1
|
De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P, Penault-Llorca F, Rougier P, Vincenzi B, Santini D, Tonini G, Cappuzzo F, Frattini M, Molinari F, Saletti P, De Dosso S, Martini M, Bardelli A, Siena S, Sartore-Bianchi A, Tabernero J, Macarulla T, Di Fiore F, Gangloff AO, Ciardiello F, Pfeiffer P, Qvortrup C, Hansen TP, Van Cutsem E, Piessevaux H, Lambrechts D, Delorenzi M, Tejpar S. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010; 11:753-62. [PMID: 20619739 DOI: 10.1016/s1470-2045(10)70130-3] [Citation(s) in RCA: 1636] [Impact Index Per Article: 109.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Following the discovery that mutant KRAS is associated with resistance to anti-epidermal growth factor receptor (EGFR) antibodies, the tumours of patients with metastatic colorectal cancer are now profiled for seven KRAS mutations before receiving cetuximab or panitumumab. However, most patients with KRAS wild-type tumours still do not respond. We studied the effect of other downstream mutations on the efficacy of cetuximab in, to our knowledge, the largest cohort to date of patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab plus chemotherapy in the pre-KRAS selection era. METHODS 1022 tumour DNA samples (73 from fresh-frozen and 949 from formalin-fixed, paraffin-embedded tissue) from patients treated with cetuximab between 2001 and 2008 were gathered from 11 centres in seven European countries. 773 primary tumour samples had sufficient quality DNA and were included in mutation frequency analyses; mass spectrometry genotyping of tumour samples for KRAS, BRAF, NRAS, and PIK3CA was done centrally. We analysed objective response, progression-free survival (PFS), and overall survival in molecularly defined subgroups of the 649 chemotherapy-refractory patients treated with cetuximab plus chemotherapy. FINDINGS 40.0% (299/747) of the tumours harboured a KRAS mutation, 14.5% (108/743) harboured a PIK3CA mutation (of which 68.5% [74/108] were located in exon 9 and 20.4% [22/108] in exon 20), 4.7% (36/761) harboured a BRAF mutation, and 2.6% (17/644) harboured an NRAS mutation. KRAS mutants did not derive benefit compared with wild types, with a response rate of 6.7% (17/253) versus 35.8% (126/352; odds ratio [OR] 0.13, 95% CI 0.07-0.22; p<0.0001), a median PFS of 12 weeks versus 24 weeks (hazard ratio [HR] 1.98, 1.66-2.36; p<0.0001), and a median overall survival of 32 weeks versus 50 weeks (1.75, 1.47-2.09; p<0.0001). In KRAS wild types, carriers of BRAF and NRAS mutations had a significantly lower response rate than did BRAF and NRAS wild types, with a response rate of 8.3% (2/24) in carriers of BRAF mutations versus 38.0% in BRAF wild types (124/326; OR 0.15, 95% CI 0.02-0.51; p=0.0012); and 7.7% (1/13) in carriers of NRAS mutations versus 38.1% in NRAS wild types (110/289; OR 0.14, 0.007-0.70; p=0.013). PIK3CA exon 9 mutations had no effect, whereas exon 20 mutations were associated with a worse outcome compared with wild types, with a response rate of 0.0% (0/9) versus 36.8% (121/329; OR 0.00, 0.00-0.89; p=0.029), a median PFS of 11.5 weeks versus 24 weeks (HR 2.52, 1.33-4.78; p=0.013), and a median overall survival of 34 weeks versus 51 weeks (3.29, 1.60-6.74; p=0.0057). Multivariate analysis and conditional inference trees confirmed that, if KRAS is not mutated, assessing BRAF, NRAS, and PIK3CA exon 20 mutations (in that order) gives additional information about outcome. Objective response rates in our series were 24.4% in the unselected population, 36.3% in the KRAS wild-type selected population, and 41.2% in the KRAS, BRAF, NRAS, and PIK3CA exon 20 wild-type population. INTERPRETATION While confirming the negative effect of KRAS mutations on outcome after cetuximab, we show that BRAF, NRAS, and PIK3CA exon 20 mutations are significantly associated with a low response rate. Objective response rates could be improved by additional genotyping of BRAF, NRAS, and PIK3CA exon 20 mutations in a KRAS wild-type population. FUNDING Belgian Federation against Cancer (Stichting tegen Kanker).
