1
|
Libersat F, Delago A, Gal R. Manipulation of host behavior by parasitic insects and insect parasites. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:189-207. [PMID: 19067631 DOI: 10.1146/annurev.ento.54.110807.090556] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Parasites often alter the behavior of their hosts in ways that are ultimately beneficial to the parasite or its offspring. Although the alteration of host behavior by parasites is a widespread phenomenon, the underlying neuronal mechanisms are only beginning to be understood. Here, we focus on recent advances in the study of behavioral manipulation via modulation of the host central nervous system. We elaborate on a few case studies, in which recently published data provide explanations for the neuronal basis of parasite-induced alteration of host behavior. Among these, we describe how a worm may influence the nervous system of its cricket host and manipulate the cricket into committing suicide by jumping into water. We then focus on Ampulex compressa, which uses an Alien-like strategy for the sake of its offspring. Unlike most venomous hunters, this wasp injects venom directly into specific cerebral regions of its cockroach prey. As a result of the sting, the cockroach remains alive but immobile, but not paralyzed, and serves to nourish the developing wasp larva.
Collapse
|
Review |
16 |
132 |
2
|
Knafo S, Ariav G, Barkai E, Libersat F. Olfactory learning-induced increase in spine density along the apical dendrites of CA1 hippocampal neurons. Hippocampus 2005; 14:819-25. [PMID: 15382252 DOI: 10.1002/hipo.10219] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have previously shown that rule learning of an olfactory discrimination task is accompanied by increased spine density along the apical dendrites of piriform cortex pyramidal neurons. The purpose of the present study was to examine whether such olfactory learning task, in which the hippocampus is actively involved, induces morphological modifications in CA1 pyramidal neurons as well. Rats were trained to discriminate positive cues in pairs of odors for a water reward. Morphological modifications were studied in Golgi-impregnated neurons with light microscopy, 1 and 3 days after training completion. Spine densities were measured on the proximal region of apical dendrites and on basal dendrites after rule learning. Three days after training completion, the mean spine density on apical dendrites in neurons from trained rats was significantly higher by 20.5% than in neurons from pseudo-trained and naive animals, which did not differ from each other. By contrast, there was no significant difference in spine density of basal dendrites among the three groups. As length and diameter of spiny dendritic segments did not change after learning, the learning-related increase in spine density in neurons from trained rats may reflect a net increase in the number of excitatory synapses in the hippocampus following olfactory rule learning.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
52 |
3
|
Libersat F, Hoy RR. Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1991; 169:507-14. [PMID: 1779422 DOI: 10.1007/bf00197663] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. In the present work, we show that in flight, bushcrickets not previously known to respond to ultrasound alter their flight course in response to ultrasonic stimuli. Such stimuli elicit in flying Neoconocephalus ensiger an extension of the front and middle legs along the body and a rapid closure of all 4 wings (Fig. 1). This is a short latency acoustic startle response to ultrasound, consistent with acoustic startle responses of other insects. 2. The percentage of trials on which acoustic startle responses were elicited was maximum (90%) for sound frequencies ranging from 25 to at least 60 kHz. No acoustic startle response was observed at frequencies of 5 or 10 kHz (Fig. 2). The threshold for the response was roughly 76 dB between 25 to 60 kHz (Fig. 2) and the behavioral latency was 45 ms (Fig. 3). Recordings from flight muscles show that they cease discharging during the acoustic startle response (Fig. 4). 3. The characteristics of the acoustic startle response match those of an auditory interneuron called the T-neuron. The frequency sensitivity of this neuron is greatest for sound frequencies ranging from 13 to 60 kHz (Fig. 6). Moreover, we found that the neuron produces many more spikes to ultrasound (30 kHz) of increasing intensities than to a conspecific communication sound, whose dominant frequency is 14 kHz (Fig. 7).
Collapse
|
|
34 |
52 |
4
|
Haspel G, Rosenberg LA, Libersat F. Direct injection of venom by a predatory wasp into cockroach brain. JOURNAL OF NEUROBIOLOGY 2003; 56:287-92. [PMID: 12884267 DOI: 10.1002/neu.10238] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this article, we provide direct evidence for injection of venom by a wasp into the central nervous system of its cockroach prey. Venomous predators use neurotoxins that generally act at the neuromuscular junction, resulting in different types of prey paralysis. The sting of the parasitoid wasp Ampulex compressa is unusual, as it induces grooming behavior, followed by a long-term lethargic state of its insect prey, thus ultimately providing a living meal for the newborn wasp larvae. These behavioral modifications are induced only when a sting is inflicted into the head. These unique effects of the wasp venom on prey behavior suggest that the venom targets the insect's central nervous system. The mechanism by which behavior modifying compounds in the venom transverse the blood-brain barrier to induce these central and long-lasting effects has been the subject of debate. In this article, we demonstrate that the wasp stings directly into the target ganglia in the head of its prey. To prove this assertion, we produced "hot" wasps by injecting them with (14)C radiolabeled amino acids and used a combination of liquid scintillation and light microscopy autoradiography to trace radiolabeled venom in the prey. To our knowledge, this is the first direct evidence documenting targeted delivery of venom by a predator into the brain of its prey.
Collapse
|
|
22 |
48 |
5
|
Libersat F, Murray JA, Hoy RR. Frequency as a releaser in the courtship song of two crickets, Gryllus bimaculatus (de Geer) and Teleogryllus oceanicus: a neuroethological analysis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1994; 174:485-94. [PMID: 8182564 DOI: 10.1007/bf00191714] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. The courtship behavior of male field crickets, Gryllus bimaculatus (De Geer) and Teleogryllus oceanicus, is a complex, multimodal behavioral act that involves acoustic signals (a courtship song; Fig. 1A, B). The dominant frequency is 4.5 kHz for T. oceanicus song (Fig. 1A) and 13.5 kHz for G. bimaculatus (Fig. 1B). 2. When courting males are deprived of their courtship song by wing amputation, their courtship success declines markedly but is restored when courting is accompanied by tape-recordings of their courtship songs or a synthetic courtship song with only the dominant frequency of the natural song; other naturally occurring frequency components are ineffective for restoring mating success (Figs. 4, 5). 3. It has been suggested that an identified auditory interneuron, AN2, plays a critical role in courtship success. Chronic recordings of AN2 in an intact, tethered female show that AN2's response to the natural courtship song and synthesized songs at 4.5 and 13.5 kHz is similar in T. oceanicus. By contrast, in G. bimaculatus, AN2's response to the natural courtship song and synthesized song at 13.5 kHz, but not at 4.5 kHz, is similar (Fig. 2,3). 4. In behavioral experiments, playback of a 30 kHz synthetic courtship song in G. bimaculatus does not restore courtship success, yet this same stimulus elicits as strong a response from AN2 as does the normal courtship song (Fig. 6). Thus, contrary to earlier work by others, we conclude AN2 is not, by itself, a critical neural link in the courtship behavior of these two species of crickets.
Collapse
|
|
31 |
48 |
6
|
Libersat F, Duch C. Mechanisms of dendritic maturation. Mol Neurobiol 2004; 29:303-20. [PMID: 15181241 DOI: 10.1385/mn:29:3:303] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 12/10/2003] [Indexed: 11/11/2022]
Abstract
The highly complex geometry of dendritic trees is crucial for neural signal integration and the proper wiring of neuronal circuits. The morphogenesis of dendritic trees is regulated by innate genetic factors, neuronal activity, and external molecular cues. How each of these factors contributes to dendritic maturation has been addressed in the developing nervous systems of animals ranging from insects to mammals. The results of such investigations have shown that the contribution of intrinsic and extrinsic factors and activity, however, appear to be weighted differentially in different types of neurons, in different brain areas, and especially in different species. Moreover, it appears that dozens of molecules have been found to regulate dendritic maturation, but it is almost certain that each molecule plays only a specific role in this formidable cooperative venture. This article reviews our current knowledge and understanding of the role of various factors in the establishment of the architecture of mature dendritic trees.
