Martín-Rodríguez C, Song M, Anta B, González-Calvo FJ, Deogracias R, Jing D, Lee FS, Arevalo JC. TrkB deubiquitylation by USP8 regulates receptor levels and BDNF-dependent neuronal differentiation.
J Cell Sci 2020;
133:jcs247841. [PMID:
33288548 PMCID:
PMC7774901 DOI:
10.1242/jcs.247841]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitylation of receptor tyrosine kinases (RTKs) regulates both the levels and functions of these receptors. The neurotrophin receptor TrkB (also known as NTRK2), a RTK, is ubiquitylated upon activation by brain-derived neurotrophic factor (BDNF) binding. Although TrkB ubiquitylation has been demonstrated, there is a lack of knowledge regarding the precise repertoire of proteins that regulates TrkB ubiquitylation. Here, we provide mechanistic evidence indicating that ubiquitin carboxyl-terminal hydrolase 8 (USP8) modulates BDNF- and TrkB-dependent neuronal differentiation. USP8 binds to the C-terminus of TrkB using its microtubule-interacting domain (MIT). Immunopurified USP8 deubiquitylates TrkB in vitro, whereas knockdown of USP8 results in enhanced ubiquitylation of TrkB upon BDNF treatment in neurons. As a consequence of USP8 depletion, TrkB levels and its activation are reduced. Moreover, USP8 protein regulates the differentiation and correct BDNF-dependent dendritic formation of hippocampal neurons in vitro and in vivo We conclude that USP8 positively regulates the levels and activation of TrkB, modulating BDNF-dependent neuronal differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse