Phaneuf CR, Mangadu B, Tran HM, Light YK, Sinha A, Charbonier FW, Eckles TP, Singh AK, Koh CY. Integrated LAMP and immunoassay platform for diarrheal disease detection.
Biosens Bioelectron 2018;
120:93-101. [PMID:
30172236 PMCID:
PMC6145809 DOI:
10.1016/j.bios.2018.08.005]
[Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 01/15/2023]
Abstract
The challenges of diagnosing infectious disease, especially in the developing world, and the shortcomings of available instrumentation have exposed the need for portable, easy-to-use diagnostic tools capable of detecting the wide range of causative microbes while operating in low resource settings. We present a centrifugal microfluidic platform that combines ultrasensitive immunoassay and isothermal amplification-based screening for the orthogonal detection of both protein and nucleic acid targets at the point-of-care. A disposable disc with automatic aliquoting inlets is paired with a non-contact heating system and precise rotary control system to yield an easy-to-use, field-deployable platform with versatile screening capabilities. The detection of three enterotoxins (cholera toxin, Staphylococcal enterotoxin B, and Shiga-like toxin 1) and three enteric bacteria (C. jejuni, E. coli, and S. typhimurium) were performed independently and shown to be highly sensitive (limit of detection = 1.35-5.50 ng/mL for immunoassays and 1-30 cells for isothermal amplification), highly exclusive in the presence of non-specific targets, and capable of handling a complex sample matrix like stool. The full panel of toxins and bacteria were reliably detected simultaneously on a single disc at clinically relevant sample concentrations in less than an hour. The ability of our technology to detect multiple analyte types in parallel at the point-of-care can serve a variety of needs, from routine patient care to outbreak triage, in a variety of settings to reduce disease impact and expedite effective treatment.
Collapse