Collapse
|
Review |
21 |
46 |
7
|
Gal R, Libersat F. A Parasitoid Wasp Manipulates the Drive for Walking of Its Cockroach Prey. Curr Biol 2008; 18:877-82. [DOI: 10.1016/j.cub.2008.04.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/18/2008] [Accepted: 04/29/2008] [Indexed: 11/26/2022]
|
|
17 |
43 |
8
|
Libersat F. Wasp uses venom cocktail to manipulate the behavior of its cockroach prey. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2003; 189:497-508. [PMID: 12898169 DOI: 10.1007/s00359-003-0432-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Revised: 05/16/2003] [Accepted: 05/19/2003] [Indexed: 11/25/2022]
Abstract
The sting of the parasitoid wasp Ampulex compressa is unusual, as it induces a transient paralysis of the front legs followed by grooming behavior and then by a long-term hypokinesia of its cockroach prey. Because the wasp's goal is to provide a living meal for its newborn larva, the behavioral changes in the prey are brought about by manipulating the host behavior in a way beneficial to the wasp and its offspring. To this end, the wasp injects its venom cocktail with two consecutive stings directly into the host's central nervous system. The first sting in the thorax causes a transient front leg paralysis lasting a few minutes. This paralysis is due to the presence of a venom component that induces a postsynaptic block of central cholinergic synaptic transmission. Following the head sting, dopamine identified in the venom appears to induce 30 min of intense grooming. During the long-term hypokinesia that follows the grooming, specific behaviors of the prey are inhibited while others are unaffected. We propose that the venom represses the activity of head ganglia neurons thereby removing the descending excitatory drive to the thoracic neurons.
Collapse
|
Review |
22 |
42 |
9
|
Libersat F, Gal R. What can parasitoid wasps teach us about decision-making in insects? J Exp Biol 2013; 216:47-55. [DOI: 10.1242/jeb.073999] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Millions of years of co-evolution have driven parasites to display very complex and exquisite strategies to manipulate the behaviour of their hosts. However, although parasite-induced behavioural manipulation is a widespread phenomenon, the underlying neuronal mechanisms are only now beginning to be deciphered. Here, we review recent advancements in the study of the mechanisms by which parasitoid wasps use chemical warfare to manipulate the behaviour of their insect hosts. We focus on a particular case study in which a parasitoid wasp (the jewel wasp Ampulex compressa) performs a delicate brain surgery on its prey (the American cockroach Periplaneta americana) to take away its motivation to initiate locomotion. Following a brief background account of parasitoid wasps that manipulate host behaviour, we survey specific aspects of the unique effects of the A. compressa venom on the regulation of spontaneous and evoked behaviour in the cockroach host.
Collapse
|
|
12 |
37 |
10
|
Weisel-Eichler A, Libersat F. Venom effects on monoaminergic systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:683-90. [PMID: 15160282 DOI: 10.1007/s00359-004-0526-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 03/16/2004] [Accepted: 04/07/2004] [Indexed: 01/22/2023]
Abstract
The monoamines, dopamine, epinephrine, histamine, norepinephrine, octopamine, serotonin and tyramine serve many functions in animals. Many different venoms have evolved to manipulate monoaminergic systems via a variety of cellular mechanisms, for both offensive and defensive purposes. One common function of monoamines present in venoms is to produce pain. Some monoamines in venoms cause immobilizing hyperexcitation which precedes venom-induced paralysis or hypokinesia. A common function of venom components that affect monoaminergic systems is to facilitate distribution of other venom components by causing vasodilation at the site of injection or by increasing heart rate. Venoms of some scorpions, spiders, fish and jellyfish contain adrenergic agonists or cause massive release of catecholamines with serious effects on the cardiovascular system, including increased heart rate. Other venom components act as agonists, antagonists or modulators at monoaminergic receptors, or affect release, reuptake or synthesis of monoamines. Most arthropod venoms have insect targets, yet, little attention has been paid to possible effects of these venoms on monoaminergic systems in insects. Further research into this area may reveal novel effects of venom components on monoaminergic systems at the cellular, systems and behavioral levels.