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
1636 |
2
|
Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazzucchelli L, Frattini M, Siena S, Bardelli A. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008; 26:5705-12. [PMID: 19001320 DOI: 10.1200/jco.2008.18.0786] [Citation(s) in RCA: 1232] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Cetuximab or panitumumab are effective in 10% to 20% unselected metastatic colorectal cancer (CRC) patients. KRAS mutations account for approximately 30% to 40% patients who are not responsive. The serine-threonine kinase BRAF is the principal effector of KRAS. We hypothesized that, in KRAS wild-type patients, BRAF mutations could have a predictive/prognostic value. PATIENTS AND METHODS We retrospectively analyzed objective tumor responses, time to progression, overall survival (OS), and the mutational status of KRAS and BRAF in 113 tumors from cetuximab- or panitumumab-treated metastatic CRC patients. The effect of the BRAF V600E mutation on cetuximab or panitumumab response was also assessed using cellular models of CRC. Results KRAS mutations were present in 30% of the patients and were associated with resistance to cetuximab or panitumumab (P = .011). The BRAF V600E mutation was detected in 11 of 79 patients who had wild-type KRAS. None of the BRAF-mutated patients responded to treatment, whereas none of the responders carried BRAF mutations (P = .029). BRAF-mutated patients had significantly shorter progression-free survival (P = .011) and OS (P < .0001) than wild-type patients. In CRC cells, the introduction of BRAF V600E allele impaired the therapeutic effect of cetuximab or panitumumab. Treatment with the BRAF inhibitor sorafenib restored sensitivity to panitumumab or cetuximab of CRC cells carrying the V600E allele. CONCLUSION BRAF wild-type is required for response to panitumumab or cetuximab and could be used to select patients who are eligible for the treatment. Double-hit therapies aimed at simultaneous inhibition of epidermal growth factor receptor and BRAF warrant exploration in CRC patients carrying the V600E oncogenic mutation.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
1232 |
3
|
Sartore-Bianchi A, Martini M, Molinari F, Veronese S, Nichelatti M, Artale S, Di Nicolantonio F, Saletti P, De Dosso S, Mazzucchelli L, Frattini M, Siena S, Bardelli A. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 2009; 69:1851-7. [PMID: 19223544 DOI: 10.1158/0008-5472.can-08-2466] [Citation(s) in RCA: 588] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The monoclonal antibodies (moAb) panitumumab and cetuximab target the epidermal growth factor receptor (EGFR) and have proven valuable for the treatment of metastatic colorectal cancer (mCRC). EGFR-mediated signaling involves two main intracellular cascades: on one side KRAS activates BRAF, which in turn triggers the mitogen-activated protein kinases. On the other, membrane localization of the lipid kinase PIK3CA counteracts PTEN and promotes AKT1 phosphorylation, thereby activating a parallel intracellular axis. Constitutive activation of KRAS bypasses the corresponding signaling cascade and, accordingly, patients with mCRC bearing KRAS mutations are clinically resistant to therapy with panitumumab or cetuximab. We hypothesized that mutations activating PIK3CA could also preclude responsiveness to EGFR-targeted moAbs through a similar mechanism. Here, we present the mutational analysis of PIK3CA and KRAS and evaluation of the PTEN protein status in a cohort of 110 patients with mCRC treated with anti-EGFR moAbs. We observed 15 (13.6%) PIK3CA and 32 (29.0%) KRAS mutations. PIK3CA mutations were significantly associated with clinical resistance to panitumumab or cetuximab; none of the mutated patients achieved objective response (P = 0.038). When only KRAS wild-type tumors were analyzed, the statistical correlation was stronger (P = 0.016). Patients with PIK3CA mutations displayed a worse clinical outcome also in terms of progression-free survival (P = 0.035). Our data indicate that PIK3CA mutations can independently hamper the therapeutic response to panitumumab or cetuximab in mCRC. When the molecular status of the PIK3CA/PTEN and KRAS pathways are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to EGFR moAbs can be identified.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
588 |
4
|
Frattini M, Saletti P, Romagnani E, Martin V, Molinari F, Ghisletta M, Camponovo A, Etienne LL, Cavalli F, Mazzucchelli L. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br J Cancer 2007; 97:1139-45. [PMID: 17940504 PMCID: PMC2360431 DOI: 10.1038/sj.bjc.6604009] [Citation(s) in RCA: 433] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/01/2007] [Indexed: 12/12/2022] Open
Abstract
To evaluate whether the epidermal growth factor receptor (EGFR), K-Ras and PTEN, all members of the EGFR signalling pathway, may affect the clinical response in cetuximab-treated metastatic colorectal cancer (mCRC) patients. Twenty-seven cetuximab-treated mCRC patients were evaluated for drug response and investigated for EGFR protein expression and gene status, K-Ras mutational status and PTEN protein expression. Ten patients achieved a partial response (PR) to cetuximab-based therapy. All 27 patients showed EGFR protein overexpression. Epidermal growth factor receptor gene amplification was observed in eight out of 27 (30%) and chromosome 7 marked polysomy in 16 (59%) patients. Partial response was observed in six out of eight patients with EGFR gene amplification, four out of 16 with marked polysomy and none out of three with eusomy (P<0.05). The K-Ras wild-type sequence was observed in 17 patients, and nine of them experienced a PR. Conversely, K-Ras was mutated in 10 cases, of which one patient experienced a PR (P<0.05). The PTEN protein was normally expressed in 16 patients, and 10 of them achieved a PR. In contrast, no benefit was documented in 11 patients with loss of PTEN activity (P<0.001). Patients with EGFR gene amplification or chromosome 7 marked polysomy respond to cetuximab. In addition to K-Ras mutations, we demonstrate for the first time that the loss of PTEN protein expression is associated with nonresponsiveness to cetuximab.
Collapse
|
research-article |
18 |
433 |
5
|
Bleeker FE, Lamba S, Leenstra S, Troost D, Hulsebos T, Vandertop WP, Frattini M, Molinari F, Knowles M, Cerrato A, Rodolfo M, Scarpa A, Felicioni L, Buttitta F, Malatesta S, Marchetti A, Bardelli A. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 2009; 30:7-11. [PMID: 19117336 DOI: 10.1002/humu.20937] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Systematic sequence profiling of the Glioblastoma Multiforme (GBM) genome has recently led to the identification of somatic mutations in the isocitrate dehydrogenase 1 (IDH1) gene. Interestingly, only the evolutionarily conserved residue R132 located in the substrate binding site of IDH1 was found mutated in GBM. At present, the occurrence and the relevance of p.R132 (IDH1(R132)) variants in tumors other than GBMs is largely unknown. We searched for mutations at position R132 of the IDH1 gene in a panel of 672 tumor samples. These included high-grade glioma, gastrointestinal stromal tumors (GIST), melanoma, bladder, breast, colorectal, lung, ovarian, pancreas, prostate, and thyroid carcinoma specimens. In addition, we assessed a panel of 84 cell lines from different tumor lineages. Somatic mutations affecting the IDH1(R132) residue were detected in 20% (23 of 113) high-grade glioma samples. In addition to the previously reported p.R132H and p.R132S alleles, we identified three novel somatic mutations (p.R132C, p.R132G, and p.R132L) affecting residue IDH1(R132) in GBM. Strikingly, no IDH1 mutations were detected in the other tumor types. These data indicate that cancer mutations affecting IDH1(R132) are tissue-specific, and suggest that it plays a unique role in the development of high-grade gliomas.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
310 |
6
|
Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T, Russo M, Cancelliere C, Zecchin D, Mazzucchelli L, Sasazuki T, Shirasawa S, Geuna M, Frattini M, Baselga J, Gallicchio M, Biffo S, Bardelli A. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest 2010; 120:2858-66. [PMID: 20664172 PMCID: PMC2912177 DOI: 10.1172/jci37539] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 05/19/2010] [Indexed: 12/16/2022] Open
Abstract
Personalized cancer medicine is based on the concept that targeted therapies are effective on subsets of patients whose tumors carry specific molecular alterations. Several mammalian target of rapamycin (mTOR) inhibitors are in preclinical or clinical trials for cancers, but the molecular basis of sensitivity or resistance to these inhibitors among patients is largely unknown. Here we have identified oncogenic variants of phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA) and KRAS as determinants of response to the mTOR inhibitor everolimus. Human cancer cells carrying alterations in the PI3K pathway were responsive to everolimus, both in vitro and in vivo, except when KRAS mutations occurred concomitantly or were exogenously introduced. In human cancer cells with mutations in both PIK3CA and KRAS, genetic ablation of mutant KRAS reinstated response to the drug. Consistent with these data, PIK3CA mutant cells, but not KRAS mutant cells, displayed everolimus-sensitive translation. Importantly, in a cohort of metastatic cancer patients, the presence of oncogenic KRAS mutations was associated with lack of benefit after everolimus therapy. Thus, our results demonstrate that alterations in the KRAS and PIK3CA genes may represent biomarkers to optimize treatment of patients with mTOR inhibitors.
Collapse
|
research-article |
15 |
299 |
7
|
Sartore-Bianchi A, Di Nicolantonio F, Nichelatti M, Molinari F, De Dosso S, Saletti P, Martini M, Cipani T, Marrapese G, Mazzucchelli L, Lamba S, Veronese S, Frattini M, Bardelli A, Siena S. Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLoS One 2009; 4:e7287. [PMID: 19806185 PMCID: PMC2750753 DOI: 10.1371/journal.pone.0007287] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/02/2009] [Indexed: 12/15/2022] Open
Abstract
Background KRAS mutations occur in 35–45% of metastatic colorectal cancers (mCRC) and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance. Methodology/Principal Findings We retrospectively analyzed objective tumor response, progression-free (PFS) and overall survival (OS) together with the mutational status of KRAS, BRAF, PIK3CA and expression of PTEN in 132 tumors from cetuximab or panitumumab treated mCRC patients. Among the 106 non-responsive patients, 74 (70%) had tumors with at least one molecular alteration in the four markers. The probability of response was 51% (22/43) among patients with no alterations, 4% (2/47) among patients with 1 alteration, and 0% (0/24) for patients with ≥2 alterations (p<0.0001). Accordingly, PFS and OS were increasingly worse for patients with tumors harboring none, 1, or ≥2 molecular alteration(s) (p<0.001). Conclusions/Significance When expression of PTEN and mutations of KRAS, BRAF and PIK3CA are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to anti-EGFR therapies can be identified. We propose to define as ‘quadruple negative’, the CRCs lacking alterations in KRAS, BRAF, PTEN and PIK3CA. Comprehensive molecular dissection of the EGFR signaling pathways should be considered to select mCRC patients for cetuximab- or panitumumab-based therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
208 |
8
|
Wild JM, Marshall H, Bock M, Schad LR, Jakob PM, Puderbach M, Molinari F, Van Beek EJR, Biederer J. MRI of the lung (1/3): methods. Insights Imaging 2012; 3:345-53. [PMID: 22695952 PMCID: PMC3481083 DOI: 10.1007/s13244-012-0176-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 11/26/2022] Open
Abstract
Proton magnetic resonance imaging (MRI) has recently emerged as a clinical tool to image the lungs. This paper outlines the current technical aspects of MRI pulse sequences, radiofrequency (RF) coils and MRI system requirements needed for imaging the pulmonary parenchyma and vasculature. Lung MRI techniques are presented as a “technical toolkit”, from which MR protocols will be composed in the subsequent papers for comprehensive imaging of lung disease and function (parts 2 and 3). This paper is pitched at MR scientists, technicians and radiologists who are interested in understanding and establishing lung MRI methods. Images from a 1.5 T scanner are used for illustration of the sequences and methods that are highlighted. Main Messages • Outline of the hardware and pulse sequence requirements for proton lung MRI • Overview of pulse sequences for lung parenchyma, vascular and functional imaging with protons • Demonstration of the pulse-sequence building blocks for clinical lung MRI protocols
