1
|
Alcántara JM, Verdú M, Garrido JL, Montesinos-Navarro A, Aizen MA, Alifriqui M, Allen D, Al-Namazi AA, Armas C, Bastida JM, Bellido T, Paterno GB, Briceño H, Camargo de Oliveira RA, Campoy JG, Chaieb G, Chu C, Constantinou E, Delalandre L, Duarte M, Faife-Cabrera M, Fazlioglu F, Fernando ES, Flores J, Flores-Olvera H, Fodor E, Ganade G, Garcia MB, García-Fayos P, Gavini SS, Goberna M, Gómez-Aparicio L, González-Pendás E, González-Robles A, İpekdal K, Kikvidze Z, Ledo A, Lendínez S, Liu H, Lloret F, López RP, López-García Á, Lortie CJ, Losapio G, Lutz JA, Máliš F, Manzaneda AJ, Marcilio-Silva V, Michalet R, Molina-Venegas R, Navarro-Cano JA, Novotny V, Olesen JM, Ortiz-Brunel JP, Pajares-Murgó M, Perea AJ, Pérez-Hernández V, Pérez-Navarro MÁ, Pistón N, Prieto I, Prieto-Rubio J, Pugnaire FI, Ramírez N, Retuerto R, Rey PJ, Rodriguez-Ginart DA, Sánchez-Martín R, Tavşanoğlu Ç, Tedoradze G, Tercero-Araque A, Tielbörger K, Touzard B, Tüfekcioğlu İ, Turkis S, Usero FM, Usta-Baykal N, Valiente-Banuet A, Vargas-Colin A, Vogiatzakis I, Zamora R. Key concepts and a world-wide look at plant recruitment networks. Biol Rev Camb Philos Soc 2024. [PMID: 39727257 DOI: 10.1111/brv.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Plant-plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant-plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy-recruit interactions in a local plant assemblage. Canopy-recruit interactions describe which ("canopy") species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy-recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy-recruit pairs must be few and occur very infrequently. Across 351,064 canopy-recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology.
Collapse
|
2
|
Moreno-García P, Montaño-Centellas F, Liu Y, Reyes-Mendez EY, Jha RR, Guralnick RP, Folk R, Waller DM, Verheyen K, Baeten L, Becker-Scarpitta A, Berki I, Bernhardt-Römermann M, Brunet J, Van Calster H, Chudomelová M, Closset D, De Frenne P, Decocq G, Gilliam FS, Grytnes JA, Hédl R, Heinken T, Jaroszewicz B, Kopecký M, Lenoir J, Macek M, Máliš F, Naaf T, Orczewska A, Petřík P, Reczyńska K, Schei FH, Schmidt W, Stachurska-Swakoń A, Standovár T, Świerkosz K, Teleki B, Vild O, Li D. Long-term nitrogen deposition reduces the diversity of nitrogen-fixing plants. SCIENCE ADVANCES 2024; 10:eadp7953. [PMID: 39423266 PMCID: PMC11488573 DOI: 10.1126/sciadv.adp7953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Biological nitrogen fixation is a fundamental part of ecosystem functioning. Anthropogenic nitrogen deposition and climate change may, however, limit the competitive advantage of nitrogen-fixing plants, leading to reduced relative diversity of nitrogen-fixing plants. Yet, assessments of changes of nitrogen-fixing plant long-term community diversity are rare. Here, we examine temporal trends in the diversity of nitrogen-fixing plants and their relationships with anthropogenic nitrogen deposition while accounting for changes in temperature and aridity. We used forest-floor vegetation resurveys of temperate forests in Europe and the United States spanning multiple decades. Nitrogen-fixer richness declined as nitrogen deposition increased over time but did not respond to changes in climate. Phylogenetic diversity also declined, as distinct lineages of N-fixers were lost between surveys, but the "winners" and "losers" among nitrogen-fixing lineages varied among study sites, suggesting that losses are context dependent. Anthropogenic nitrogen deposition reduces nitrogen-fixing plant diversity in ways that may strongly affect natural nitrogen fixation.
Collapse
|
3
|
Sanczuk P, Verheyen K, Lenoir J, Zellweger F, Lembrechts JJ, Rodríguez-Sánchez F, Baeten L, Bernhardt-Römermann M, De Pauw K, Vangansbeke P, Perring MP, Berki I, Bjorkman AD, Brunet J, Chudomelová M, De Lombaerde E, Decocq G, Dirnböck T, Durak T, Greiser C, Hédl R, Heinken T, Jandt U, Jaroszewicz B, Kopecký M, Landuyt D, Macek M, Máliš F, Naaf T, Nagel TA, Petřík P, Reczyńska K, Schmidt W, Standovár T, Staude IR, Świerkosz K, Teleki B, Vanneste T, Vild O, Waller D, De Frenne P. Unexpected westward range shifts in European forest plants link to nitrogen deposition. Science 2024; 386:193-198. [PMID: 39388545 DOI: 10.1126/science.ado0878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Climate change is commonly assumed to induce species' range shifts toward the poles. Yet, other environmental changes may affect the geographical distribution of species in unexpected ways. Here, we quantify multidecadal shifts in the distribution of European forest plants and link these shifts to key drivers of forest biodiversity change: climate change, atmospheric deposition (nitrogen and sulfur), and forest canopy dynamics. Surprisingly, westward distribution shifts were 2.6 times more likely than northward ones. Not climate change, but nitrogen-mediated colonization events, possibly facilitated by the recovery from past acidifying deposition, best explain westward movements. Biodiversity redistribution patterns appear complex and are more likely driven by the interplay among several environmental changes than due to the exclusive effects of climate change alone.
Collapse
|
4
|
Padullés Cubino J, Lenoir J, Li D, Montaño-Centellas FA, Retana J, Baeten L, Bernhardt-Römermann M, Chudomelová M, Closset D, Decocq G, De Frenne P, Diekmann M, Dirnböck T, Durak T, Hédl R, Heinken T, Jaroszewicz B, Kopecký M, Macek M, Máliš F, Naaf T, Orczewska A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Verheyen K, Vild O, Waller D, Wulf M, Chytrý M. Evaluating plant lineage losses and gains in temperate forest understories: a phylogenetic perspective on climate change and nitrogen deposition. THE NEW PHYTOLOGIST 2024; 241:2287-2299. [PMID: 38126264 DOI: 10.1111/nph.19477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi-permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.
Collapse
|
5
|
Dobor L, Baldo M, Bílek L, Barka I, Máliš F, Štěpánek P, Hlásny T. The interacting effect of climate change and herbivory can trigger large-scale transformations of European temperate forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17194. [PMID: 38385958 DOI: 10.1111/gcb.17194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
In many regions of Europe, large wild herbivores alter forest community composition through their foraging preferences, hinder the forest's natural adaptive responses to climate change, and reduce ecosystem resilience. We investigated a widespread European forest type, a mixed forest dominated by Picea abies, which has recently experienced an unprecedented level of disturbance across the continent. Using the forest landscape model iLand, we investigated the combined effect of climate change and herbivory on forest structure, composition, and carbon and identified conditions leading to ecosystem transitions on a 300-year timescale. Eight climate change scenarios, driven by Representative Concentration Pathways 4.5 and 8.5, combined with three levels of regeneration browsing, were tested. We found that the persistence of the current level of browsing pressure impedes adaptive changes in community composition and sustains the presence of the vulnerable yet less palatable P. abies. These development trajectories were tortuous, characterized by a high disturbance intensity. On the contrary, reduced herbivory initiated a transformation towards the naturally dominant broadleaved species that was associated with an increased forest carbon and a considerably reduced disturbance. The conditions of RCP4.5 combined with high and moderate browsing levels preserved the forest within its reference range of variability, defining the actual boundaries of resilience. The remaining combinations of browsing and climate change led to ecosystem transitions. Under RCP4.5 with browsing effects excluded, the new equilibrium conditions were achieved within 120 years, whereas the stabilization was delayed by 50-100 years under RCP8.5 with higher browsing intensities. We conclude that forests dominated by P. abies are prone to transitions driven by climate change. However, reducing herbivory can set the forest on a stable and predictable trajectory, whereas sustaining the current browsing levels can lead to heightened disturbance activity, extended transition times, and high variability in the target conditions.
Collapse
|
6
|
Landuyt D, Perring MP, Blondeel H, De Lombaerde E, Depauw L, Lorer E, Maes SL, Baeten L, Bergès L, Bernhardt-Römermann M, Brūmelis G, Brunet J, Chudomelová M, Czerepko J, Decocq G, den Ouden J, De Frenne P, Dirnböck T, Durak T, Fichtner A, Gawryś R, Härdtle W, Hédl R, Heinrichs S, Heinken T, Jaroszewicz B, Kirby K, Kopecký M, Máliš F, Macek M, Mitchell FJG, Naaf T, Petřík P, Reczyńska K, Schmidt W, Standovár T, Swierkosz K, Smart SM, Van Calster H, Vild O, Waller DM, Wulf M, Verheyen K. Combining multiple investigative approaches to unravel functional responses to global change in the understorey of temperate forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17086. [PMID: 38273496 DOI: 10.1111/gcb.17086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Plant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.
Collapse
|
7
|
Oravec P, Wittlinger L, Máliš F. Endangered Forest Communities in Central Europe: Mapping Current and Potential Distributions of Euro-Siberian Steppic Woods with Quercus spp. in South Slovak Basin. BIOLOGY 2023; 12:910. [PMID: 37508342 PMCID: PMC10376067 DOI: 10.3390/biology12070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
In this article we focus on the issue of determining the presence and status of the priority habitat 91I0* Euro-Siberian steppic woods with Quercus spp. in the South Slovak basin. As part of the issue, we try to verify the correctness of the procedure of the State Nature Conservancy of the Slovak Republic in the search for potential habitats and areas of European importance by converting the typological map to a map of habitats. Habitat 91I0* occurs in Slovakia in the form of three subtypes, namely Thermophilous and supra-Mediterranean oak woods (Carpineto-Quercetum and Betuleto-Quercetum), Acidophilous oak forests (Quercetum), while the last-named subtype is divided into two subunits: Medio-European acidophilous oak forests-part A and Pannonic hairy greenweed sessile oak woods-part B. Due to the current unsatisfactory state of the mentioned habitats, the requirement of the State Nature Conservancy of the Slovak Republic is to find and add new areas with the occurrence of habitat 91I0* in the south of Central Slovakia. During the mapping in the Lučenecká and Rimavská basins, greater emphasis was placed on the occurrence of the subtype Thermophilic Pontic-Pannonian oak forests on loess and sand, but its presence has not been confirmed. Subsequently, we focused on the search and identification of habitats in the model area, which is the area of European importance SKUEV0957 Uderinky. The result is a map of habitats in this area, which we then compare with a typological map, which determines the reliability of the converter used by the State Nature Conservancy of the Slovak Republic.
Collapse
|
8
|
Haesen S, Lembrechts JJ, De Frenne P, Lenoir J, Aalto J, Ashcroft MB, Kopecký M, Luoto M, Maclean I, Nijs I, Niittynen P, van den Hoogen J, Arriga N, Brůna J, Buchmann N, Čiliak M, Collalti A, De Lombaerde E, Descombes P, Gharun M, Goded I, Govaert S, Greiser C, Grelle A, Gruening C, Hederová L, Hylander K, Kreyling J, Kruijt B, Macek M, Máliš F, Man M, Manca G, Matula R, Meeussen C, Merinero S, Minerbi S, Montagnani L, Muffler L, Ogaya R, Penuelas J, Plichta R, Portillo-Estrada M, Schmeddes J, Shekhar A, Spicher F, Ujházyová M, Vangansbeke P, Weigel R, Wild J, Zellweger F, Van Meerbeek K. ForestClim-Bioclimatic variables for microclimate temperatures of European forests. GLOBAL CHANGE BIOLOGY 2023; 29:2886-2892. [PMID: 37128754 DOI: 10.1111/gcb.16678] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 × 25 m2 resolution.
Collapse
|
9
|
Verdú M, Garrido JL, Alcántara JM, Montesinos-Navarro A, Aguilar S, Aizen MA, Al-Namazi AA, Alifriqui M, Allen D, Anderson-Teixeira KJ, Armas C, Bastida JM, Bellido T, Bonanomi G, Paterno GB, Briceño H, de Oliveira RAC, Campoy JG, Chaieb G, Chu C, Collins SE, Condit R, Constantinou E, Degirmenci CÜ, Delalandre L, Duarte M, Faife M, Fazlioglu F, Fernando ES, Flores J, Flores-Olvera H, Fodor E, Ganade G, Garcia MB, García-Fayos P, Gavini SS, Goberna M, Gómez-Aparicio L, González-Pendás E, González-Robles A, Hubbell SP, İpekdal K, Jorquera MJ, Kikvidze Z, Kütküt P, Ledo A, Lendínez S, Li B, Liu H, Lloret F, López RP, López-García Á, Lortie CJ, Losapio G, Lutz JA, Luzuriaga AL, Máliš F, Manrique E, Manzaneda AJ, Marcilio-Silva V, Michalet R, Molina-Venegas R, Navarro-Cano JA, Novotny V, Olesen JM, Ortiz-Brunel JP, Pajares-Murgó M, Parissis N, Parker G, Perea AJ, Pérez-Hernández V, Pérez-Navarro MÁ, Pistón N, Pizarro-Carbonell E, Prieto I, Prieto-Rubio J, Pugnaire FI, Ramírez N, Retuerto R, Rey PJ, Rodriguez Ginart DA, Rodríguez-Sánchez M, Sánchez-Martín R, Schöb C, Tavşanoğlu Ç, Tedoradze G, Tercero-Araque A, Tielbörger K, Touzard B, Tüfekcioğlu İ, Turkis S, Usero FM, Usta N, Valiente-Banuet A, Vargas-Colin A, Vogiatzakis I, Zamora R. RecruitNet: A global database of plant recruitment networks. Ecology 2023; 104:e3923. [PMID: 36428233 PMCID: PMC10078134 DOI: 10.1002/ecy.3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022]
Abstract
Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants ("canopy species") and plants in their early stages of recruitment ("recruit species"). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications.
Collapse
|
10
|
Hrivnák R, Bošeľa M, Slezák M, Lukac M, Svitková I, Gizela J, Hegedüšová K, Hrivnák M, Kliment J, Knopp V, Senko D, Ujházyová M, Valachovič M, Wiezik M, Máliš F. Competition for soil resources forces a trade-off between enhancing tree productivity and understorey species richness in managed beech forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157825. [PMID: 35932856 DOI: 10.1016/j.scitotenv.2022.157825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Traditionally focussed on maximising productivity, forest management increasingly has to consider other functions performed by the forest stands, such as biodiversity conservation. Terrestrial plant communities typically possess a hump-back relationship between biomass productivity and plant species richness. However, there is evidence of a reverse relationship in forests dominated by beech, one of the most competitive and widespread tree species in temperate Europe. To fully explore the tree productivity-species richness relationship, we investigated above- and below-ground drivers of understorey plant species richness. We focussed on managed beech forests growing along an elevation gradient in Central Europe. We found that the lowest understorey plant diversity was under conditions optimal for beech. Tree fine root mass, canopy openness, soil C/N ratio, the interaction between tree fine root mass and stoniness, and stand structural diversity explain the variation of understorey species richness. We show that the competition for soil resources is the main driver of plant species diversity in managed forests; maximising beech growth in optimal conditions may thus come at the expense of understorey plant richness.