Collapse
|
Review |
21 |
36 |
11
|
Gal R, Libersat F. New vistas on the initiation and maintenance of insect motor behaviors revealed by specific lesions of the head ganglia. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:1003-20. [PMID: 16733727 DOI: 10.1007/s00359-006-0135-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 04/11/2006] [Accepted: 04/23/2006] [Indexed: 10/24/2022]
Abstract
In insects, thoracic pattern generators are modulated by the two head ganglia, the supraesophageal ganglion (brain) and the subesophageal ganglion, which act as higher-order neuronal centers. To explore the contribution of each head ganglion to the initiation and maintenance of specific motor behaviors in cockroaches (Periplaneta americana), we performed specific lesions to remove descending inputs from either the brain or the subesophageal ganglion or both, and quantified the behavioral outcome with a battery of motor tasks. We show that 'emergency' behaviors, such as escape, flight, swimming or righting, are initiated at the thoracic level independently of descending inputs from the head ganglia. Yet, the head ganglia play a major role in maintaining these reflexively initiated behaviors. By separately removing each of the two head ganglia, we show that the brain excites flight behavior and inhibits walking-related behaviors, whereas the subesophageal ganglion exerts the opposite effects. Thus, control over specific motor behaviors in cockroaches is anatomically and functionally compartmentalized. We propose a comprehensive model in which the relative permissive versus inhibitory inputs descending from the two head ganglia, combined with thoracic afferent sensory inputs, select a specific thoracic motor pattern while preventing the others.
Collapse
|
|
19 |
34 |
12
|
Knafo S, Libersat F, Barkai E. Dynamics of learning-induced spine redistribution along dendrites of pyramidal neurons in rats. Eur J Neurosci 2005; 21:927-35. [PMID: 15787699 DOI: 10.1111/j.1460-9568.2005.03936.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that olfactory-discrimination (OD) learning is accompanied by enhanced spine density along proximal apical dendrites of layer II pyramidal neurons in the piriform (olfactory) cortex. Here we studied the temporal dynamics of learning-induced modifications in dendritic spine density throughout the dendritic trees of these neurons. We observed a transient increase in proximal apical spine density after OD learning, suggesting a strengthening of intrinsic excitatory inputs interconnecting neurons within the olfactory cortex. By contrast, the afferent pathway receiving direct input from the olfactory bulb shows spine pruning, suggesting that the connectivity is weakened. The changes in spine density can be attributed to a net change in number of spines, as the morphometric parameters of the dendrites are unaffected by learning. We suggest that spine density changes may represent a mechanism of selective synaptic reorganization required for olfactory learning consolidation.
Collapse
|
|
20 |
34 |
13
|
Moore EL, Haspel G, Libersat F, Adams ME. Parasitoid wasp sting: A cocktail of GABA, taurine, and β-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach host. ACTA ACUST UNITED AC 2006; 66:811-20. [PMID: 16673394 DOI: 10.1002/neu.20254] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal-giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI-TOF-MS revealed high levels of GABA (25 mM), and its receptor agonists beta-alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal-giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin-sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host.