Collapse
|
Journal Article |
13 |
188 |
9
|
Molinari F, Felicioni L, Buscarino M, De Dosso S, Buttitta F, Malatesta S, Movilia A, Luoni M, Boldorini R, Alabiso O, Girlando S, Soini B, Spitale A, Di Nicolantonio F, Saletti P, Crippa S, Mazzucchelli L, Marchetti A, Bardelli A, Frattini M. Increased detection sensitivity for KRAS mutations enhances the prediction of anti-EGFR monoclonal antibody resistance in metastatic colorectal cancer. Clin Cancer Res 2011; 17:4901-14. [PMID: 21632860 DOI: 10.1158/1078-0432.ccr-10-3137] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE KRAS mutations represent the main cause of resistance to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MoAbs) in metastatic colorectal cancer (mCRC). We evaluated whether highly sensitive methods for KRAS investigation improve the accuracy of predictions of anti-EGFR MoAbs efficacy. EXPERIMENTAL DESIGN We retrospectively evaluated objective tumor responses in mCRC patients treated with cetuximab or panitumumab. KRAS codons 12 and 13 were examined by direct sequencing, MALDI-TOF MS, mutant-enriched PCR, and engineered mutant-enriched PCR, which have a sensitivity of 20%, 10%, 0.1%, and 0.1%, respectively. In addition, we analyzed KRAS codon 61, BRAF, and PIK3CA by direct sequencing and PTEN expression by immunohistochemistry. RESULTS In total, 111 patients were considered. Direct sequencing revealed mutations in codons 12 and 13 of KRAS in 43/111 patients (39%) and BRAF mutations in 9/111 (8%), with almost all of these occurring in nonresponder patients. Using highly sensitive methods, we identified up to 13 additional KRAS mutations compared with direct sequencing, all occurring in nonresponders. By analyzing PIK3CA and PTEN, we found that of these 13 patients, 7 did not show any additional alteration in the PI3K pathway. CONCLUSIONS The application of highly sensitive methods for the detection of KRAS mutations significantly improves the identification of mCRC patients resistant to anti-EGFR MoAbs.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
143 |
10
|
Miranda C, Nucifora M, Molinari F, Conca E, Anania MC, Bordoni A, Saletti P, Mazzucchelli L, Pilotti S, Pierotti MA, Tamborini E, Greco A, Frattini M. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin Cancer Res 2012; 18:1769-76. [PMID: 22282465 DOI: 10.1158/1078-0432.ccr-11-2230] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Gastrointestinal stromal tumors (GIST) are characterized by gain-of-function mutations in KIT/PDGFRA genes leading to a constitutive receptor activation which is well counteracted by imatinib. However, cases in which imatinib as first-line treatment has no effects are reported (primary resistance). Our purpose is to investigate alterations in downstream effectors, not reported so far in mutated GIST, possibly explaining the primary resistance to targeted treatments. EXPERIMENTAL DESIGN Two independent naive GIST cohorts have been analyzed for KIT, PDGFRA, KRAS, and BRAF mutations by direct sequencing. Cell lines expressing a constitutively activated and imatinib-responding KIT, alone or in combination with activated KRAS and BRAF, were produced and treated with imatinib. KIT receptor and its downstream effectors were analyzed by direct Western blotting. RESULTS In naive GISTs carrying activating mutations in KIT or PDGFRA a concomitant activating mutation was detected in KRAS (5%) or BRAF (about 2%) genes. In vitro experiments showed that imatinib was able to switch off the mutated receptor KIT but not the downstream signaling triggered by RAS-RAF effectors. CONCLUSIONS These data suggest the activation of mitogen-activated protein kinase pathway as a possible novel mechanism of primary resistance to imatinib in GISTs and could explain the survival curves obtained from several clinical studies where 2% to 4% of patients with GIST treated with imatinib, despite carrying KIT-sensitive mutations, do not respond to the treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
130 |
11
|
Grosfeld JL, Chaet M, Molinari F, Engle W, Engum SA, West KW, Rescorla FJ, Scherer LR. Increased risk of necrotizing enterocolitis in premature infants with patent ductus arteriosus treated with indomethacin. Ann Surg 1996; 224:350-5; discussion 355-7. [PMID: 8813263 PMCID: PMC1235380 DOI: 10.1097/00000658-199609000-00011] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The authors evaluated the risk of necrotizing enterocolitis (NEC) in very low birth weight infants receiving indomethacin (INDO) to close patent ductus arteriosus (PDA). BACKGROUND DATA Controversy exists regarding the best method of managing very low birth weight infants with PDA and whether to employ medical management using INDO or surgical ligation of the ductus. METHODS Two hundred fifty-two premature infants with symptomatic PDA were given intravenously INDO 0.2 mg/kg every 12 hours x 3 in an attempt to close the ductus. Patients were evaluated for sex, birth weight, gestational age, ductus closure, occurrence of NEC, bowel perforation, and mortality. RESULTS There were 135 boys and 117 girls. The PDA closed or became asymptomatic in 224 cases (89%), whereas 28 (11%) required surgical ligation. Ninety infants (35%) developed evidence of NEC after INDO therapy. Fifty-six were managed medically; surgical intervention was required in 34 of 90 cases (37.8%) or 13% of the entire PDA/INDO study group. Bowel perforation was noted in 27 cases (30%). Factors associated with the onset of NEC included gestational age < 28 weeks, birth weight < 1 kg, and prolonged ventilator support. The overall mortality rate was 25.5%, but was higher in infants with NEC versus those without. The highest mortality was noted in perforated NEC cases. The PDA/INDO patients were compared with a control group of 764 infants with similar sex distribution, birth weights, and gestational ages without PDA who did not receive INDO. Necrotizing enterocolitis occurred in 105 of 764 control patients (13.7%), including 13 (12.3%) with perforation. The overall mortality rate of controls was 25%, which was similar to the overall 25.5% mortality rate in the PDA/INDO study group. CONCLUSION These data indicate that there is increased risk of NEC and bowel perforation in premature infants with PDA receiving INDO. Mortality was higher in the PDA/INDO group with NEC than those PDA/INDO infants without NEC.
Collapse
|
research-article |
29 |
121 |
12
|
Molinari F, Martin V, Saletti P, De Dosso S, Spitale A, Camponovo A, Bordoni A, Crippa S, Mazzucchelli L, Frattini M. Differing deregulation of EGFR and downstream proteins in primary colorectal cancer and related metastatic sites may be clinically relevant. Br J Cancer 2009; 100:1087-94. [PMID: 19293803 PMCID: PMC2669991 DOI: 10.1038/sj.bjc.6604848] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/24/2008] [Accepted: 12/01/2008] [Indexed: 02/08/2023] Open
Abstract
Cetuximab and panitumumab efficacy in metastatic colorectal cancer (mCRC) may be influenced by EGFR gene status and/or deregulation of its downstream signalling proteins detected in primary tumour. However, metastasis might have different molecular patterns with respect to primary tumour, possibly affecting the prediction of EGFR-targeted therapy efficacy. We analysed primary tumour and metastasis in 38 mCRC patients. Twelve cases were cetuximab/panitumumab treated. EGFR gene status and protein expression were investigated through fluorescent in situ hybridisation and immunohistochemistry (IHC), K-Ras/BRAF mutations by sequencing and PTEN expression by IHC. We observed EGFR gene deregulation in 25 out of 36 primary tumours and 29 out of 36 metastases, K-Ras mutations in 16 out of 37 cancers and in 15 out of 37 metastases, BRAF mutations in 2 out of 36 cancers and 2 out of 36 metastases and PTEN loss in 8 out of 38 cancers and 12 out of 38 metastases. For the first time in literature, we show that primary colorectal cancer and paired metastasis may exhibit difference with respect to EGFR pathway deregulation mechanisms possibly implying a different response to cetuximab or panitumumab treatment. The investigation of treated patients confirms this hypothesis. We therefore suggest that the analysis of metastatic lesion should be considered in patient management as well as in designing future clinical trials aimed to investigate the effect of anti-EGFR monoclonal antibodies in the treatment of mCRC.
Collapse
|
research-article |
16 |
103 |
13
|
Acharya UR, Faust O, Sree SV, Molinari F, Garberoglio R, Suri JS. Cost-effective and non-invasive automated benign and malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScan™ algorithms. Technol Cancer Res Treat 2012; 10:371-80. [PMID: 21728394 DOI: 10.7785/tcrt.2012.500214] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ultrasound has great potential to aid in the differential diagnosis of malignant and benign thyroid lesions, but interpretative pitfalls exist and the accuracy is still poor. To overcome these difficulties, we developed and analyzed a range of knowledge representation techniques, which are a class of ThyroScan™ algorithms from Global Biomedical Technologies Inc., California, USA, for automatic classification of benign and malignant thyroid lesions. The analysis is based on data obtained from twenty nodules (ten benign and ten malignant) taken from 3D contrast-enhanced ultrasound images. Fine needle aspiration biopsy and histology confirmed malignancy. Discrete Wavelet Transform (DWT) and texture algorithms are used to extract relevant features from the thyroid images. The resulting feature vectors are fed to three different classifiers: K-Nearest Neighbor (K-NN), Probabilistic Neural Network (PNN), and Decision Tree (DeTr). The performance of these classifiers is compared using Receiver Operating Characteristic (ROC) curves. Our results show that combination of DWT and texture features coupled with K-NN resulted in good performance measures with the area of under the ROC curve of 0.987, a classification accuracy of 98.9%, a sensitivity of 98%, and a specificity of 99.8%. Finally, we have proposed a novel integrated index called Thyroid Malignancy Index (TMI), which is made up of texture features, to diagnose benign or malignant nodules using just one index. We hope that this TMI will help clinicians in a more objective detection of benign and malignant thyroid lesions.
Collapse
|
Journal Article |
13 |
95 |
14
|
Molinari F, Kaminska A, Fiermonte G, Boddaert N, Raas-Rothschild A, Plouin P, Palmieri L, Brunelle F, Palmieri F, Dulac O, Munnich A, Colleaux L. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet 2009; 76:188-94. [PMID: 19780765 DOI: 10.1111/j.1399-0004.2009.01236.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neonatal epileptic encephalopathies with suppression bursts (SBs) are very severe and relatively rare diseases characterized by neonatal onset of seizures, interictal electroencephalogram (EEG) with SB pattern and very poor neurological outcome or death. Their etiology remains elusive but they are occasionally caused by metabolic diseases or malformations. Studying an Arab Muslim Israeli consanguineous family, with four affected children presenting a severe neonatal epileptic encephalopathy, we have previously identified a mutation in the SLC25A22 gene encoding a mitochondrial glutamate transporter. In this report, we describe a novel SLC25A22 mutation in an unrelated patient born from first cousin Algerian parents and presenting severe epileptic encephalopathy characterized by an EEG with SB, hypotonia, microcephaly and abnormal electroretinogram. We showed that this patient carried a homozygous p.G236W SLC25A22 mutation which alters a highly conserved amino acid and completely abolishes the glutamate carrier's activity in vitro. Comparison of the clinical features of patients from both families suggests that SLC25A22 mutations are responsible for a novel clinically recognizable epileptic encephalopathy with SB.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
94 |
15
|
Zlobec I, Kovac M, Erzberger P, Molinari F, Bihl MP, Rufle A, Foerster A, Frattini M, Terracciano L, Heinimann K, Lugli A. Combined analysis of specific KRAS mutation, BRAF and microsatellite instability identifies prognostic subgroups of sporadic and hereditary colorectal cancer. Int J Cancer 2010; 127:2569-75. [PMID: 20162668 DOI: 10.1002/ijc.25265] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Confounding effects of specific KRAS gene alterations on colorectal cancer (CRC) prognosis stratified by microsatellite instability (MSI) and BRAF(V600E) have not yet been investigated. The aim of our study was to evaluate the combined effects of MSI, BRAF(V600E) and specific KRAS mutation (Gly → Asp; G12D, Gly → Asp, G13D; Gly → Val; G12V) on prognosis in 404 sporadic and 94 hereditary CRC patients. MSI status was determined according to the Bethesda guidelines. Mutational status of KRAS and BRAF(V600E) was assessed by direct DNA sequencing. In sporadic CRC, KRAS G12D mutations had a negative prognostic effect compared to G13D and wild-type cancers (p = 0.038). With MSI, specific KRAS and BRAF(V600E) mutations, 3 distinct prognostic subgroups were observed in univariate (p = 0.006) and multivariable (p = 0.051) analysis: patients with (i) KRAS mutation G12D, G12V or BRAF(V600E) mutation, (ii) KRAS/BRAF(V600E) wild-type or KRAS G13D mutations in MSS/MSI-L and (iii) MSI-H and KRAS G13D mutations. Moreover, none of the sporadic MSI-H or hereditary patients with KRAS G13 mutations had a fatal outcome. Specific KRAS mutation is an informative prognostic factor in both sporadic and hereditary CRC and applied in an algorithm with BRAF(V600E) and MSI may identify sporadic CRC patients with poor clinical outcome.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
