further refined for increased flexibility. In the original model, each deprotonated molecule contained a single dummy atom connected to the hydrogen acceptor atom. This model posed limitations for molecules with multiple atoms that could undergo protonation. To mitigate this issue, Protex was extended to execute a proton transfer when one of these potential atoms was within a suitable proximity for the transfer event. For the purpose of maintaining simplicity, Protex continues to utilize only a single dummy atom per deprotonated molecule. Another new feature pertains to the determination of the eligibility for a proton transfer event. A range of acceptable distances can now be defined within which the transfer probability is gradually turned off. These modifications allow for a more nuanced approach to simulating proton transfer events, offering greater accuracy and control of the modeling process.
Collapse
|
research-article |
1 |
|