Collapse
|
|
19 |
33 |
14
|
Gal R, Libersat F. A wasp manipulates neuronal activity in the sub-esophageal ganglion to decrease the drive for walking in its cockroach prey. PLoS One 2010; 5:e10019. [PMID: 20383324 PMCID: PMC2850919 DOI: 10.1371/journal.pone.0010019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/11/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The parasitoid Jewel Wasp hunts cockroaches to serve as a live food supply for its offspring. The wasp stings the cockroach in the head and delivers a cocktail of neurotoxins directly inside the prey's cerebral ganglia. Although not paralyzed, the stung cockroach becomes a living yet docile 'zombie', incapable of self-initiating spontaneous or evoked walking. We show here that such neuro-chemical manipulation can be attributed to decreased neuronal activity in a small region of the cockroach cerebral nervous system, the sub-esophageal ganglion (SEG). A decrease in descending permissive inputs from this ganglion to thoracic central pattern generators decreases the propensity for walking-related behaviors. METHODOLOGY AND PRINCIPAL FINDINGS We have used behavioral, neuro-pharmacological and electrophysiological methods to show that: (1) Surgically removing the cockroach SEG prior to wasp stinging prolongs the duration of the sting 5-fold, suggesting that the wasp actively targets the SEG during the stinging sequence; (2) injecting a sodium channel blocker, procaine, into the SEG of non-stung cockroaches reversibly decreases spontaneous and evoked walking, suggesting that the SEG plays an important role in the up-regulation of locomotion; (3) artificial focal injection of crude milked venom into the SEG of non-stung cockroaches decreases spontaneous and evoked walking, as seen with naturally-stung cockroaches; and (4) spontaneous and evoked neuronal spiking activity in the SEG, recorded with an extracellular bipolar microelectrode, is markedly decreased in stung cockroaches versus non-stung controls. CONCLUSIONS AND SIGNIFICANCE We have identified the neuronal substrate responsible for the venom-induced manipulation of the cockroach's drive for walking. Our data strongly support previous findings suggesting a critical and permissive role for the SEG in the regulation of locomotion in insects. By injecting a venom cocktail directly into the SEG, the parasitoid Jewel Wasp selectively manipulates the cockroach's motivation to initiate walking without interfering with other non-related behaviors.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
32 |
15
|
Libersat F, Gal R. Wasp Voodoo Rituals, Venom-Cocktails, and the Zombification of Cockroach Hosts. Integr Comp Biol 2014; 54:129-42. [DOI: 10.1093/icb/icu006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
11 |
30 |
16
|
Nassif S, Cardo B, Libersat F, Velley L. Comparison of deficits in electrical self-stimulation after ibotenic acid lesion of the lateral hypothalamus and the medial prefrontal cortex. Brain Res 1985; 332:247-57. [PMID: 3995271 DOI: 10.1016/0006-8993(85)90594-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to compare the self-stimulation deficit produced by a unilateral injection of the neurotoxin, ibotenic acid, in the lateral hypothalamus (LH) to the deficit produced by the same unilateral injection in the medial prefrontal cortex (MPC). Four groups of adult male Sprague-Dawley rats were used: in two control groups, electrodes were bilaterally implanted in the LH (5 rats) or in the MPC (6 rats) and self-stimulation (ICSS) was obtained separately with the right and left electrodes. In the two experimental groups the intrinsic neurons of the LH (8 rats) or of the MPC (10 rats) were destroyed unilaterally by local injection of ibotenic acid (4 micrograms in 0.5 microliter); the other side served as the sham-lesioned control. Ten days later ICSS electrodes were implanted bilaterally, one in the lesioned area, the other in the contralateral region. As in the case of the control rats, ICSS was determined separately for each electrode, first by a rate dependent test (nose-poke) then by a 'rate-free' test (shuttle-box). In the LH and MPC control rats, ICSS responses were the same with stimulation on either side. In the LH-lesioned rats, the ICSS rates measured with the nose-poke test were significantly decreased with stimulation on the lesioned side, whereas rates with stimulation of the non-lesioned LH were normal. Likewise, while shuttle responses with stimulation of the non-lesioned LH were normal, the OFF-time was increased and the ON-time was decreased with stimulation of the lesioned LH. In the MPC-lesioned rats, ICSS (nose-poke) was totally suppressed and the shuttle responses were disorganized since neither the ON- nor the OFF-times changed in response to increasing current intensities. Nose-poke responses with stimulation of the non-lesioned MPC were just about normal. These results show that in the two brain regions studied local neurons are involved in ICSS. The difference in the magnitude of the deficit observed suggests, that the neuronal circuits involved in MPC self-stimulation are poorly represented whereas in the LH many neuronal circuits involved in these mechanisms overlap.
