1
|
Şeker Karatoprak G, Aydin G, Altinsoy B, Altinkaynak C, Koşar M, Ocsoy I. The Effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities. Enzyme Microb Technol 2017; 97:21-26. [PMID: 28010769 DOI: 10.1016/j.enzmictec.2016.10.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/01/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022]
Abstract
Herein, we report the biosynthesis of Ag NPs, for the first time, using identified antimicrobial molecules (gallic acid+apocynin) and (gallic acid+apocynin+quercetin) from the medicinal plant Pelargonium endlicherianum Fenzl. and dramatically enhanced antimicrobial activity. We also investigate the role of each molecule on formation Ag NPs and explain the increase in the antimicrobial activity of identified molecules mediated Ag NPs. The extraction protocols, 11% ethanol and 70% methanol, resulted in identification of different constituents of gallic acid+apocynin (M1) and gallic acid+apocynin+quercetin (M2) with respective concentrations. The M1-Ag and M2-Ag NPs exhibit excellent inhibitory activities towards Gram negative bacteria; Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Gram positive bacteria; Staphylococcus epidermidis ATCC 3699 bacterial using in vitro microdilution method. The minimum inhibitory concentration (MIC) values of M1-Ag and M2-Ag NPs were determined to be 7.81 and 6.25ppm for S. epidermidis, respectively. Surprisingly, MIC value for both Ag NPs was indicated to be identical as 9. 37ppm for P. aeruginosa and E., coli.
Collapse
|
|
8 |
78 |
2
|
Karatoprak GŞ, Küpeli Akkol E, Genç Y, Bardakcı H, Yücel Ç, Sobarzo-Sánchez E. Combretastatins: An Overview of Structure, Probable Mechanisms of Action and Potential Applications. Molecules 2020; 25:E2560. [PMID: 32486408 PMCID: PMC7321081 DOI: 10.3390/molecules25112560] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
Combretastatins are a class of closely related stilbenes (combretastatins A), dihydrostilbenes (combretastatins B), phenanthrenes (combretastatins C) and macrocyclic lactones (combretastatins D) found in the bark of Combretum caffrum (Eckl. & Zeyh.) Kuntze, commonly known as the South African bush willow. Some of the compounds in this series have been shown to be among the most potent antitubulin agents known. Due to their structural simplicity many analogs have also been synthesized. Combretastatin A4 phosphate is the most frequently tested compounds in preclinical and clinical trials. It is a water-soluble prodrug that the body can rapidly metabolize to combretastatin A4, which exhibits anti-tumor properties. In addition, in vitro and in vivo studies on combretastatins have determined that these compounds also have antioxidant, anti-inflammatory and antimicrobial effects. Nano-based formulations of natural or synthetic active agents such as combretastatin A4 phosphate exhibit several clear advantages, including improved low water solubility, prolonged circulation, drug targeting properties, enhanced efficiency, as well as fewer side effects. In this review, a synopsis of the recent literature exploring the combretastatins, their potential effects and nanoformulations as lead compounds in clinical applications is provided.
Collapse
|
Review |
5 |
73 |
3
|
Küpeli Akkol E, Tatlı Çankaya I, Şeker Karatoprak G, Carpar E, Sobarzo-Sánchez E, Capasso R. Natural Compounds as Medical Strategies in the Prevention and Treatment of Psychiatric Disorders Seen in Neurological Diseases. Front Pharmacol 2021; 12:669638. [PMID: 34054540 PMCID: PMC8155682 DOI: 10.3389/fphar.2021.669638] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Psychiatric disorders are frequently encountered in many neurological disorders, such as Alzheimer’s and Parkinson diseases along with epilepsy, migraine, essential tremors, and stroke. The most common comorbid diagnoses in neurological diseases are depression and anxiety disorders along with cognitive impairment. Whether the underlying reason is due to common neurochemical mechanisms or loss of previous functioning level, comorbidities are often overlooked. Various treatment options are available, such as pharmacological treatments, cognitive-behavioral therapy, somatic interventions, or electroconvulsive therapy. However oral antidepressant therapy may have some disadvantages, such as interaction with other medications, low tolerability due to side effects, and low efficiency. Natural compounds of plant origin are extensively researched to find a better and safer alternative treatment. Experimental studies have shown that phytochemicals such as alkaloids, terpenes, flavonoids, phenolic acids as well as lipids have significant potential in in vitro and in vivo models of psychiatric disorders. In this review, various efficacy of natural products in in vitro and in vivo studies on neuroprotective and their roles in psychiatric disorders are examined and their neuro-therapeutic potentials are shed light.
