1
|
Vanhollebeke B, De Muylder G, Nielsen MJ, Pays A, Tebabi P, Dieu M, Raes M, Moestrup SK, Pays E. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 2008; 320:677-81. [PMID: 18451305 DOI: 10.1126/science.1156296] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The protozoan parasite Trypanosoma brucei is lysed by apolipoprotein L-I, a component of human high-density lipoprotein (HDL) particles that are also characterized by the presence of haptoglobin-related protein. We report that this process is mediated by a parasite glycoprotein receptor, which binds the haptoglobin-hemoglobin complex with high affinity for the uptake and incorporation of heme into intracellular hemoproteins. In mice, this receptor was required for optimal parasite growth and the resistance of parasites to the oxidative burst by host macrophages. In humans, the trypanosome receptor also recognized the complex between hemoglobin and haptoglobin-related protein, which explains its ability to capture trypanolytic HDLs. Thus, in humans the presence of haptoglobin-related protein has diverted the function of the trypanosome haptoglobin-hemoglobin receptor to elicit innate host immunity against the parasite.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
191 |
2
|
Imamura H, Downing T, Van den Broeck F, Sanders MJ, Rijal S, Sundar S, Mannaert A, Vanaerschot M, Berg M, De Muylder G, Dumetz F, Cuypers B, Maes I, Domagalska M, Decuypere S, Rai K, Uranw S, Bhattarai NR, Khanal B, Prajapati VK, Sharma S, Stark O, Schönian G, De Koning HP, Settimo L, Vanhollebeke B, Roy S, Ostyn B, Boelaert M, Maes L, Berriman M, Dujardin JC, Cotton JA. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife 2016; 5. [PMID: 27003289 PMCID: PMC4811772 DOI: 10.7554/elife.12613] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 12/25/2022] Open
Abstract
Leishmania donovani causes visceral leishmaniasis (VL), the second most deadly vector-borne parasitic disease. A recent epidemic in the Indian subcontinent (ISC) caused up to 80% of global VL and over 30,000 deaths per year. Resistance against antimonial drugs has probably been a contributing factor in the persistence of this epidemic. Here we use whole genome sequences from 204 clinical isolates to track the evolution and epidemiology of L. donovani from the ISC. We identify independent radiations that have emerged since a bottleneck coincident with 1960s DDT spraying campaigns. A genetically distinct population frequently resistant to antimonials has a two base-pair insertion in the aquaglyceroporin gene LdAQP1 that prevents the transport of trivalent antimonials. We find evidence of genetic exchange between ISC populations, and show that the mutation in LdAQP1 has spread by recombination. Our results reveal the complexity of L. donovani evolution in the ISC in response to drug treatment. DOI:http://dx.doi.org/10.7554/eLife.12613.001 The parasite Leishmania donovani causes a disease called visceral leishmaniasis that affects many of the world's poorest people. Around half a million new cases develop every year, but health authorities lack safe and effective drugs to treat them. Up to 80% of these cases occur in the Indian subcontinent, where devastating epidemics have occurred in the last decades. One reason these epidemics continue to occur is that the parasites develop genetic mutations allowing them to adapt to and resist the drugs used to kill them. As there are few existing drugs that can kill L. donovani, it is crucial to understand how drug resistance emerges and spreads among parasite populations. Imamura, Downing, Van den Broeck et al. have now investigated the history of visceral leishmaniasis epidemics by characterising the complete genetic sequence – or genome – of 204 L. donovani parasite samples. This revealed that the majority of parasites in the Indian subcontinent first appeared in the nineteenth century, matching the first historical records of visceral leishmaniasis epidemics. The genomes show that most of the parasites are genetically similar and can be clustered into several closely related groups. These groups first appeared in the 1960s following the end of a regional campaign to eradicate malaria. The most common parasite group is particularly resistant to drugs called antimonials, which were the main treatment for leishmaniasis until recently. These parasites have a small genetic change that scrambles most of a protein known to be involved in the uptake of antimonials. Parasites may also be able to develop resistance to drugs through additional mechanisms that allow them to produce many copies of the same gene. These mechanisms could allow the parasites to rapidly adapt to new drugs or changes in the populations it infects. The work of Imamura et al. looks only at parasites isolated from patients then grown in the laboratory, so further research is now needed to explore how variable the Leishmania genome is in both of the parasite’s hosts: humans and sandflies. Imamura et al.’s study reveals how L. donovani has spread throughout the Indian subcontinent in fine detail. The genome data can be used to create simple molecular tools that could form an "early warning system" to track the success of disease control programs and to determine how well the current drugs are working. DOI:http://dx.doi.org/10.7554/eLife.12613.002