Collapse
|
|
40 |
30 |
17
|
Haspel G, Libersat F. Wasp venom blocks central cholinergic synapses to induce transient paralysis in cockroach prey. JOURNAL OF NEUROBIOLOGY 2003; 54:628-37. [PMID: 12555274 DOI: 10.1002/neu.10195] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The parasitoid wasp Ampulex compressa induces a set of unique behavioral effects upon stinging its prey, the cockroach. It stings into the first thoracic segment inducing 2 to 3 min of transient flaccid paralysis of the front legs. This facilitates a second sting in the cockroach's head that induces 30 min of excessive grooming followed by a 2 to 5-week long lethargic state. In the present study, we examine the immediate effect of the first sting, which is a transient paralysis of the front legs. Using radiolabeled wasps, we demonstrate that the wasp injects its venom directly into the cockroach's first thoracic ganglion. The artificial injection of milked venom into a thoracic ganglion abolishes spontaneous and evoked responses of the motoneurons associated with leg movements. To investigate the physiological mechanism of action of the venom, we injected venom into the last abdominal ganglion of the cockroach, which houses a well-characterized cholinergic synapse. Injected venom abolishes both sensory-evoked and agonist-evoked postsynaptic potentials recorded in the postsynaptic neuron for 2 to 3 min without affecting action potential propagation. Thus, the venom blocking effect has a postsynaptic component that follows the same time course as the transient paralysis induced by the thoracic sting. Finally, injection of a nicotinic antagonist in the front thoracic ganglion induces paralysis of the front legs. We conclude that the transient paralytic effect of the thoracic sting can be mainly accounted for by the presence of a venom active component that induces a postsynaptic block of central cholinergic synaptic transmission.
Collapse
|
Comparative Study |
22 |
29 |
18
|
Weisel-Eichler A, Libersat F. Are monoaminergic systems involved in the lethargy induced by a parasitoid wasp in the cockroach prey? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2002; 188:315-24. [PMID: 12012102 DOI: 10.1007/s00359-002-0305-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2002] [Indexed: 10/27/2022]
Abstract
The venom of the parasitoid wasp Ampulex compressa induces long-lasting hypokinesia in the cockroach prey. Previous work indicates that the venom acts in the subesophageal ganglion to indirectly affect modulation of thoracic circuits for locomotion. However, the target of the venom in the subesophageal ganglion, and the mechanism by which the venom achieves its effects are as yet unknown. While the stung cockroaches appear generally lethargic, not all behaviors were affected, indicating that the venom targets specific motor systems and not behavior in general. Stung cockroaches were observed "freezing" in abnormal positions. Reserpine, which depletes monoamines, mimics the behavioral effects of the venom. We treated cockroaches with antagonists to dopamine and octopamine receptors, and found that the dopamine system is required for normal escape response. Dopamine injection induces prolonged grooming in normal cockroaches, but not in stung, suggesting that the venom is affecting dopamine receptors, or targets downstream of these receptors, in the subesophageal ganglion. This dopamine blocking effect fades slowly over the course of several weeks, similar to the time course of recovery from hypokinesia. The similarity in the time courses suggests that the mechanism underlying the hypokinesia may be the block of the dopamine receptors.
Collapse
|
|
23 |
28 |
19
|
Rosenberg LA, Glusman JG, Libersat F. Octopamine partially restores walking in hypokinetic cockroaches stung by the parasitoid waspAmpulex compressa. J Exp Biol 2007; 210:4411-7. [DOI: 10.1242/jeb.010488] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWhen stung by the parasitoid wasp Ampulex compressa, cockroaches Periplaneta americana enter a hypokinetic state that is characterized by little, if any, spontaneous locomotor activity. In the present study we investigate the effect of an octopamine receptor agonist and an antagonist on the locomotor behavior of stung and control cockroaches. We show that in cockroaches stung by a wasp the octopamine receptor agonist chlordimeform induces a significant increase in spontaneous walking. In good agreement, in control individuals an octopamine receptor antagonist significantly reduces walking activity. Adipokinetic hormone I (AKH-I) promotes spontaneous walking in controls but does not do so in stung individuals, which suggests that the venom effect is most probably not mediated by AKH-I. Dopamine receptor agonists or antagonists had no significant effect on the spontaneous walking of stung or control cockroaches, respectively. The effect of the octopamine receptor agonist was maximal when injected into the brain, suggesting that the wasp venom interferes with octopaminergic modulation of walking initiation in central structures of the cockroach brain.