Collapse
|
Review |
4 |
51 |
4
|
Yücel Ç, Şeker Karatoprak G, Değim İT. Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. J Microencapsul 2019; 36:180-191. [PMID: 31070486 DOI: 10.1080/02652048.2019.1617363] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
The study was aimed to evaluate the effectiveness of rosmarinic acid (RA) loaded ethosomes (ETHs) and liposomes (LPs) when subjected to the transdermal application. RA-loaded ETHs and LPs were prepared, optimised, and characterised. The ex vivo permeation studies of formulations using mouse abdominal skin were performed. Antioxidant activities and the inhibitory effects of formulations on collagenase and elastase enzymes were measured. Optimised ethosomal formulation (F3) was showed nanometric size range (138 ± 1.11 nm) and greatest entrapment (55 ± 1.80%), was selected for further transdermal permeation studies. Skin permeation profile of the nanoformulations analysed by HPLC revealed an enhanced permeation of ETHs. Transdermal flux of ETHs was found to be higher than RA solution and LPs. Enzyme inhibitions of ETHs were the significant difference found between ETHs and LPs (p < 0.05). ETHs were found to be more effective and successful than LPs. Results suggest that ETHs are more effective than LPs for transdermal delivery of RA.
Collapse
|
|
6 |
46 |
5
|
Genç Y, Bardakci H, Yücel Ç, Karatoprak GŞ, Küpeli Akkol E, Hakan Barak T, Sobarzo-Sánchez E. Oxidative Stress and Marine Carotenoids: Application by Using Nanoformulations. Mar Drugs 2020; 18:md18080423. [PMID: 32823595 PMCID: PMC7459739 DOI: 10.3390/md18080423] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Carotenoids are natural fat-soluble pigments synthesized by plants, algae, fungi and microorganisms. They are responsible for the coloration of different photosynthetic organisms. Although they play a role in photosynthesis, they are also present in non-photosynthetic plant tissues, fungi, and bacteria. These metabolites have mainly been used in food, cosmetics, and the pharmaceutical industry. In addition to their utilization as pigmentation, they have significant therapeutically applications, such as improving immune system and preventing neurodegenerative diseases. Primarily, they have attracted attention due to their antioxidant activity. Several statistical investigations indicated an association between the use of carotenoids in diets and a decreased incidence of cancer types, suggesting the antioxidant properties of these compounds as an important factor in the scope of the studies against oxidative stress. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. Numerous of bioactive compounds such as marine carotenoids have low stability, are poorly absorbed, and own very limited bioavailability. The new technique is nanoencapsulation, which can be used to preserve marine carotenoids and their original properties during processing, storage, improve their physiochemical properties and increase their health-promoting effects. This review aims to describe the role of marine carotenoids, their potential applications and different types of advanced nanoformulations preventing and treating oxidative stress related disorders.
Collapse
|
Review |
5 |
35 |
6
|
Yücel Ç, Karatoprak GŞ, Aktaş Y. Nanoliposomal Resveratrol as a Novel Approach to Treatment of Diabetes Mellitus. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2018; 18:3856-3864. [PMID: 29442719 DOI: 10.1166/jnn.2018.15247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease and the subgroup of DM is called type II which is the most common form. The incidence of type II is increasing worldwide and it focuses on several new approaches to efficiently treatment of diabetes. Resveratrol (RSV) is known to be strong antioxidant and has an insulin-like effect in streptozotocin (STZ)-induced diabetic cells. It plays an active role at treatment of diabetes with reducing the oxidative stress, lowering glucose levels and protection of beta cells which are responsible for insulin secretion. In our study, we prepared two different RSV-loaded nanoliposomes (LPs), characterized in vitro and evaluated efficiencies of LPs on diabetes and related oxidative stress. Release and transport studies of RSV through dialyse membrane and pancreatic beta TC (β TC) cells were investigated from its solution and LPs. Stability studies were performed at two different conditions (4 °C and 25 °C ± 60% relative humidity) for 3 months. Particle size (PS), zeta potential (ZP), polydispersity index (PDI), encapsulation efficiency (EE) and type of the formulations were determined. β TC cell line was used in cell culture studies and cell viability was measured with using 3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) cytotoxicity test. The antidiabetic effects of RSV LPs were investigated on β TC cell induced with glucose and STZ and we evaluated relationship between glucose and insulin concentration before and after incubation with LPs containing RSV. Antioxidant and preventive effects of RSV-loaded LPs against diabetes-associated oxidative stress were determined with superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzyme assay. When all results were evaluated together, these new developed liposomal formulations significantly decreased high glucose levels in diabetic cell groups synchronous with increasing insulin levels and they showed prolonged antioxidant activity against oxidative stress for 24 hours compared to RSV solution.
Collapse
|
|
7 |
20 |
7
|
Pompilio A, Scocchi M, Mangoni ML, Shirooie S, Serio A, Ferreira Garcia da Costa Y, Alves MS, Şeker Karatoprak G, Süntar I, Khan H, Di Bonaventura G. Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms? Crit Rev Microbiol 2023; 49:117-149. [PMID: 35313120 DOI: 10.1080/1040841x.2022.2038082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most human infectious diseases are caused by microorganisms growing as biofilms. These three-dimensional self-organized communities are embedded in a dense matrix allowing microorganisms to persistently inhabit abiotic and biotic surfaces due to increased resistance to both antibiotics and effectors of the immune system. Consequently, there is an urgent need for novel strategies to control biofilm-associated infections. Natural products offer a vast array of chemical structures and possess a wide variety of biological properties; therefore, they have been and continue to be exploited in the search for potential biofilm inhibitors with a specific or multi-locus mechanism of action. This review provides an updated discussion of the major bioactive compounds isolated from several natural sources - such as plants, lichens, algae, microorganisms, animals, and humans - with the potential to inhibit biofilm formation and/or to disperse established biofilms by bacterial pathogens. Despite the very large number of bioactive products, their exact mechanism of action often remains to be clarified and, in some cases, the identity of the active molecule is still unknown. This knowledge gap should be filled thus allowing development of these products not only as novel drugs to combat bacterial biofilms, but also as antibiotic adjuvants to restore the therapeutic efficacy of current antibiotics.
Collapse
|
Review |
2 |
14 |
8
|
Yücel Ç, Karatoprak GŞ, Açıkara ÖB, Akkol EK, Barak TH, Sobarzo-Sánchez E, Aschner M, Shirooie S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13:902551. [PMID: 36133811 PMCID: PMC9483099 DOI: 10.3389/fphar.2022.902551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe), a member of the Zingiberaceae family, is one of the most popular spices worldwide, known since ancient times, and used both as a spice and a medicinal plant. The phenolic compounds found in ginger are predominantly gingerols, shogaols, and paradols. Gingerols are the major phenolic compounds found in fresh ginger and contain mainly 6-gingerol as well as 4-, 5-, 8-, 10-, and 12-gingerols. Gingerols possess a wide array of bioactivities, such as antioxidant and anticancer, among others. Regarding the different array of biological activities and published data on the mechanisms underlying its action, the complex interaction between three key events, including inflammation, oxidative stress, and immunity, appears to contribute to a plethora of pharmacological activities of this compound. Among these, the immunomodulatory properties of these compounds, which attract attention due to their effects on the immune system, have been the focus of many studies. Gingerols can alleviate inflammation given their ability to inhibit the activation of protein kinase B (Akt) and nuclear factor kappa B (NF-κB) signaling pathways, causing a decrease in proinflammatory and an increase in anti-inflammatory cytokines. However, given their low bioavailability, it is necessary to develop new and more effective strategies for treatment with gingerols. In order to overcome this problem, recent studies have addressed new drug delivery systems containing gingerols. In this review, the immunomodulatory activities of gingerol and its underlying mechanisms of action combined with the contributions of developed nanodrug delivery systems to this activity will be examined.