Collapse
|
11
|
Lembrechts JJ, van den Hoogen J, Aalto J, Ashcroft MB, De Frenne P, Kemppinen J, Kopecký M, Luoto M, Maclean IMD, Crowther TW, Bailey JJ, Haesen S, Klinges DH, Niittynen P, Scheffers BR, Van Meerbeek K, Aartsma P, Abdalaze O, Abedi M, Aerts R, Ahmadian N, Ahrends A, Alatalo JM, Alexander JM, Allonsius CN, Altman J, Ammann C, Andres C, Andrews C, Ardö J, Arriga N, Arzac A, Aschero V, Assis RL, Assmann JJ, Bader MY, Bahalkeh K, Barančok P, Barrio IC, Barros A, Barthel M, Basham EW, Bauters M, Bazzichetto M, Marchesini LB, Bell MC, Benavides JC, Benito Alonso JL, Berauer BJ, Bjerke JW, Björk RG, Björkman MP, Björnsdóttir K, Blonder B, Boeckx P, Boike J, Bokhorst S, Brum BNS, Brůna J, Buchmann N, Buysse P, Camargo JL, Campoe OC, Candan O, Canessa R, Cannone N, Carbognani M, Carnicer J, Casanova‐Katny A, Cesarz S, Chojnicki B, Choler P, Chown SL, Cifuentes EF, Čiliak M, Contador T, Convey P, Cooper EJ, Cremonese E, Curasi SR, Curtis R, Cutini M, Dahlberg CJ, Daskalova GN, de Pablo MA, Della Chiesa S, Dengler J, Deronde B, Descombes P, Di Cecco V, Di Musciano M, Dick J, Dimarco RD, Dolezal J, Dorrepaal E, Dušek J, Eisenhauer N, Eklundh L, Erickson TE, Erschbamer B, Eugster W, Ewers RM, Exton DA, Fanin N, Fazlioglu F, Feigenwinter I, Fenu G, Ferlian O, Fernández Calzado MR, Fernández‐Pascual E, Finckh M, Higgens RF, Forte TGW, Freeman EC, Frei ER, Fuentes‐Lillo E, García RA, García MB, Géron C, Gharun M, Ghosn D, Gigauri K, Gobin A, Goded I, Goeckede M, Gottschall F, Goulding K, Govaert S, Graae BJ, Greenwood S, Greiser C, Grelle A, Guénard B, Guglielmin M, Guillemot J, Haase P, Haider S, Halbritter AH, Hamid M, Hammerle A, Hampe A, Haugum SV, Hederová L, Heinesch B, Helfter C, Hepenstrick D, Herberich M, Herbst M, Hermanutz L, Hik DS, Hoffrén R, Homeier J, Hörtnagl L, Høye TT, Hrbacek F, Hylander K, Iwata H, Jackowicz‐Korczynski MA, Jactel H, Järveoja J, Jastrzębowski S, Jentsch A, Jiménez JJ, Jónsdóttir IS, Jucker T, Jump AS, Juszczak R, Kanka R, Kašpar V, Kazakis G, Kelly J, Khuroo AA, Klemedtsson L, Klisz M, Kljun N, Knohl A, Kobler J, Kollár J, Kotowska MM, Kovács B, Kreyling J, Lamprecht A, Lang SI, Larson C, Larson K, Laska K, le Maire G, Leihy RI, Lens L, Liljebladh B, Lohila A, Lorite J, Loubet B, Lynn J, Macek M, Mackenzie R, Magliulo E, Maier R, Malfasi F, Máliš F, Man M, Manca G, Manco A, Manise T, Manolaki P, Marciniak F, Matula R, Mazzolari AC, Medinets S, Medinets V, Meeussen C, Merinero S, Mesquita RDCG, Meusburger K, Meysman FJR, Michaletz ST, Milbau A, Moiseev D, Moiseev P, Mondoni A, Monfries R, Montagnani L, Moriana‐Armendariz M, Morra di Cella U, Mörsdorf M, Mosedale JR, Muffler L, Muñoz‐Rojas M, Myers JA, Myers‐Smith IH, Nagy L, Nardino M, Naujokaitis‐Lewis I, Newling E, Nicklas L, Niedrist G, Niessner A, Nilsson MB, Normand S, Nosetto MD, Nouvellon Y, Nuñez MA, Ogaya R, Ogée J, Okello J, Olejnik J, Olesen JE, Opedal ØH, Orsenigo S, Palaj A, Pampuch T, Panov AV, Pärtel M, Pastor A, Pauchard A, Pauli H, Pavelka M, Pearse WD, Peichl M, Pellissier L, Penczykowski RM, Penuelas J, Petit Bon M, Petraglia A, Phartyal SS, Phoenix GK, Pio C, Pitacco A, Pitteloud C, Plichta R, Porro F, Portillo‐Estrada M, Poulenard J, Poyatos R, Prokushkin AS, Puchalka R, Pușcaș M, Radujković D, Randall K, Ratier Backes A, Remmele S, Remmers W, Renault D, Risch AC, Rixen C, Robinson SA, Robroek BJM, Rocha AV, Rossi C, Rossi G, Roupsard O, Rubtsov AV, Saccone P, Sagot C, Sallo Bravo J, Santos CC, Sarneel JM, Scharnweber T, Schmeddes J, Schmidt M, Scholten T, Schuchardt M, Schwartz N, Scott T, Seeber J, Segalin de Andrade AC, Seipel T, Semenchuk P, Senior RA, Serra‐Diaz JM, Sewerniak P, Shekhar A, Sidenko NV, Siebicke L, Siegwart Collier L, Simpson E, Siqueira DP, Sitková Z, Six J, Smiljanic M, Smith SW, Smith‐Tripp S, Somers B, Sørensen MV, Souza JJLL, Souza BI, Souza Dias A, Spasojevic MJ, Speed JDM, Spicher F, Stanisci A, Steinbauer K, Steinbrecher R, Steinwandter M, Stemkovski M, Stephan JG, Stiegler C, Stoll S, Svátek M, Svoboda M, Tagesson T, Tanentzap AJ, Tanneberger F, Theurillat J, Thomas HJD, Thomas AD, Tielbörger K, Tomaselli M, Treier UA, Trouillier M, Turtureanu PD, Tutton R, Tyystjärvi VA, Ueyama M, Ujházy K, Ujházyová M, Uogintas D, Urban AV, Urban J, Urbaniak M, Ursu T, Vaccari FP, Van de Vondel S, van den Brink L, Van Geel M, Vandvik V, Vangansbeke P, Varlagin A, Veen GF, Veenendaal E, Venn SE, Verbeeck H, Verbrugggen E, Verheijen FGA, Villar L, Vitale L, Vittoz P, Vives‐Ingla M, von Oppen J, Walz J, Wang R, Wang Y, Way RG, Wedegärtner REM, Weigel R, Wild J, Wilkinson M, Wilmking M, Wingate L, Winkler M, Wipf S, Wohlfahrt G, Xenakis G, Yang Y, Yu Z, Yu K, Zellweger F, Zhang J, Zhang Z, Zhao P, Ziemblińska K, Zimmermann R, Zong S, Zyryanov VI, Nijs I, Lenoir J. Global maps of soil temperature. GLOBAL CHANGE BIOLOGY 2022; 28:3110-3144. [PMID: 34967074 PMCID: PMC9303923 DOI: 10.1111/gcb.16060] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
Collapse
|
12
|
Staude IR, Pereira HM, Daskalova GN, Bernhardt-Römermann M, Diekmann M, Pauli H, Van Calster H, Vellend M, Bjorkman AD, Brunet J, De Frenne P, Hédl R, Jandt U, Lenoir J, Myers-Smith IH, Verheyen K, Wipf S, Wulf M, Andrews C, Barančok P, Barni E, Benito-Alonso JL, Bennie J, Berki I, Blüml V, Chudomelová M, Decocq G, Dick J, Dirnböck T, Durak T, Eriksson O, Erschbamer B, Graae BJ, Heinken T, Schei FH, Jaroszewicz B, Kopecký M, Kudernatsch T, Macek M, Malicki M, Máliš F, Michelsen O, Naaf T, Nagel TA, Newton AC, Nicklas L, Oddi L, Ortmann-Ajkai A, Palaj A, Petraglia A, Petřík P, Pielech R, Porro F, Puşcaş M, Reczyńska K, Rixen C, Schmidt W, Standovár T, Steinbauer K, Świerkosz K, Teleki B, Theurillat JP, Turtureanu PD, Ursu TM, Vanneste T, Vergeer P, Vild O, Villar L, Vittoz P, Winkler M, Baeten L. Directional turnover towards larger-ranged plants over time and across habitats. Ecol Lett 2021; 25:466-482. [PMID: 34866301 DOI: 10.1111/ele.13937] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.
Collapse
|
13
|
Haesen S, Lembrechts JJ, De Frenne P, Lenoir J, Aalto J, Ashcroft MB, Kopecký M, Luoto M, Maclean I, Nijs I, Niittynen P, van den Hoogen J, Arriga N, Brůna J, Buchmann N, Čiliak M, Collalti A, De Lombaerde E, Descombes P, Gharun M, Goded I, Govaert S, Greiser C, Grelle A, Gruening C, Hederová L, Hylander K, Kreyling J, Kruijt B, Macek M, Máliš F, Man M, Manca G, Matula R, Meeussen C, Merinero S, Minerbi S, Montagnani L, Muffler L, Ogaya R, Penuelas J, Plichta R, Portillo-Estrada M, Schmeddes J, Shekhar A, Spicher F, Ujházyová M, Vangansbeke P, Weigel R, Wild J, Zellweger F, Van Meerbeek K. ForestTemp - Sub-canopy microclimate temperatures of European forests. GLOBAL CHANGE BIOLOGY 2021; 27:6307-6319. [PMID: 34605132 DOI: 10.1111/gcb.15892] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Ecological research heavily relies on coarse-gridded climate data based on standardized temperature measurements recorded at 2 m height in open landscapes. However, many organisms experience environmental conditions that differ substantially from those captured by these macroclimatic (i.e. free air) temperature grids. In forests, the tree canopy functions as a thermal insulator and buffers sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To improve the assessment of climatic conditions and climate-change-related impacts on forest-floor biodiversity and functioning, high-resolution temperature grids reflecting forest microclimates are thus urgently needed. Combining more than 1200 time series of in situ near-surface forest temperature with topographical, biological and macroclimatic variables in a machine learning model, we predicted the mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was used to evaluate the difference between microclimate and macroclimate across space and seasons and finally enabled us to calculate mean annual and monthly temperatures for European forest understories. We found that sub-canopy air temperatures differ substantially from free-air temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher (±0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The provided forest sub-canopy temperature maps will enable future research to model below-canopy biological processes and patterns, as well as species distributions more accurately.
Collapse
|
14
|
Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J, Van Calster H, Chudomelová M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel TA, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Vild O, Wulf M, Coomes D. Response to Comment on "Forest microclimate dynamics drive plant responses to warming". Science 2020; 370:370/6522/eabf2939. [PMID: 33303585 DOI: 10.1126/science.abf2939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/09/2020] [Indexed: 11/02/2022]
Abstract
Schall and Heinrichs question our interpretation that the climatic debt in understory plant communities is locally modulated by canopy buffering. However, our results clearly show that the discrepancy between microclimate warming rates and thermophilization rates is highest in forests where canopy cover was reduced, which suggests that the need for communities to respond to warming is highest in those forests.