87 |
16
|
Grosfeld JL, Molinari F, Chaet M, Engum SA, West KW, Rescorla FJ, Scherer LR. Gastrointestinal perforation and peritonitis in infants and children: experience with 179 cases over ten years. Surgery 1996; 120:650-5; discussion 655-6. [PMID: 8862373 DOI: 10.1016/s0039-6060(96)80012-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Premature infants continue to have a high mortality after gastrointestinal perforation. This report describes 179 patients with gastrointestinal perforation and peritonitis and compares etiologic factors, mortality, and causes of death in premature infants and older children in an attempt to predict outcome. METHODS The 113 boys (63.1%) and 66 girls (36.9%) had an age range of newborn (n = 139, 77.6%) to 17 years. Site of perforation was gastric in 16, duodenal in 9, small bowel in 105, colon in 37, and undesignated in 12. Eighteen had multiple perforations. Etiologic factors in newborns (younger than 2 months) included necrotizing enterocolitis (NEC) (75, 41.9%), isolated ileal perforations (30, 21.5%), malrotation/volvulus (8), iatrogenic causes (5), and others (6). Gestational age was 29.6 +/- 4.3 weeks for NEC versus 31.4 +/- 5.4 weeks for non-NEC. Birth weight for patients with NEC was 1.45 +/- 0.8 gm and 1.81 +/- 1.0 gm for non-NEC babies. Etiologic factors in 33 older children (older than 2 months to 17 years) were trauma (10), Meckel's diverticulum (4), intussusception (2), pseudomembranous colitis (2), adhesions (2), stomal leak (2), others (4), and nondesignated (7). Gastric perforations (n = 16) were iatrogenic in 7, idiopathic in 5, and caused by an ulcer in 4. RESULTS Mortality for NEC was 36 of 75 (48%), 15 of 55 (27.2%) for non-NEC infants (p < 0.05 versus NEC), 15.1% (5 of 33) for older children (p < 0.05 versus NEC), and 4 of 16 (25%) for gastric perforation. Infant deaths were related to overwhelming sepsis, immaturity of systems, and multiorgan failure. Deaths for older children were a result of sepsis, multiorgan failure, and immunodeficiency. CONCLUSIONS Gastrointestinal perforation is more common in premature infants with the highest mortality (48%) noted in NEC. Despite surgical intervention and advances in neonatal intensive care unit care, premature low birth weight infants (especially NEC) continue to have a high mortality.
Collapse
|
|
29 |
68 |
17
|
Molinari F, Frattini M. Functions and Regulation of the PTEN Gene in Colorectal Cancer. Front Oncol 2014; 3:326. [PMID: 24475377 PMCID: PMC3893597 DOI: 10.3389/fonc.2013.00326] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/20/2013] [Indexed: 12/20/2022] Open
Abstract
Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene located at chromosome 10q23.31, encoding for a 403-amino acid protein that possesses both lipid and protein phosphatase activities. The main function of PTEN is to block the PI3K pathway by dephosphorylating phosphatidylinositol (PI) 3,4,5-triphosphate to PI-4,5-bisphosphate thus counteracting PI3K function. PTEN inactivation is a frequent event in many cancer types and can occur through various genetic alterations including point mutations, large chromosomal deletions, and epigenetic mechanisms. In colorectal cancer (CRC) PTEN is altered through mixed genetic/epigenetic mechanisms (typically: mutations and promoter hypermethylation or 10q23 LOH and promoter hypermethylation), which lead to the biallelic inactivation of the protein in 20–30% of cases. The role of PTEN as a prognostic and predictive factor in CRC has been addressed by relatively few works. This review is focused on the report and on the discussion of the studies investigating these aspects. Overall, at the moment, there are conflicting results and, therefore it has not been clarified whether PTEN might play a prognostic role in CRC. The same is valid also for the predictive role, leading to the fact that PTEN evaluation cannot be used in routinely diagnosis for the early identification of patients who might be addressed to the treatment with EGFR-targeted therapies, at odds with other genetic alterations belonging to EGFR-downstream pathways. The reason of discordant results may be attributable to several issues: (1) the size of the analyzed cohort, (2) patients inclusion criteria, (3) the methods of assessing PTEN alteration. In particular, there are no standardized methods to evaluate this marker, especially for immunohistochemistry, a technique suffering of intra and inter-observer variability due to the semi-quantitative character of such an analysis. In conclusion, much work, especially in large and homogeneous cohorts of cases from different laboratories, has to be done before the establishment of PTEN as prognostic or predictive marker in CRC.
Collapse
|
Review |
11 |
65 |
18
|
Manski CF, Molinari F. Estimating the COVID-19 infection rate: Anatomy of an inference problem. JOURNAL OF ECONOMETRICS 2021; 220:181-192. [PMID: 32377030 PMCID: PMC7200382 DOI: 10.1016/j.jeconom.2020.04.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 05/20/2023]
Abstract
As a consequence of missing data on tests for infection and imperfect accuracy of tests, reported rates of cumulative population infection by the SARS CoV-2 virus are lower than actual rates of infection. Hence, reported rates of severe illness conditional on infection are higher than actual rates. Understanding the time path of the COVID-19 pandemic has been hampered by the absence of bounds on infection rates that are credible and informative. This paper explains the logical problem of bounding these rates and reports illustrative findings, using data from Illinois, New York, and Italy. We combine the data with assumptions on the infection rate in the untested population and on the accuracy of the tests that appear credible in the current context. We find that the infection rate might be substantially higher than reported. We also find that, assuming accurate reporting of deaths, the infection fatality rates in Illinois, New York, and Italy are substantially lower than reported.
Collapse
|
research-article |
4 |
62 |
19
|
Molinari F, Pin F, Gorini S, Chiandotto S, Pontecorvo L, Penna F, Rizzuto E, Pisu S, Musarò A, Costelli P, Rosano G, Ferraro E. The mitochondrial metabolic reprogramming agent trimetazidine as an 'exercise mimetic' in cachectic C26-bearing mice. J Cachexia Sarcopenia Muscle 2017; 8:954-973. [PMID: 29130633 PMCID: PMC5700442 DOI: 10.1002/jcsm.12226] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/07/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer cachexia is characterized by muscle depletion and exercise intolerance caused by an imbalance between protein synthesis and degradation and by impaired myogenesis. Myofibre metabolic efficiency is crucial so as to assure optimal muscle function. Some drugs are able to reprogram cell metabolism and, in some cases, to enhance metabolic efficiency. Based on these premises, we chose to investigate the ability of the metabolic modulator trimetazidine (TMZ) to counteract skeletal muscle dysfunctions and wasting occurring in cancer cachexia. METHODS For this purpose, we used mice bearing the C26 colon carcinoma as a model of cancer cachexia. Mice received 5 mg/kg TMZ (i.p.) once a day for 12 consecutive days. A forelimb grip strength test was performed and tibialis anterior, and gastrocnemius muscles were excised for analysis. Ex vivo measurement of skeletal muscle contractile properties was also performed. RESULTS Our data showed that TMZ induces some effects typically achieved through exercise, among which is grip strength increase, an enhanced fast-to slow myofibre phenotype shift, reduced glycaemia, PGC1α up-regulation, oxidative metabolism, and mitochondrial biogenesis. TMZ also partially restores the myofibre cross-sectional area in C26-bearing mice, while modulation of autophagy and apoptosis were excluded as mediators of TMZ effects. CONCLUSIONS In conclusion, our data show that TMZ acts like an 'exercise mimetic' and is able to enhance some mechanisms of adaptation to stress in cancer cachexia. This makes the modulation of the metabolism, and in particular TMZ, a suitable candidate for a therapeutic rehabilitative protocol design, particularly considering that TMZ has already been approved for clinical use.
Collapse
|
research-article |
8 |
59 |
20
|
Furlan D, Sahnane N, Bernasconi B, Frattini M, Tibiletti MG, Molinari F, Marando A, Zhang L, Vanoli A, Casnedi S, Adsay V, Notohara K, Albarello L, Asioli S, Sessa F, Capella C, La Rosa S. APC alterations are frequently involved in the pathogenesis of acinar cell carcinoma of the pancreas, mainly through gene loss and promoter hypermethylation. Virchows Arch 2014; 464:553-64. [PMID: 24590585 DOI: 10.1007/s00428-014-1562-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/24/2014] [Accepted: 02/16/2014] [Indexed: 12/15/2022]
Abstract
Genetic and epigenetic alterations involved in the pathogenesis of pancreatic acinar cell carcinomas (ACCs) are poorly characterized, including the frequency and role of gene-specific hypermethylation, chromosome aberrations, and copy number alterations (CNAs). A subset of ACCs is known to show alterations in the APC/β-catenin pathway which includes mutations of APC gene. However, it is not known whether, in addition to mutation, loss of APC gene function can occur through alternative genetic and epigenetic mechanisms such as gene loss or promoter methylation. We investigated the global methylation profile of 34 tumor suppressor genes, CNAs of 52 chromosomal regions, and APC gene alterations (mutation, methylation, and loss) together with APC mRNA level in 45 ACCs and related peritumoral pancreatic tissues using methylation-specific multiplex ligation probe amplification (MS-MLPA), fluorescence in situ hybridization (FISH), mutation analysis, and reverse transcription-droplet digital PCR. ACCs did not show an extensive global gene hypermethylation profile. RASSF1 and APC were the only two genes frequently methylated. APC mutations were found in only 7 % of cases, while APC loss and methylation were more frequently observed (48 and 56 % of ACCs, respectively). APC mRNA low levels were found in 58 % of cases and correlated with CNAs. In conclusion, ACCs do not show extensive global gene hypermethylation. APC alterations are frequently involved in the pathogenesis of ACCs mainly through gene loss and promoter hypermethylation, along with reduction of APC mRNA levels.
Collapse
|
Journal Article |
11 |
58 |
21
|
Rio M, Molinari F, Heuertz S, Ozilou C, Gosset P, Raoul O, Cormier-Daire V, Amiel J, Lyonnet S, Le Merrer M, Turleau C, de Blois MC, Prieur M, Romana S, Vekemans M, Munnich A, Colleaux L. Automated fluorescent genotyping detects 10% of cryptic subtelomeric rearrangements in idiopathic syndromic mental retardation. J Med Genet 2002; 39:266-70. [PMID: 11950856 PMCID: PMC1735076 DOI: 10.1136/jmg.39.4.266] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Recent studies have shown that cryptic unbalanced subtelomeric rearrangements contribute to a significant proportion of idiopathic syndromic mental retardation cases. Using a fluorescent genotyping based strategy, we found a 10% rate of cryptic subtelomeric rearrangements in a large series of 150 probands with severe idiopathic syndromic mental retardation and normal RHG-GTG banded karyotype. Fourteen children were found to carry deletions or duplications of one or more chromosome telomeres and two children had uniparental disomy. This study clearly shows that fluorescent genotyping is a sensitive and cost effective method that not only detects cryptic subtelomeric rearrangements but also provides a unique opportunity to detect uniparental disomies. We suggest giving consideration to systematic examination of subtelomeric regions in the diagnostic work up of patients with unexplained syndromic mental retardation.