Collapse
|
|
3 |
12 |
9
|
Ceylan D, Aksoy A, Ertekin T, Yay AH, Nisari M, Karatoprak GŞ, Ülger H. The effects of gilaburu ( Viburnum opulus) juice on experimentally induced Ehrlich ascites tumor in mice. J Cancer Res Ther 2018. [PMID: 29516912 DOI: 10.4103/0973-1482.181173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective The aim of study was to investigate anticancer effect of Viburnum opulus (VO) on Ehrlich ascites carcinoma (EAC) bearing mice that treated with different concentrations of VO. Materials and Methods For tumor transplantation; mice were inoculated with 1 × 106 EAC cells intraperitoneally and than divided into five groups (n = 9). Two hours after inoculation; experimental groups were treated daily with VO extract at doses of 1000 mg/kg, 2000 mg/kg, 4000 mg/kg. Results Extracts obtained from gilaburu juice can have hinder effect on tumor cell growth. Conclusion As far as we known, this is the first study about in vivo antitumoral activity of VOon Ehrlich ascites tumor model, and consequently VO extract exhibited anticancer activity against EAC-bearing mice.
Collapse
|
Journal Article |
7 |
12 |
10
|
Şeker Karatoprak G, İlgün S, Koşar M. Phenolic Composition, Anti-Inflammatory, Antioxidant, and Antimicrobial Activities of Alchemilla mollis (Buser) Rothm. Chem Biodivers 2017; 14. [PMID: 28502116 DOI: 10.1002/cbdv.201700150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 11/06/2022]
Abstract
The current study was designed to evaluate the antioxidant, anti-inflammatory and antimicrobial activities of Alchemilla mollis (Buser) Rothm. (Rosaceae) aerial parts extracts. Chemical composition was analyzed by spectrophotometric and chromatographic (HPLC) techniques. The antioxidant properties assessed included DPPH· and ABTS·+ radical scavenging, β-carotene-linoleic acid co-oxidation assay. Antimicrobial activity was evaluated with disc diffusion and micro dilution method. In order to evaluate toxicity of the extracts, with the sulforhodamine B colorimetric assay L929 cell line (mouse fibroblast) was used. The anti-inflammatory activities of the potent antioxidant extracts (methanol, 70% methanol, and water extracts) were determined by measuring the inhibitory effects on NO production and pro-inflammatory cytokine TNF-α levels in lipopolysaccharide stimulated RAW 264.7 cells. 70% methanol and water extracts which were found to be rich in phenolic compounds (184.79 and 172.60 mg GAE/g extract) showed higher antioxidant activity. Luteolin-7-O-glucoside was the main compound in the extracts. Ethyl acetate and 70% methanol extracts showed higher antibacterial activity against Staphylococcus aureus and Salmonella enteritidis with MIC value of 125 μg/ml. 70% methanol extract potentially inhibited the NO and TNF-α production (18.43 μm and 1556.22 pg/ml, respectively, 6 h).
Collapse
|
Journal Article |
8 |
11 |
11
|
Karatoprak GŞ, Göger F, Çelik İ, Budak Ü, Akkol EK, Aschner M. Phytochemical profile, antioxidant, antiproliferative, and enzyme inhibition-docking analyses of Salvia ekimiana Celep & Doğan. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 146:36-47. [PMID: 35210693 PMCID: PMC8863303 DOI: 10.1016/j.sajb.2021.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salvia ekimiana Celep & Doğan is an endemic species of Turkey. To our knowledge, the number of studies on biological activities and phytochemical profiling of this plant is quite limited. Therefore, this study aimed to analyze its activities and phytochemical content in detail. The qualitative-quantitative compositions were determined via spectrophotometric and chromatographic (LC-MS/MS and HPLC) techniques. 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH•) and 2,2'-Azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) radical scavenging and ascorbate-iron (III)-catalyzed phospholipid peroxidation experiments were performed to measure antioxidant capacity. Hyaluronidase, collagenase, and elastase enzyme inhibition tests were determined in vitro using a spectrophotometer. Antiproliferative activity was evaluated in human lung cancer (A549) and human breast cancer (MCF7) cells. The murine fibroblast (L929) cell line was used as a normal control cell. While the subextract rich in phenolic compounds was n-butanol extract, rosmarinic acid was defined as the main secondary metabolite. The highest antioxidant activity observed for the n-butanol subextract included the following: DPPH• EC50: 0.08±0.00 mg/mL, TEAC/ABTS: 2.19±0.09 mmol/L Trolox, MDA EC50: 0.42±0.03 mg/mL. The methanolic extract, the ethyl acetate, and n-butanol subextracts displayed significant inhibitory activity on collagenase, while the other subextracts did not show any inhibitory activity on hyaluronidase and elastase. Due to strong interactions with their active sites, molecular docking showed luteolin 7-glucuronide, apigenin 7-glucuronide, and luteolin 5-glucoside had the highest binding affinity with target enzymes. The chloroform subextract showed significant cytotoxicity in all cell lines. These novel results revealed that S. ekimiana has strong antioxidant, collagenase enzyme inhibitory, and cytotoxic potential.
Collapse
|
research-article |
3 |
9 |
12
|
Farooqi AA, Attar R, Yaylim I, Qureshi MZ, Todorovska M, Karatoprak GŞ, Najafi S, Sabitaliyevich UY, Zhenisovna TG, De Sousa DP, Lin X. Piperlongumine as anticancer agent: The story so far about killing many birds with one stone. Cell Mol Biol (Noisy-le-grand) 2018. [DOI: 10.14715/cmb/2018.64.11.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
|
7 |
7 |
13
|
Karatoprak GŞ, İlgün S, Koşar M. Antioxidant Properties and Phenolic Composition of Salvia virgata Jacq. Turk J Pharm Sci 2016. [DOI: 10.5505/tjps.2016.98608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
|
9 |
7 |
14
|
Şeker Karatoprak G, Göger F, Yerer MB, Koşar M. Chemical composition and biological investigation of Pelargonium endlicherianum root extracts. PHARMACEUTICAL BIOLOGY 2017; 55:1608-1618. [PMID: 28407721 PMCID: PMC7012040 DOI: 10.1080/13880209.2017.1314511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 03/09/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Pelargonium endlicherianum Fenzl. (Geraniaceae) roots and flowers are traditionally used in Turkey as a decoction treatment against intestinal parasites. Neither the chemical composition nor the potential bioactivity of the plant roots has been studied before. OBJECTIVES The phenolic content and effects of P. endlicherianum root extracts on antioxidant enzyme levels on A549 cells were studied for the first time. MATERIALS AND METHODS The chemical composition was analyzed via spectrophotometric and chromatographic (HPLC MS/MS and HPLC) techniques. The antioxidant activity was determined at different concentrations ranging from 0.001 to 2 mg/mL using DPPH• and ABTS•+ radical scavenging activity, β-carotene-linoleic acid co-oxidation assay, protection of 2-deoxyribose and bovine brain-derived phospholipids against a hydroxyl radical-mediated degradation assay. Glutathione peroxidase and superoxide dismutase activities were also studied as well as the effects of the extracts on nitric oxide levels on IL-1β stimulated A549 cells. RESULTS The key parameters for the most active ethyl acetate extract included the following: DPPH• IC50: 0.23 mg/mL, TEAC/ABTS: 2.17 mmol/L Trolox, reduction: 0.41 mmol/g AsscE, and protection of lipid peroxidation IC50: 0.05 mg/mL. Furthermore, the ethyl acetate extract increased the SOD level significantly compared to control group (4.48 U/mL) at concentrations of 100 and 200 μg/mL SOD, 5.50 and 5.67 U/mL, respectively. Apocynin was identified as the major component, and the ethyl acetate fraction was found to be rich in phenolic compounds. DISCUSSION AND CONCLUSION Pelargonium endlicherianum root extracts displayed antioxidant activity and increased the antioxidant enzyme levels in IL-1β stimulated A549 cells, while decreasing the NO levels.
Collapse
|
research-article |
8 |
7 |
15
|
Şeker Karatoprak G, Yücel Aşık Ç, Çakır A, Köngül Şafak E. In vitro pharmacological screening of antioxidant, cytotoxic and enzyme inhibitory activities of Citrus aurantifolia Linn. Dried fruit extract. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:991-1000. [PMID: 31928230 DOI: 10.1080/09603123.2020.1714558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
The Lime Basra (Citrus aurantifolia Linn., Rutaceae) plant also known as dried lime, and Limoo Omani, is used both as a spice in meals and as an herbal tea in the treatment of some diseases in the Middle East. It was aimed to determine the biological activity screening of the 70% methanol, ethanol extracts and infusion which were prepared from dried fruits. 1,1-diphenyl-2-picrylhydrazyl (DPPH●) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+●) radical scavenging activities, ferric reducing activity, cytotoxicity on A 549, MCF 7 and L929 cell lines and α-amylase inhibitory effects were determined. According to the results, 70% methanol extract was more active in antioxidant activity tests and ethanol extract was more active in cytotoxicity tests. Interestingly both 70% methanol and ethanol extracts were found to have potent hypoglycemic activity. The present findings shed light on the fact that it is important to research and scientifically evaluate plants with traditional medicinal use.