Collapse
|
|
18 |
28 |
20
|
|
|
6 |
27 |
21
|
Libersat F, Duch C. Morphometric analysis of dendritic remodeling in an identified motoneuron during postembryonic development. J Comp Neurol 2002; 450:153-66. [PMID: 12124760 DOI: 10.1002/cne.10318] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A detailed quantitative description of modifications in neuronal architecture is an important prerequisite to investigate the signals underlying behaviorally relevant changes in neuronal shape. Extensive morphological remodeling of neurons occurs during the metamorphosis of holometabolous insects, such as Manduca sexta, in which new adult behaviors develop postembryonically. In this study, a morphometric analysis of the structural changes of an identified Manduca motoneuron, MN5, was conducted by sampling its metric parameters at different developmental stages. The remodeling of MN5 is divided into three main phases. The regression of most larval dendrites (1) is followed by the formation of dendritic growth-cones (2), and subsequently, adult dendrite formation (3). In contrast, the cell body and link segment surface increase during dendritic regression and regrowth, indicating that different cell compartments receive different signals, or respond differently to the same signal. During dendritic growth-cone formation, the growth of the cell body and the link segment are arrested. Sholl and branch frequency analysis suggest two different modes of dendritic growth. During a first growth-cone-dependent phase, new branch formation occurs at all dendrites. The maximum path length of the major dendritic tree changes little, whereas branch order increases from 20 to 45. Changes in total dendritic length are correlated with strong changes in the number of nodes but with minor changes in the average dendritic segment length, indicating a mode of growth similar to that induced by steroid hormone application to cultured motoneurons. The second phase is growth-cone-independent, and branching is limited to high order dendrites.
Collapse
|
|
23 |
25 |
22
|
Libersat F, Clarac F, Zill S. Force-sensitive mechanoreceptors of the dactyl of the crab: single-unit responses during walking and evaluation of function. J Neurophysiol 1987; 57:1618-37. [PMID: 3585482 DOI: 10.1152/jn.1987.57.5.1618] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The activities of individual force-sensitive mechanoreceptors of the dactyl (terminal leg segment) of the crab, Carcinus maenas, have been recorded during free walking. These receptors have also been mechanically and electrically stimulated in freely moving animals to directly evaluate their function in locomotion. All force-sensitive mechanoreceptors fired during the stance phase of walking and were silent during swing. Receptor discharges showed regular phase relationships to bursts in motor neurons of leg muscles. Crabs walk laterally and use the legs of one side either in trailing to actively push the animal to the opposite side, or in leading, to less forcefully pull the animal in that direction. Individual force-sensitive mechanoreceptors differed in their patterns of activity during trailing or leading according to their location on the dactyl. Units of proximal receptors fired more vigorously when used in trailing than in leading. Discharges in trailing were also increased by loading of the animal. In contrast, distal receptors near the dactyl tip fired equally intensely during walking in either direction. Proximal receptors thus encode forces and loads applied to the leg. Distal receptors do not encode loads but can signal leg contact and, potentially, exteroceptive vibrations. Sensory stimulation of force-sensitive mechanoreceptors was produced during walking by a device that imposed continuous mechanical bending of the dactyl and by electrical stimulation of dactyl nerves. Intra- and inter-segmental reflexes were evaluated by myographic recordings from leg muscles. Continuous mechanical deformation of the dactyl increased the activity of the levator and decreased firing in the depressor muscles of the homonymous leg during walking. The same stimulus produced enhanced activity in depressor muscles of adjacent legs. The latter effect was not due to simple mechanical coupling resulting from reflexes in the stimulated leg. These reflexes can function to limit forces applied to a leg and provide compensatory adjustments in other legs. Brief low-threshold electrical stimuli applied to nerves in which the activities of force-sensitive mechanoreceptors were recorded produced reflex effects similar to those obtained by mechanical stimulation. These stimuli also reset the rhythm of motor neuron bursting in both homonymous and adjacent legs during walking. These studies confirm the importance of force-sensitive mechanoreceptors in adapting walking patterns and in determining leg coordination in locomotion.