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
115 |
3
|
Salmon D, Vanwalleghem G, Morias Y, Denoeud J, Krumbholz C, Lhommé F, Bachmaier S, Kador M, Gossmann J, Dias FBS, De Muylder G, Uzureau P, Magez S, Moser M, De Baetselier P, Van Den Abbeele J, Beschin A, Boshart M, Pays E. Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 2012; 337:463-6. [PMID: 22700656 DOI: 10.1126/science.1222753] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases. Activation of these enzymes requires the dimerization of the catalytic domain and typically occurs under stress. Using a dominant-negative strategy, we found that reducing adenylate cyclase activity by about 50% allowed trypanosome growth but reduced the parasite's ability to control the early innate immune defense of the host. Specifically, activation of trypanosome adenylate cyclase resulting from parasite phagocytosis by liver myeloid cells inhibited the synthesis of the trypanosome-controlling cytokine tumor necrosis factor-α through activation of protein kinase A in these cells. Thus, adenylate cyclase activity of lyzed trypanosomes favors early host colonization by live parasites. The role of adenylate cyclases at the host-parasite interface could explain the expansion and polymorphism of this gene family.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
98 |
4
|
Hefnawy A, Berg M, Dujardin JC, De Muylder G. Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends Parasitol 2016; 33:162-174. [PMID: 27993477 DOI: 10.1016/j.pt.2016.11.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
New drugs are needed to control leishmaniasis and efforts are currently on-going to counter the neglect of this disease. We discuss here the utility and the impact of associating drug resistance (DR) studies to drug discovery pipelines. We use as paradigm currently used drugs, antimonials and miltefosine, and complement our reflection by interviewing three experts in the field. We suggest DR studies to be involved at two different stages of drug development: (i) the efficiency of novel compounds should be confirmed on sets of strains including recent clinical isolates with DR; (ii) experimental DR should be generated to promising compounds at an early stage of their development, to further optimize them and monitor clinical trials.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
87 |
5
|
De Muylder G, Daulouède S, Lecordier L, Uzureau P, Morias Y, Van Den Abbeele J, Caljon G, Hérin M, Holzmuller P, Semballa S, Courtois P, Vanhamme L, Stijlemans B, De Baetselier P, Barrett MP, Barlow JL, McKenzie ANJ, Barron L, Wynn TA, Beschin A, Vincendeau P, Pays E. A Trypanosoma brucei kinesin heavy chain promotes parasite growth by triggering host arginase activity. PLoS Pathog 2013; 9:e1003731. [PMID: 24204274 PMCID: PMC3814429 DOI: 10.1371/journal.ppat.1003731] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 09/11/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells. METHODOLOGY/PRINCIPAL FINDINGS By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO) synthase activity. This TbKHC1 activity was IL-4Rα-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time. CONCLUSION A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
41 |
6
|
Cuypers B, Berg M, Imamura H, Dumetz F, De Muylder G, Domagalska MA, Rijal S, Bhattarai NR, Maes I, Sanders M, Cotton JA, Meysman P, Laukens K, Dujardin JC. Integrated genomic and metabolomic profiling of ISC1, an emerging Leishmania donovani population in the Indian subcontinent. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 62:170-178. [PMID: 29679745 PMCID: PMC6261844 DOI: 10.1016/j.meegid.2018.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023]
Abstract
Leishmania donovani is the responsible agent for visceral leishmaniasis (VL) in the Indian subcontinent (ISC). The disease is lethal without treatment and causes 0.2 to 0.4 million cases each year. Recently, reports of VL in Nepalese hilly districts have increased as well as VL cases caused by L. donovani from the ISC1 genetic group, a new and emerging genotype. In this study, we perform for the first time an integrated, untargeted genomics and metabolomics approach to characterize ISC1, in comparison with the Core Group (CG), main population that drove the most recent outbreak of VL in the ISC. We show that the ISC1 population is very different from the CG, both at genome and metabolome levels. The genomic differences include SNPs, CNV and small indels in genes coding for known virulence factors, immunogens and surface proteins. Both genomic and metabolic approaches highlighted dissimilarities related to membrane lipids, the nucleotide salvage pathway and the urea cycle in ISC1 versus CG. Many of these pathways and molecules are important for the interaction with the host/extracellular environment. Altogether, our data predict major functional differences in ISC1 versus CG parasites, including virulence. Therefore, particular attention is required to monitor the fate of this emerging ISC1 population in the ISC, especially in a post-VL elimination context.
