1
|
Napp J, Stammes MA, Claussen J, Prevoo HA, Sier CF, Hoeben FJ, Robillard MS, Vahrmeijer AL, Devling T, Chan AB, de Geus-Oei LF, Alves F. Fluorescence- and multispectral optoacoustic imaging for an optimized detection of deeply located tumors in an orthotopic mouse model of pancreatic carcinoma. Int J Cancer 2018; 142:2118-2129. [DOI: 10.1002/ijc.31236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 01/30/2023]
|
|
7 |
7 |
2
|
de Kort DW, Schuster E, Hoeben FJ, Barnes R, Emondts M, Janssen HM, Lorén N, Han S, Van As H, van Duynhoven JP. Heterogeneity of Network Structures and Water Dynamics in κ-Carrageenan Gels Probed by Nanoparticle Diffusometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11110-11120. [PMID: 30132676 PMCID: PMC6146320 DOI: 10.1021/acs.langmuir.8b01052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A set of functionalized nanoparticles (PEGylated dendrimers, d = 2.8-11 nm) was used to probe the structural heterogeneity in Na+/K+ induced κ-carrageenan gels. The self-diffusion behavior of these nanoparticles as observed by 1H pulsed-field gradient NMR, fluorescence recovery after photobleaching, and raster image correlation spectroscopy revealed a fast and a slow component, pointing toward microstructural heterogeneity in the gel network. The self-diffusion behavior of the faster nanoparticles could be modeled with obstruction by a coarse network (average mesh size <100 nm), while the slower-diffusing nanoparticles are trapped in a dense network (lower mesh size limit of 4.6 nm). Overhauser dynamic nuclear polarization-enhanced NMR relaxometry revealed a reduced local solvent water diffusivity near 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)-labeled nanoparticles trapped in the dense network, showing that heterogeneity in the physical network is also reflected in heterogeneous self-diffusivity of water. The observed heterogeneity in mesh sizes and in water self-diffusivity is of interest for understanding and modeling of transport through and release of solutes from heterogeneous biopolymer gels.
Collapse
|
research-article |
7 |
3 |
3
|
Toner YC, Munitz J, Prevot G, Morla-Folch J, Wang W, van Elsas Y, Priem B, Deckers J, Anbergen T, Beldman TJ, Brechbühl EE, Aksu MD, Ziogas A, Sarlea SA, Ozturk M, Zhang Z, Li W, Li Y, Maier A, Fernandes JC, Cremers GA, van Genabeek B, Kreijtz JH, Lutgens E, Riksen NP, Janssen HM, Söntjens SH, Hoeben FJ, Kluza E, Singh G, Giamarellos-Bourboulis EJ, Schotsaert M, Duivenvoorden R, van der Meel R, Joosten LA, Cai L, Temel RE, Fayad ZA, Mhlanga MM, van Leent MM, Teunissen AJ, Netea MG, Mulder WJ. Targeting mTOR in myeloid cells prevents infection-associated inflammation. iScience 2025; 28:112163. [PMID: 40177636 PMCID: PMC11964677 DOI: 10.1016/j.isci.2025.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/13/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Infections, cancer, and trauma can cause life-threatening hyperinflammation. In the present study, using single-cell RNA sequencing of circulating immune cells, we found that the mammalian target of rapamycin (mTOR) pathway plays a critical role in myeloid cell regulation in COVID-19 patients. Previously, we developed an mTOR-inhibiting nanobiologic (mTORi-nanobiologic) that efficiently targets myeloid cells and their progenitors in the bone marrow. In vitro, we demonstrated that mTORi-nanobiologics potently inhibit infection-associated inflammation in human primary immune cells. Next, we investigated the in vivo effect of mTORi-nanobiologics in mouse models of hyperinflammation and acute respiratory distress syndrome. Using 18F-FDG uptake and flow cytometry readouts, we found mTORi-nanobiologic therapy to efficiently reduce hematopoietic organ metabolic activity and inflammation to levels comparable to those of healthy control animals. Together, we show that regulating myelopoiesis with mTORi-nanobiologics is a compelling therapeutic strategy to prevent deleterious organ inflammation in infection-related complications.
Collapse
|
research-article |
1 |
|
4
|
Vlastara M, Rossin R, Hoeben FJ, de Roode KE, Boswinkel M, Kleijn LH, Nagarajah J, Rijpkema M, Robillard MS. Click-to-Release: Cleavable Radioimmunoimaging with [ 89Zr]Zr-DFO- Trans-Cyclooctene-Trastuzumab Increases Tumor-to-Blood Ratio. Theranostics 2023; 13:4004-4015. [PMID: 37554267 PMCID: PMC10405837 DOI: 10.7150/thno.84865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023] Open
Abstract
One of the main challenges of PET imaging with 89Zr-labeled monoclonal antibodies (mAbs) remains the long blood circulation of the radiolabeled mAbs, leading to high background signals, decreasing image quality. To overcome this limitation, here we report the use of a bioorthogonal linker cleavage approach (click-to-release chemistry) to selectively liberate [89Zr]Zr-DFO from trans-cyclooctene-functionalized trastuzumab (TCO-Tmab) in blood, following the administration of a tetrazine compound (trigger) in BT-474 tumor-bearing mice. Methods: We created a series of TCO-DFO constructs and evaluated their performance in [89Zr]Zr-DFO release from Tmab in vitro using different trigger compounds. The in vivo behavior of the best performing [89Zr]Zr-TCO-Tmab was studied in healthy mice first to determine the optimal dose of the trigger. To find the optimal time for the trigger administration, the rate of [89Zr]Zr-TCO-Tmab internalization was studied in BT-474 cancer cells. Finally, the trigger was administered 6 h or 24 h after [89Zr]Zr-TCO-Tmab- administration in tumor-bearing mice to liberate the [89Zr]Zr-DFO fragment. PET scans were obtained of tumor-bearing mice that received the trigger 6 h post-[89Zr]Zr-TCO-Tmab administration. Results: The [89Zr]Zr-TCO-Tmab and trigger pair with the best in vivo properties exhibited 83% release in 50% mouse plasma. In tumor-bearing mice the tumor-blood ratios were markedly increased from 1.0 ± 0.4 to 2.3 ± 0.6 (p = 0.0057) and from 2.5 ± 0.7 to 6.6 ± 0.9 (p < 0.0001) when the trigger was administered at 6 h and 24 h post-mAb, respectively. Same day PET imaging clearly showed uptake in the tumor combined with a strongly reduced background due to the fast clearance of the released [89Zr]Zr-DFO-containing fragment from the circulation through the kidneys. Conclusions: This is the first demonstration of the use of trans-cyclooctene-tetrazine click-to-release chemistry to release a radioactive chelator from a mAb in mice to increase tumor-to-blood ratios. Our results suggest that click-cleavable radioimmunoimaging may allow for substantially shorter intervals in PET imaging with full mAbs, reducing radiation doses and potentially even enabling same day imaging.
Collapse
|
research-article |
2 |
|