Collapse
|
15
|
Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J, Van Calster H, Chudomelová M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel TA, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Vild O, Wulf M, Coomes D. Response to Comment on "Forest microclimate dynamics drive plant responses to warming". Science 2020; 370:370/6520/eabd6193. [PMID: 33243862 DOI: 10.1126/science.abd6193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 11/02/2022]
Abstract
Bertrand et al question our interpretation about warming effects on the thermophilization in forest plant communities and propose an alternative way to analyze climatic debt. We show that microclimate warming is a better predictor than macroclimate warming for studying forest plant community responses to warming. Their additional analyses do not affect or change our interpretations and conclusions.
Collapse
|
16
|
Lembrechts JJ, Aalto J, Ashcroft MB, De Frenne P, Kopecký M, Lenoir J, Luoto M, Maclean IMD, Roupsard O, Fuentes-Lillo E, García RA, Pellissier L, Pitteloud C, Alatalo JM, Smith SW, Björk RG, Muffler L, Ratier Backes A, Cesarz S, Gottschall F, Okello J, Urban J, Plichta R, Svátek M, Phartyal SS, Wipf S, Eisenhauer N, Pușcaș M, Turtureanu PD, Varlagin A, Dimarco RD, Jump AS, Randall K, Dorrepaal E, Larson K, Walz J, Vitale L, Svoboda M, Finger Higgens R, Halbritter AH, Curasi SR, Klupar I, Koontz A, Pearse WD, Simpson E, Stemkovski M, Jessen Graae B, Vedel Sørensen M, Høye TT, Fernández Calzado MR, Lorite J, Carbognani M, Tomaselli M, Forte TGW, Petraglia A, Haesen S, Somers B, Van Meerbeek K, Björkman MP, Hylander K, Merinero S, Gharun M, Buchmann N, Dolezal J, Matula R, Thomas AD, Bailey JJ, Ghosn D, Kazakis G, de Pablo MA, Kemppinen J, Niittynen P, Rew L, Seipel T, Larson C, Speed JDM, Ardö J, Cannone N, Guglielmin M, Malfasi F, Bader MY, Canessa R, Stanisci A, Kreyling J, Schmeddes J, Teuber L, Aschero V, Čiliak M, Máliš F, De Smedt P, Govaert S, Meeussen C, Vangansbeke P, Gigauri K, Lamprecht A, Pauli H, Steinbauer K, Winkler M, Ueyama M, Nuñez MA, Ursu TM, Haider S, Wedegärtner REM, Smiljanic M, Trouillier M, Wilmking M, Altman J, Brůna J, Hederová L, Macek M, Man M, Wild J, Vittoz P, Pärtel M, Barančok P, Kanka R, Kollár J, Palaj A, Barros A, Mazzolari AC, Bauters M, Boeckx P, Benito Alonso JL, Zong S, Di Cecco V, Sitková Z, Tielbörger K, van den Brink L, Weigel R, Homeier J, Dahlberg CJ, Medinets S, Medinets V, De Boeck HJ, Portillo-Estrada M, Verryckt LT, Milbau A, Daskalova GN, Thomas HJD, Myers-Smith IH, Blonder B, Stephan JG, Descombes P, Zellweger F, Frei ER, Heinesch B, Andrews C, Dick J, Siebicke L, Rocha A, Senior RA, Rixen C, Jimenez JJ, Boike J, Pauchard A, Scholten T, Scheffers B, Klinges D, Basham EW, Zhang J, Zhang Z, Géron C, Fazlioglu F, Candan O, Sallo Bravo J, Hrbacek F, Laska K, Cremonese E, Haase P, Moyano FE, Rossi C, Nijs I. SoilTemp: A global database of near-surface temperature. GLOBAL CHANGE BIOLOGY 2020; 26:6616-6629. [PMID: 32311220 DOI: 10.1111/gcb.15123] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/31/2020] [Indexed: 05/12/2023]
Abstract
Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
Collapse
|
17
|
Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J, Van Calster H, Chudomelová M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel TA, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Vild O, Wulf M, Coomes D. Forest microclimate dynamics drive plant responses to warming. Science 2020; 368:772-775. [DOI: 10.1126/science.aba6880] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022]
Abstract
Climate warming is causing a shift in biological communities in favor of warm-affinity species (i.e., thermophilization). Species responses often lag behind climate warming, but the reasons for such lags remain largely unknown. Here, we analyzed multidecadal understory microclimate dynamics in European forests and show that thermophilization and the climatic lag in forest plant communities are primarily controlled by microclimate. Increasing tree canopy cover reduces warming rates inside forests, but loss of canopy cover leads to increased local heat that exacerbates the disequilibrium between community responses and climate change. Reciprocal effects between plants and microclimates are key to understanding the response of forest biodiversity and functioning to climate and land-use changes.