Collapse
|
research-article |
7 |
31 |
7
|
Gómez-Rodríguez J, Stijlemans B, De Muylder G, Korf H, Brys L, Berberof M, Darji A, Pays E, De Baetselier P, Beschin A. Identification of a parasitic immunomodulatory protein triggering the development of suppressive M1 macrophages during African trypanosomiasis. J Infect Dis 2009; 200:1849-60. [PMID: 19911988 DOI: 10.1086/648374] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Development of classically activated macrophages (M1 cells) is a prerequisite to controlling parasite growth and therefore resistance to African trypanosomiasis. However, if activation of M1 cells is uncontrolled, including their production of tumor necrosis factor (TNF) and nitric oxide (NO), collateral pathogenic damage to tissues ensues. We report the identification of a novel putative Trypanosoma brucei M1 cell-triggering protein. The recombinant trypanosome-suppressive immunomodulating factor (rTSIF) induced TNF and NO secretion by macrophages. Moreover, M1 cells triggered by rTSIF block T cell proliferation in a manner dependent on NO, interferon gamma, and cell contact. Furthermore, rTSIF could down-regulate type 2-oriented immune responses. Therefore, trypanosome-suppressive immunomodulating factor (TSIF) may represent a new parasite molecule with the potential to modulate the host immune network, whereby it could contribute to the inflammatory response required to control parasite growth and to the pathogenicity of African trypanosomiasis, including immunosuppression. TSIF knock-down trypanosomes died within 2 days, indicating that TSIF may be essential for parasite biology.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
27 |
8
|
Cuypers B, Domagalska MA, Meysman P, Muylder GD, Vanaerschot M, Imamura H, Dumetz F, Verdonckt TW, Myler PJ, Ramasamy G, Laukens K, Dujardin JC. Multiplexed Spliced-Leader Sequencing: A high-throughput, selective method for RNA-seq in Trypanosomatids. Sci Rep 2017. [PMID: 28623350 PMCID: PMC5473914 DOI: 10.1038/s41598-017-03987-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
High throughput sequencing techniques are poorly adapted for in vivo studies of parasites, which require prior in vitro culturing and purification. Trypanosomatids, a group of kinetoplastid protozoans, possess a distinctive feature in their transcriptional mechanism whereby a specific Spliced Leader (SL) sequence is added to the 5'end of each mRNA by trans-splicing. This allows to discriminate Trypansomatid RNA from mammalian RNA and forms the basis of our new multiplexed protocol for high-throughput, selective RNA-sequencing called SL-seq. We provided a proof-of-concept of SL-seq in Leishmania donovani, the main causative agent of visceral leishmaniasis in humans, and successfully applied the method to sequence Leishmania mRNA directly from infected macrophages and from highly diluted mixes with human RNA. mRNA profiles obtained with SL-seq corresponded largely to those obtained from conventional poly-A tail purification methods, indicating both enumerate the same mRNA pool. However, SL-seq offers additional advantages, including lower sequencing depth requirements, fast and simple library prep and high resolution splice site detection. SL-seq is therefore ideal for fast and massive parallel sequencing of parasite transcriptomes directly from host tissues. Since SLs are also present in Nematodes, Cnidaria and primitive chordates, this method could also have high potential for transcriptomics studies in other organisms.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
22 |
9
|
Caljon G, De Muylder G, Durnez L, Jennes W, Vanaerschot M, Dujardin JC. Alice in microbes' land: adaptations and counter-adaptations of vector-borne parasitic protozoa and their hosts. FEMS Microbiol Rev 2016; 40:664-85. [PMID: 27400870 DOI: 10.1093/femsre/fuw018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 12/24/2022] Open
Abstract
In the present review, we aim to provide a general introduction to different facets of the arms race between pathogens and their hosts/environment, emphasizing its evolutionary aspects. We focus on vector-borne parasitic protozoa, which have to adapt to both invertebrate and vertebrate hosts. Using Leishmania, Trypanosoma and Plasmodium as main models, we review successively (i) the adaptations and counter-adaptations of parasites and their invertebrate host, (ii) the adaptations and counter-adaptations of parasites and their vertebrate host and (iii) the impact of human interventions (chemotherapy, vaccination, vector control and environmental changes) on these adaptations. We conclude by discussing the practical impact this knowledge can have on translational research and public health.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
19 |
10
|
Ben Khalaf N, De Muylder G, Louzir H, McKerrow J, Chenik M. Leishmania major protein disulfide isomerase as a drug target: enzymatic and functional characterization. Parasitol Res 2011; 110:1911-7. [PMID: 22160278 DOI: 10.1007/s00436-011-2717-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/17/2011] [Indexed: 11/29/2022]
Abstract