Collapse
|
|
4 |
6 |
16
|
İlgün S, Karatoprak GŞ, Polat DÇ, Şafak EK, Yıldız G, Küpeli Akkol E, Sobarzo-Sánchez E. Phytochemical Composition and Biological Activities of Arctium minus (Hill) Bernh.: A Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent. Antioxidants (Basel) 2022; 11:antiox11101852. [PMID: 36290576 PMCID: PMC9598467 DOI: 10.3390/antiox11101852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Arctium minus (Hill) Bernh. (Asteraceae), which has a wide distribution area in Turkey, is a medicinally important plant. Eighty percent methanol extracts of the leaf, flower head, and root parts of A. minus were prepared and their sub-fractions were obtained. Spectrophotometric and chromatographic (high-performance liquid chromatography) techniques were used to assess the phytochemical composition. The extracts were evaluated for antioxidant activity by diphenyl-2-picrylhydrazil radical (DPPH●), 2,2′-Azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS●+) radical scavenging, and β-carotene linoleic acid bleaching assays. Furthermore, the extracts were subjected to α-amylase, α-glucosidase, lipoxygenase, and tyrosinase enzyme inhibition tests. The cytotoxic effects of extracts were investigated on MCF-7 and MDA-MB-231 breast cancer cell lines. The richest extract in terms of phenolic compounds was identified as the ethyl acetate sub-fraction of the root extract (364.37 ± 7.18 mgGAE/gextact). Furthermore, chlorogenic acid (8.855 ± 0.175%) and rutin (8.359 ± 0.125%) were identified as the primary components in the leaves’ ethyl acetate sub-fraction. According to all methods, it was observed that the extracts with the highest antioxidant activity were the flower and leaf ethyl acetate fractions. Additionally, ABTS radical scavenging activity of roots’ ethyl acetate sub-fraction (2.51 ± 0.09 mmol/L Trolox) was observed to be as effective as that of flower and leaf ethyl acetate fractions at 0.5 mg/mL. In the β-carotene linoleic acid bleaching assay, leaves’ methanol extract showed the highest antioxidant capacity (1422.47 ± 76.85) at 30 min. The enzyme activity data showed that α-glucosidase enzyme inhibition of leaf dichloromethane extract was moderately high, with an 87.12 ± 8.06% inhibition value. Lipoxygenase enzyme inhibition was weakly detected in all sub-fractions. Leaf methanol extract, leaf butanol, and root ethyl acetate sub-fractions showed 99% tyrosinase enzyme inhibition. Finally, it was discovered that dichloromethane extracts of leaves, roots, and flowers had high cytotoxic effects on the MDA-MB-231 cell line, with IC50 values of 21.39 ± 2.43, 13.41 ± 2.37, and 10.80 ± 1.26 µg/mL, respectively. The evaluation of the plant extracts in terms of several bioactivity tests revealed extremely positive outcomes. The data of this study, in which all parts of the plant were investigated in detail for the first time, offer promising results for future research.
Collapse
|
|
3 |
5 |
17
|
Baldemir A, Gökşen N, Ildız N, Karatoprak GŞ, Koşar M. Phytochemical Profile and Biological Activities of Helianthemum canum
l. baumg.