Collapse
|
18
|
Maes SL, Perring MP, Depauw L, Bernhardt-Römermann M, Blondeel H, Brūmelis G, Brunet J, Decocq G, den Ouden J, Govaert S, Härdtle W, Hédl R, Heinken T, Heinrichs S, Hertzog L, Jaroszewicz B, Kirby K, Kopecký M, Landuyt D, Máliš F, Vanneste T, Wulf M, Verheyen K. Plant functional trait response to environmental drivers across European temperate forest understorey communities. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:410-424. [PMID: 31840363 DOI: 10.1111/plb.13082] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Functional traits respond to environmental drivers, hence evaluating trait-environment relationships across spatial environmental gradients can help to understand how multiple drivers influence plant communities. Global-change drivers such as changes in atmospheric nitrogen deposition occur worldwide, but affect community trait distributions at the local scale, where resources (e.g. light availability) and conditions (e.g. soil pH) also influence plant communities. We investigate how multiple environmental drivers affect community trait responses related to resource acquisition (plant height, specific leaf area (SLA), woodiness, and mycorrhizal status) and regeneration (seed mass, lateral spread) of European temperate deciduous forest understoreys. We sampled understorey communities and derived trait responses across spatial gradients of global-change drivers (temperature, precipitation, nitrogen deposition, and past land use), while integrating in-situ plot measurements on resources and conditions (soil type, Olsen phosphorus (P), Ellenberg soil moisture, light, litter mass, and litter quality). Among the global-change drivers, mean annual temperature strongly influenced traits related to resource acquisition. Higher temperatures were associated with taller understoreys producing leaves with lower SLA, and a higher proportional cover of woody and obligate mycorrhizal (OM) species. Communities in plots with higher Ellenberg soil moisture content had smaller seeds and lower proportional cover of woody and OM species. Finally, plots with thicker litter layers hosted taller understoreys with larger seeds and a higher proportional cover of OM species. Our findings suggest potential community shifts in temperate forest understoreys with global warming, and highlight the importance of local resources and conditions as well as global-change drivers for community trait variation.
Collapse
|
19
|
Zellweger F, Coomes D, Lenoir J, Depauw L, Maes SL, Wulf M, Kirby KJ, Brunet J, Kopecký M, Máliš F, Schmidt W, Heinrichs S, den Ouden J, Jaroszewicz B, Buyse G, Spicher F, Verheyen K, De Frenne P. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2019; 28:1774-1786. [PMID: 31866760 PMCID: PMC6900070 DOI: 10.1111/geb.12991] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 05/22/2023]
Abstract
AIM Forest understorey microclimates are often buffered against extreme heat or cold, with important implications for the organisms living in these environments. We quantified seasonal effects of understorey microclimate predictors describing canopy structure, canopy composition and topography (i.e., local factors) and the forest patch size and distance to the coast (i.e., landscape factors). LOCATION Temperate forests in Europe. TIME PERIOD 2017-2018. MAJOR TAXA STUDIED Woody plants. METHODS We combined data from a microclimate sensor network with weather-station records to calculate the difference, or offset, between temperatures measured inside and outside forests. We used regression analysis to study the effects of local and landscape factors on the seasonal offset of minimum, mean and maximum temperatures. RESULTS The maximum temperature during the summer was on average cooler by 2.1 °C inside than outside forests, and the minimum temperatures during the winter and spring were 0.4 and 0.9 °C warmer. The local canopy cover was a strong nonlinear driver of the maximum temperature offset during summer, and we found increased cooling beneath tree species that cast the deepest shade. Seasonal offsets of minimum temperature were mainly regulated by landscape and topographic features, such as the distance to the coast and topographic position. MAIN CONCLUSIONS Forest organisms experience less severe temperature extremes than suggested by currently available macroclimate data; therefore, climate-species relationships and the responses of species to anthropogenic global warming cannot be modelled accurately in forests using macroclimate data alone. Changes in canopy cover and composition will strongly modulate the warming of maximum temperatures in forest understories, with important implications for understanding the responses of forest biodiversity and functioning to the combined threats of land-use change and climate change. Our predictive models are generally applicable across lowland temperate deciduous forests, providing ecologically important microclimate data for forest understories.
Collapse
|
20
|
Maes SL, Perring MP, Vanhellemont M, Depauw L, Van den Bulcke J, Brūmelis G, Brunet J, Decocq G, den Ouden J, Härdtle W, Hédl R, Heinken T, Heinrichs S, Jaroszewicz B, Kopecký M, Máliš F, Wulf M, Verheyen K. Environmental drivers interactively affect individual tree growth across temperate European forests. GLOBAL CHANGE BIOLOGY 2019; 25:201-217. [PMID: 30346104 DOI: 10.1111/gcb.14493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 05/25/2023]
Abstract
Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to local land-use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global-change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global-change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global-change drivers, with species-specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus' growth, highlighting species-specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus' growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global-change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.