Leishmaniasis is a major health problem worldwide and tools available for their control are limited. Effective vaccines are still lacking, drugs are toxic and expensive, and parasites develop resistance to chemotherapy. In this context, new antimicrobials are urgently needed to control the disease in both human and animal. Here, we report the enzymatic and functional characterization of a Leishmania virulence factor, Leishmania major Protein disulfide isomerase (LmPDI) that could constitute a potential drug target. LmPDI possesses domain structure organization similar to other PDI family members (a, a', b, b' and c domains), and it displays the three enzymatic and functional activities specific of PDI family members: isomerase, reductase and chaperone. These results suggest that LmPDI plays a key role in assisting Leishmania protein folding via its capacity to catalyze formation, breakage, and rearrangement of disulfide bonds in nascent polypeptides. Moreover, Bacitracin, a reductase activity inhibitor, and Ribostamycin, a chaperone activity inhibitor, were tested in LmPDI enzymatic assays and versus Leishmania promastigote in vitro cultures and Leishmania amastigote multiplication inside infected THP-1-derived macrophages. Bacitracin inhibited both isomerase and reductase activities, while Ribostamycin had no effect on the chaperone activity. Interestingly, Bacitracin blocked in vitro promastigote growth as well as amastigote multiplication inside macrophages with EC(50) values of 39 μM. These results suggest that LmPDI may constitute an interesting target for the development of new anti-Leishmania drugs.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
18 |
11
|
De Muylder G, Vanhollebeke B, Caljon G, Wolfe AR, McKerrow J, Dujardin JC. Naloxonazine, an Amastigote-Specific Compound, Affects Leishmania Parasites through Modulation of Host-Encoded Functions. PLoS Negl Trop Dis 2016; 10:e0005234. [PMID: 28036391 PMCID: PMC5201425 DOI: 10.1371/journal.pntd.0005234] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/06/2016] [Indexed: 11/24/2022] Open
Abstract
Host-directed therapies (HDTs) constitute promising alternatives to traditional therapy that directly targets the pathogen but is often hampered by pathogen resistance. HDT could represent a new treatment strategy for leishmaniasis, a neglected tropical disease caused by the obligate intracellular parasite Leishmania. This protozoan develops exclusively within phagocytic cells, where infection relies on a complex molecular interplay potentially exploitable for drug targets. We previously identified naloxonazine, a compound specifically active against intracellular but not axenic Leishmania donovani. We evaluated here whether this compound could present a host cell-dependent mechanism of action. Microarray profiling of THP-1 macrophages treated with naloxonazine showed upregulation of vATPases, which was further linked to an increased volume of intracellular acidic vacuoles. Treatment of Leishmania-infected macrophages with the vATPase inhibitor concanamycin A abolished naloxonazine effects, functionally demonstrating that naloxonazine affects Leishmania amastigotes indirectly, through host cell vacuolar remodeling. These results validate amastigote-specific screening approaches as a powerful way to identify alternative host-encoded targets. Although the therapeutic value of naloxonazine itself is unproven, our results further demonstrate the importance of intracellular acidic compartments for host defense against Leishmania, highlighting the possibility of targeting this host cell compartment for anti-leishmanial therapy.
Collapse
|
research-article |
9 |
18 |
12
|
Romaní Vidal A, Vaughan A, Innocenti F, Colombe S, Nerlander L, Rachwal N, Ciancio BC, Mougkou A, Carvalho C, Delgado E, Mook P, de Muylder G, Peeters M, Tenev T, Golkocheva-Markova E, Vorobieva Solholm Jensen V, Koch A, Figoni J, Brouard C, Nikolopoulou G, Zisouli A, Murphy N, Broderick A, Goldberg L, Rich R, Hecht Sagie L, Tosti ME, Suligoi B, Joosten R, Pijnacker R, Fjeldheim I, Heen E, Stępień M, Polański P, Tato Marinho R, Vieira Martins J, Varela C, Avellón A, Andersson E, Jansson Mörk M, Mandal S, Watson C, Coughlan L, Chand M, Neill C, Bradley DT, Li K, O'Leary M, McInnes N, Williams CJ, Moore C, Gjini A, Duffell E, Pebody R. Hepatitis of unknown aetiology in children - epidemiological overview of cases reported in Europe, 1 January to 16 June 2022. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2022; 27. [PMID: 35929429 PMCID: PMC9358403 DOI: 10.2807/1560-7917.es.2022.27.31.2200483] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Following the report of an excess in paediatric cases of severe acute hepatitis of unknown aetiology by the United Kingdom (UK) on 5 April 2022, 427 cases were reported from 20 countries in the World Health Organization European Region to the European Surveillance System TESSy from 1 January 2022 to 16 June 2022. Here, we analysed demographic, epidemiological, clinical and microbiological data available in TESSy. Of the reported cases, 77.3% were 5 years or younger and 53.5% had a positive test for adenovirus, 10.4% had a positive RT-PCR for SARS-CoV-2 and 10.3% were coinfected with both pathogens. Cases with adenovirus infections were significantly more likely to be admitted to intensive care or high-dependency units (OR = 2.11; 95% CI: 1.18–3.74) and transplanted (OR = 3.36; 95% CI: 1.19–9.55) than cases with a negative test result for adenovirus, but this was no longer observed when looking at this association separately between the UK and other countries. Aetiological studies are needed to ascertain if adenovirus plays a role in this possible emergence of hepatitis cases in children and, if confirmed, the mechanisms that could be involved.