from Turkey. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 11/09/2022]
|
|
8 |
4 |
18
|
Acıkara OB, Karatoprak GŞ, Yücel Ç, Akkol EK, Sobarzo-Sánchez E, Khayatkashani M, Kamal MA, Kashani HRK. A Critical Analysis of Quercetin as the Attractive Target for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:795-817. [PMID: 34872486 DOI: 10.2174/1871527320666211206122407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Parkinson's Disease (PD) is a multifaceted disorder with various factors suggested to play a synergistic pathophysiological role, such as oxidative stress, autophagy, pro-inflammatory events, and neurotransmitter abnormalities. While it is crucial to discover new treatments in addition to preventing PD, recent studies have focused on determining whether nutraceuticals will exert neuroprotective actions and pharmacological functions in PD. Quercetin, a flavonol-type flavonoid, is found in many fruits and vegetables and is recognised as a complementary therapy for PD. The neuroprotective effect of quercetin is directly associated with its antioxidant activity, in addition to stimulating cellular defence against oxidative stress. Other related mechanisms are activating Sirtuins (SIRT1) and inducing autophagy, in addition to induction of Nrf2-ARE and Paraoxonase 2 (PON2). Quercetin, whose neuroprotective activity has been demonstrated in many studies, unfortunately, has a disadvantage because of its poor water solubility, chemical instability, and low oral bioavailability. It has been reported that the disadvantages of quercetin have been eliminated with nanocarriers loaded with quercetin. The role of nanotechnology and nanodelivery systems in reducing oxidative stress during PD provides an indisputable advantage. Accordingly, the present review aims to shed light on quercetin's beneficial effects and underlying mechanisms in neuroprotection. In addition, the contribution of nanodelivery systems to the neuroprotective effect of quercetin is also discussed.
Collapse
|
Review |
3 |
3 |
19
|
Şeker Karatoprak G, Dumlupınar B, Celep E, Kurt Celep I, Küpeli Akkol E, Sobarzo-Sánchez E. A comprehensive review on the potential of coumarin and related derivatives as multi-target therapeutic agents in the management of gynecological cancers. Front Pharmacol 2024; 15:1423480. [PMID: 39364049 PMCID: PMC11447453 DOI: 10.3389/fphar.2024.1423480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Current treatments for gynecological cancers include surgery, radiotherapy, and chemotherapy. However, these treatments often have significant side effects. Phytochemicals, natural compounds derived from plants, offer promising anticancer properties. Coumarins, a class of benzopyrone compounds found in various plants like tonka beans, exhibit notable antitumor effects. These compounds induce cell apoptosis, target PI3K/Akt/mTOR signaling pathways, inhibit carbonic anhydrase, and disrupt microtubules. Additionally, they inhibit tumor multidrug resistance and angiogenesis and regulate reactive oxygen species. Specific coumarin derivatives, such as auraptene, praeruptorin, osthole, and scopoletin, show anti-invasive, anti-migratory, and antiproliferative activities by arresting the cell cycle and inducing apoptosis. They also inhibit metalloproteinases-2 and -9, reducing tumor cell migration, invasion, and metastasis. These compounds can sensitize tumor cells to radiotherapy and chemotherapy. Synthetic coumarin derivatives also demonstrate potent antitumor and anticancer activities with minimal side effects. Given their diverse mechanisms of action and minimal side effects, coumarin-class phytochemicals hold significant potential as therapeutic agents in gynecological cancers, potentially improving treatment outcomes and reducing side effects. This review will aid in the synthesis and development of novel coumarin-based drugs for these cancers.
Collapse
|
Review |
1 |
3 |
20
|
Yücel Ç, Şeker Karatoprak G, Yalçıntaş S, Eren Böncü T. Ethosomal (-)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:491-502. [PMID: 35707628 PMCID: PMC9174841 DOI: 10.3762/bjnano.13.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Controlled release systems containing natural compounds have been successfully applied in cosmetics as antiaging products to enhance the penetration of active compounds through the skin. In this study, we aimed to develop novel ethosomal formulations containing a potent antioxidant, epigallocatechin-3-gallate (EGCG), and to evaluate their potential for use in cosmetics by determining their antioxidant and antiaging effects. Ethosomes (ETHs) were prepared via mechanical dispersion and characterized in vitro in terms of particle size (PS), zeta potential (ZP), polydispersity index (PDI), encapsulation efficiency percentage (EE%), and in vitro release. The best ETH formulation was used to prepare the ethosome-based gel (ETHG) by using Carbopol 980 as a gelling agent at a ratio of 1:1 (v/v). The gel formulation was evaluated regarding organoleptic properties, pH values, and viscosity. Stability studies were conducted for three months and changes in characterization parameters and residual EGCG content of ETHs were examined. Besides, for ETHG, organoleptic properties, pH values (every two weeks), and viscosity (first and twelfth week) were determined for three months. The 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to test the cytotoxicity of the formulations and different EGCG solutions on the L929 cell line. The cell permeation properties and inhibitory effects of ETHs and ETHGs on collagenase and elastase enzymes were investigated compared to those of the solution form. Within the scope of antioxidant activity studies, 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•) radical scavenging and β-carotene/linoleic acid co-oxidation inhibitory effects were carried out. The optimized EGCG-loaded ETHs (F3) were within the nanoscale range (238 ± 1.10 nm). The highest encapsulation efficiency and in vitro release values were 51.7 ± 1.15% and 50.8 ± 1.70%, respectively. The ETHG was successfully formulated with F3-coded ETHs and the cytotoxicity test revealed that the formulations and the EGCG solution at different concentrations were nontoxic. In terms of cell permeability, enzyme inhibition, and antioxidant activity, the ethosomal formulations yielded better results compared to the EGCG solution. It was observed that the formulations had a long-term effect due to the stability of EGCG. The findings of the study underline the potential of antioxidant and antiaging effects of the developed ethosomal formulations for use in the cosmetic field.