Collapse
|
research-article |
23 |
58 |
22
|
Cormier-Daire V, Molinari F, Rio M, Raoul O, de Blois MC, Romana S, Vekemans M, Munnich A, Colleaux L. Cryptic terminal deletion of chromosome 9q34: a novel cause of syndromic obesity in childhood? J Med Genet 2003; 40:300-3. [PMID: 12676904 PMCID: PMC1735435 DOI: 10.1136/jmg.40.4.300] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
letter |
22 |
51 |
23
|
Rizzitelli S, Giustetto P, Cutrin JC, Delli Castelli D, Boffa C, Ruzza M, Menchise V, Molinari F, Aime S, Terreno E. Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound. J Control Release 2015; 202:21-30. [PMID: 25626083 DOI: 10.1016/j.jconrel.2015.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/24/2022]
Abstract
The main goal of this study was to assess the theranostic performance of a nanomedicine able to generate MRI contrast as a response to the release from liposomes of the antitumor drug Doxorubicin triggered by the local exposure to pulsed low intensity non focused ultrasounds (pLINFU). In vitro experiments showed that Gadoteridol was an excellent imaging agent for probing the release of Doxorubicin following pLINFU stimulation. On this basis, the theranostic system was investigated in vivo on a syngeneic murine model of TS/A breast cancer. MRI offered an excellent guidance for monitoring the pLINFU-stimulated release of the drug. Moreover, it provided: i) an in vivo proof of the effective release of the liposomal content, and ii) a confirmation of the therapeutic benefits of the overall protocol. Ex vivo fluorescence microscopy indicated that the good therapeutic outcome was originated from a better diffusion of the drug in the tumor following the pLINFU stimulus. Very interestingly, the broad diffusion of the drug in the tumor stroma appeared to be mediated by the presence of the liposomes themselves. The results of this study highlighted either the great potential of US-based stimuli to safely trigger the release of a drug from its nanocarrier or the associated significant therapeutic improvement. Finally, MRI demonstrated to be a valuable technique to support chemotherapy and monitoring the outcome. Furthermore, in this specific case, the theranostic agent developed has a high clinical translatability because the MRI agent utilized is already approved for human use.
Collapse
|
Journal Article |
10 |
46 |
24
|
Zlobec I, Molinari F, Martin V, Mazzucchelli L, Saletti P, Trezzi R, De Dosso S, Vlajnic T, Frattini M, Lugli A. Tumor budding predicts response to anti-EGFR therapies in metastatic colorectal cancer patients. World J Gastroenterol 2010; 16:4823-31. [PMID: 20939111 PMCID: PMC2955252 DOI: 10.3748/wjg.v16.i38.4823] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether the evaluation of tumor budding can complement K-RAS analysis to improve the individualized prediction of response to anti-epidermal growth factor receptor based therapies in metastatic colorectal cancer (mCRC) patients.
METHODS: Forty-three patients with mCRC treated with cetuximab or panitumumab were entered into this study. According to the Response Evaluation Criteria in Solid Tumors criteria, 30 patients had stable or progressive disease (non-responsive), while 13 patients had a partial response. Tumor buds were evaluated from whole tissue sections stained for pan-cytokeratin, evaluated in the densest region using a 40 × objective and “high-grade” tumor budding was defined as 15 buds/high-power field.
RESULTS: Tumor buds and K-RAS mutation both correctly classified 68% of patients. All patients with K-RAS mutation (n = 7) or high-grade tumor budding (n = 11) were non-responsive, of which 4 patients had both features. All 13 partial responders were K-RAS wild-type with low-grade tumor budding. Combined, the predictive value of K-RAS and tumor budding was 80%. Additionally, high-grade tumor budding was significantly related to worse progression-free survival [HR (95% CI): 2.8 (1.3-6.0, P = 0.008)].
CONCLUSION: If confirmed in larger cohorts, the addition of tumor budding to K-RAS analysis may represent an effective approach for individualized patient management in the metastatic setting.
Collapse
|
Brief Article |
15 |
43 |
25
|
Acharya UR, Vinitha Sree S, Mookiah MRK, Yantri R, Molinari F, Zieleźnik W, Małyszek-Tumidajewicz J, Stępień B, Bardales RH, Witkowska A, Suri JS. Diagnosis of Hashimoto's thyroiditis in ultrasound using tissue characterization and pixel classification. Proc Inst Mech Eng H 2013; 227:788-98. [PMID: 23636761 DOI: 10.1177/0954411913483637] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hashimoto's thyroiditis is the most common type of inflammation of the thyroid gland, and accurate diagnosis of Hashimoto's thyroiditis would be helpful to better manage the disease process and predict thyroid failure. Most of the published computer-based techniques that use ultrasound thyroid images for Hashimoto's thyroiditis diagnosis are limited by lack of procedure standardization because individual investigators use various initial ultrasound settings. This article presents a computer-aided diagnostic technique that uses grayscale features and classifiers to provide a more objective and reproducible classification of normal and Hashimoto's thyroiditis-affected cases. In this paradigm, we extracted grayscale features based on entropy, Gabor wavelet, moments, image texture, and higher order spectra from the 100 normal and 100 Hashimoto's thyroiditis-affected ultrasound thyroid images. Significant features were selected using t-test. The resulting feature vectors were used to build the following three classifiers using tenfold stratified cross validation technique: support vector machine, k-nearest neighbor, and radial basis probabilistic neural network. Our results show that a combination of 12 features coupled with support vector machine classifier with the polynomial kernel of order 1 and linear kernel gives the highest accuracy of 80%, sensitivity of 76%, specificity of 84%, and positive predictive value of 83.3% for the detection of Hashimoto's thyroiditis. The proposed computer-aided diagnostic system uses novel features that have not yet been explored for Hashimoto's thyroiditis diagnosis. Even though the accuracy is only 80%, the presented preliminary results are encouraging to warrant analysis of more such powerful features on larger databases.
Collapse
|
Journal Article |
12 |
40 |