Collapse
|
|
3 |
12 |
13
|
Ben Khalaf N, De Muylder G, Ratnam J, Kean-Hooi Ang K, Arkin M, McKerrow J, Chenik M. A high-throughput turbidometric assay for screening inhibitors of Leishmania major protein disulfide isomerase. ACTA ACUST UNITED AC 2011; 16:545-51. [PMID: 21441416 DOI: 10.1177/1087057111401026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of a high-throughput technique to perform a pilot screen for Leishmania major protein disulfide isomerase (LmPDI) inhibitors identification is reported. In eukaryotic cells, protein disulfide isomerase (PDI) plays a crucial role in protein folding by catalyzing the rearrangement of disulfide bonds in substrate proteins following their synthesis. LmPDI displays similar domain structure organization and functional properties to other PDI family members and is involved in Leishmania virulence. The authors used a method based on the enzyme-catalyzed reduction of insulin in the presence of dithiothreitol. The screen of a small library of 1920 compounds was performed in a 384-well format and led to the identification of 27 compounds with inhibitory activity against LmPDI. The authors further tested the cytotoxicity of these compounds using Jurkat cells as well as their effect on Leishmania donovani amastigotes using high-content analysis. Results show hexachlorophene and a mixture of theaflavin monogallates inhibit Leishmania multiplication in infected macrophages derived from THP-1 cells, although the inhibitory effect on LmPDI enzymatic activity does not necessarily correlate with the antileishmanial activity.
Collapse
|
Journal Article |
14 |
8 |
14
|
Nzoumbou-Boko R, De Muylder G, Semballa S, Lecordier L, Dauchy FA, Gobert AP, Holzmuller P, Lemesre JL, Bras-Gonçalves R, Barnabé C, Courtois P, Daulouède S, Beschin A, Pays E, Vincendeau P. Trypanosoma musculiInfection in Mice Critically Relies on Mannose Receptor–Mediated Arginase Induction by aTbKHC1 Kinesin H Chain Homolog. THE JOURNAL OF IMMUNOLOGY 2017; 199:1762-1771. [DOI: 10.4049/jimmunol.1700179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/20/2017] [Indexed: 01/26/2023]
|
|
8 |
7 |
15
|
Uzureau P, Felu C, De Muylder G, Pays E, Vanhamme L. G418, phleomycin and hygromycin selection of recombinant Trypanosoma brucei parasites refractory to long-term in vitro culture. Mol Biochem Parasitol 2007; 154:90-4. [PMID: 17449118 DOI: 10.1016/j.molbiopara.2007.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/01/2007] [Accepted: 03/07/2007] [Indexed: 11/16/2022]
|
|
18 |
5 |
16
|
De Muylder G, Laisnez V, Stefani G, Boulouffe C, Faes C, Hammami N, Hubin P, Molenberghs G, Sans J, van de Konijnenburg C, Van der Borght S, Brondeel R, Stassijns J, Lernout T. Translating the COVID-19 epidemiological situation into policies and measures: the Belgian experience. Front Public Health 2024; 12:1306361. [PMID: 38645450 PMCID: PMC11026715 DOI: 10.3389/fpubh.2024.1306361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
The COVID-19 pandemic led to sustained surveillance efforts, which made unprecedented volumes and types of data available. In Belgium, these data were used to conduct a targeted and regular assessment of the epidemiological situation. In addition, management tools were developed, incorporating key indicators and thresholds, to define risk levels and offer guidance to policy makers. Categorizing risk into various levels provided a stable framework to monitor the COVID-19 epidemiological situation and allowed for clear communication to authorities. Although translating risk levels into specific public health measures has remained challenging, this experience was foundational for future evaluation of the situation for respiratory infections in general, which, in Belgium, is now based on a management tool combining different data sources.
Collapse
|
research-article |
1 |
|