Collapse
|
21
|
Perring MP, Diekmann M, Midolo G, Schellenberger Costa D, Bernhardt-Römermann M, Otto JCJ, Gilliam FS, Hedwall PO, Nordin A, Dirnböck T, Simkin SM, Máliš F, Blondeel H, Brunet J, Chudomelová M, Durak T, De Frenne P, Hédl R, Kopecký M, Landuyt D, Li D, Manning P, Petřík P, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Vild O, Waller DM, Verheyen K. Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1787-1799. [PMID: 30115529 DOI: 10.1016/j.envpol.2018.07.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 05/17/2023]
Abstract
Understorey communities can dominate forest plant diversity and strongly affect forest ecosystem structure and function. Understoreys often respond sensitively but inconsistently to drivers of ecological change, including nitrogen (N) deposition. Nitrogen deposition effects, reflected in the concept of critical loads, vary greatly not only among species and guilds, but also among forest types. Here, we characterize such context dependency as driven by differences in the amounts and forms of deposited N, cumulative deposition, the filtering of N by overstoreys, and available plant species pools. Nitrogen effects on understorey trajectories can also vary due to differences in surrounding landscape conditions; ambient browsing pressure; soils and geology; other environmental factors controlling plant growth; and, historical and current disturbance/management regimes. The number of these factors and their potentially complex interactions complicate our efforts to make simple predictions about how N deposition affects forest understoreys. We review the literature to examine evidence for context dependency in N deposition effects on forest understoreys. We also use data from 1814 European temperate forest plots to test the ability of multi-level models to characterize context-dependent understorey responses across sites that differ in levels of N deposition, community composition, local conditions and management history. This analysis demonstrated that historical management, and plot location on light and pH-fertility gradients, significantly affect how understorey communities respond to N deposition. We conclude that species' and communities' responses to N deposition, and thus the determination of critical loads, vary greatly depending on environmental contexts. This complicates our efforts to predict how N deposition will affect forest understoreys and thus how best to conserve and restore understorey biodiversity. To reduce uncertainty and incorporate context dependency in critical load setting, we should assemble data on underlying environmental conditions, conduct globally distributed field experiments, and analyse a wider range of habitat types.
Collapse
|
22
|
De Lombaerde E, Verheyen K, Perring MP, Bernhardt-Römermann M, Van Calster H, Brunet J, Chudomelová M, Decocq G, Diekmann M, Durak T, Hédl R, Heinken T, Hommel P, Jaroszewicz B, Kopecký M, Lenoir J, Macek M, Máliš F, Mitchell FJ, Naaf T, Newman M, Petřík P, Reczyńska K, Schmidt W, Świerkosz K, Vild O, Wulf M, Baeten L. Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Perring MP, Bernhardt-Römermann M, Baeten L, Midolo G, Blondeel H, Depauw L, Landuyt D, Maes SL, De Lombaerde E, Carón MM, Vellend M, Brunet J, Chudomelová M, Decocq G, Diekmann M, Dirnböck T, Dörfler I, Durak T, De Frenne P, Gilliam FS, Hédl R, Heinken T, Hommel P, Jaroszewicz B, Kirby KJ, Kopecký M, Lenoir J, Li D, Máliš F, Mitchell FJG, Naaf T, Newman M, Petřík P, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Van Calster H, Vild O, Wagner ER, Wulf M, Verheyen K. Global environmental change effects on plant community composition trajectories depend upon management legacies. GLOBAL CHANGE BIOLOGY 2018; 24:1722-1740. [PMID: 29271579 DOI: 10.1111/gcb.14030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change.
Collapse
|
24
|
Máliš F, Kopecký M, Petřík P, Vladovič J, Merganič J, Vida T. Life stage, not climate change, explains observed tree range shifts. GLOBAL CHANGE BIOLOGY 2016; 22:1904-1914. [PMID: 26725258 PMCID: PMC5424071 DOI: 10.1111/gcb.13210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/14/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Ongoing climate change is expected to shift tree species distribution and therefore affect forest biodiversity and ecosystem services. To assess and project tree distributional shifts, researchers may compare the distribution of juvenile and adult trees under the assumption that differences between tree life stages reflect distributional shifts triggered by climate change. However, the distribution of tree life stages could differ within the lifespan of trees, therefore, we hypothesize that currently observed distributional differences could represent shifts over ontogeny as opposed to climatically driven changes. Here, we test this hypothesis with data from 1435 plots resurveyed after more than three decades across the Western Carpathians. We compared seedling, sapling and adult distribution of 12 tree species along elevation, temperature and precipitation gradients. We analyzed (i) temporal shifts between the surveys and (ii) distributional differences between tree life stages within both surveys. Despite climate warming, tree species distribution of any life stage did not shift directionally upward along elevation between the surveys. Temporal elevational shifts were species specific and an order of magnitude lower than differences among tree life stages within the surveys. Our results show that the observed range shifts among tree life stages are more consistent with ontogenetic differences in the species' environmental requirements than with responses to recent climate change. The distribution of seedlings substantially differed from saplings and adults, while the distribution of saplings did not differ from adults, indicating a critical transition between seedling and sapling tree life stages. Future research has to take ontogenetic differences among life stages into account as we found that distributional differences recently observed worldwide may not reflect climate change but rather the different environmental requirements of tree life stages.
Collapse
|
25
|
Bernhardt-Römermann M, Baeten L, Craven D, De Frenne P, Hédl R, Lenoir J, Bert D, Brunet J, Chudomelová M, Decocq G, Dierschke H, Dirnböck T, Dörfler I, Heinken T, Hermy M, Hommel P, Jaroszewicz B, Keczyński A, Kelly DL, Kirby KJ, Kopecký M, Macek M, Máliš F, Mirtl M, Mitchell FJG, Naaf T, Newman M, Peterken G, Petřík P, Schmidt W, Standovár T, Tóth Z, Calster HV, Verstraeten G, Vladovič J, Vild O, Wulf M, Verheyen K. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. GLOBAL CHANGE BIOLOGY 2015; 21:3726-37. [PMID: 26212787 PMCID: PMC6136642 DOI: 10.1111/gcb.12993] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/28/2015] [Indexed: 05/15/2023]
Abstract
Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75 years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions.
Collapse
|