Collapse
|
|
38 |
25 |
23
|
Abstract
Insect behavior can be manipulated by parasites, and in many cases, such manipulation involves the central and peripheral nervous system. Neuroparasitology is an emerging branch of biology that deals with parasites that can control the nervous system of their host. The diversity of parasites that can manipulate insect behavior ranges from viruses to macroscopic worms and also includes other insects that have evolved to become parasites (notably, parasitic wasps). It is remarkable that the precise manipulation observed does not require direct entry into the insect brain and can even occur when the parasite is outside the body. We suggest that a spatial view of manipulation provides a holistic approach to examining such interactions. Integration across approaches from natural history to advanced imaging techniques, omics, and experiments will provide new vistas in neuroparasitology. We also suggest that for researchers interested in the proximate mechanisms of insect behaviors, studies of parasites that have evolved to control such behavior is of significant value.
Collapse
|
Review |
7 |
23 |
24
|
Gal R, Kaiser M, Haspel G, Libersat F. Sensory arsenal on the stinger of the parasitoid jewel wasp and its possible role in identifying cockroach brains. PLoS One 2014; 9:e89683. [PMID: 24586962 PMCID: PMC3935893 DOI: 10.1371/journal.pone.0089683] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/22/2014] [Indexed: 11/25/2022] Open
Abstract
The parasitoid jewel wasp uses cockroaches as live food supply for its developing larva. To this end, the adult wasp stings a cockroach and injects venom directly inside its brain, turning the prey into a submissive ‘zombie’. Here, we characterize the sensory arsenal on the wasp’s stinger that enables the wasp to identify the brain target inside the cockroach’s head. An electron microscopy study of the stinger reveals (a) cuticular depressions innervated by a single mechanosensory neuron, which are presumably campaniform sensilla; and (b) dome-shaped structures innervated by a single mechanosensory neuron and 4–5 chemosensory neurons, which are presumably contact-chemoreceptive sensilla. Extracellular electrophysiological recordings from stinger afferents show increased firing rate in response to mechanical stimulation with agarose. This response is direction-selective and depends upon the concentration (density) of the agarose, such that the most robust response is evoked when the stinger is stimulated in the distal-to-proximal direction (concomitant with the penetration during the natural stinging behavior) and penetrating into relatively hard (0.75%–2.5%) agarose pellets. Accordingly, wasps demonstrate a normal stinging behavior when presented with cockroaches in which the brain was replaced with a hard (2.5%) agarose pellet. Conversely, wasps demonstrate a prolonged stinging behavior when the cockroach brain was either removed or replaced by a soft (0.5%) agarose pellet, or when stinger sensory organs were ablated prior to stinging. We conclude that the parasitoid jewel wasp uses at least mechanosensory inputs from its stinger to identify the brain within the head capsule of the cockroach prey.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
21 |
25
|
Mizrahi A, Ben-Ner E, Katz MJ, Kedem K, Glusman JG, Libersat F. Comparative analysis of dendritic architecture of identified neurons using the Hausdorff distance metric. J Comp Neurol 2000; 422:415-28. [PMID: 10861517 DOI: 10.1002/1096-9861(20000703)422:3<415::aid-cne8>3.0.co;2-t] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dendritic trees often are complex, three-dimensional structures. Comparative morphologic studies have not yet provided a reliable measure to analyze and compare the geometry of different dendritic trees. Therefore, it is important to develop quantitative methods for analyzing the three-dimensional geometry of these complex trees. The authors developed a comparison measure based on the Hausdorff distance for comparing quantitatively the three-dimensional structure of different neurons. This algorithm was implemented and incorporated into a new software package that the authors developed called NeuroComp. The authors tested this algorithm to study the variability in the three-dimensional structure of identified central neurons as well as measuring the structural differences between homologue neurons. They took advantage of the uniform dendritic morphology of identified interneurons of an insect, the giant interneurons of the cockroach. More specifically, after establishing a morphometric data base of these neurons, the authors found that the algorithm is a reliable tool for distinguishing between dendritic trees of different neurons, whereas conventional metric analysis often is inadequate. The authors propose to use this method as a quantitative tool for the investigation of the effects of various experimental paradigms on three-dimensional dendritic architecture.
Collapse
|
|
25 |
21 |