Collapse
|
research-article |
3 |
2 |
21
|
Cumaoğlu A, Karatoprak GŞ, Yerer MB, Koşar M. Anti-inflammatory Effects of Pelargonium endlicherianum Fenzl. Extracts in Lipopolysaccharide-stimulated Macrophages. Turk J Pharm Sci 2018; 15:107-115. [PMID: 32454648 DOI: 10.4274/tjps.86580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022]
Abstract
Objectives This study was designed to investigate the anti-inflammatory effects of Pelargonium endlicherianum Fenzl. and Pelargonium quercetorum Agnew. root extracts compared with the effects of commercial Pelargonium sidoides root extract by production of pro-inflammatory substances and inflammatory signal transduction on LPS-stimulated macrophages. Materials and Methods To measure the effects of root extracts on pro-inflammatory mediators, we used the following methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (cell viability or cytotoxcicity), enzyme-linked immunosorbent assay (cytokine production, prostoglandin E2 production), reverse transcriptase-polymerase chain reaction (COX-2, iNOS mRNA), Western blotting analysis [MAPK activation and NF-κB (p65) traslocation] and the Griess reaction (NO production). Results Stimulation of the RAW 264.7 cells with LPS (0.5 µg/mL, 6 hrs treatment) caused an elevated production of pro-inflammatory cytokines (TNF-α and IL-6), increased mRNA expression of COX-2 and inducible NO synthase with release of PGE2 and NO, activated MAPK (phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, P38) signalling pathway, and nuclear translocation of NF-κB (p65), which were markedly inhibited by the pre-treatment with 11% ethanol and 70% methanol root extracts of P. endlicherianum without causing any cytotoxic effects. P. quercetorum root extract only decreased TNF-α production and P. sidoides root extract alleviated P38/MAPK activation and COX-2 mRNA expression with PGE2 production. Conclusion Our data indicate that especially 11% ethanol root extract of P. endlicherianum targets the inflammatory response of macrophages via inhibition of COX-2, IL-6, and TNF-α through inactivation of the NF-κB signalling pathway, supporting the pharmacologic basis of P. endlicherianum as a traditional herbal medicine for the treatment of inflammation and its associated disorders.
Collapse
|
|
7 |
1 |
22
|
Dumlupınar B, Karatoprak GŞ, Fırat M, Akkol EK. Appraisal of the antimicrobial and cytotoxic potentials of nanoparticles biosynthesized from the extracts of Pelargonium quercetorum Agnew. Front Biosci (Landmark Ed) 2021; 26:1089-1096. [PMID: 34856755 DOI: 10.52586/5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022]
Abstract
Aim: The aim of this study is the synthesis of nanosilver particles (AgNPs) from Pelargonium quercetorum Agnew. (Geraniaceae) and evaluation of the antimicrobial and the cytotoxic potential of AgNPs. Methods: The synthesized AgNPs were evaluated for antimicrobial and anticancer efficacy using the minimum inhibition concentration method and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide) assay. Results: The AgNPs inhibited approximately 90% the growth of gram-positive Staphylococcus aureus and gram-negative Esherichia coli and yeast Candida albicans pathogens at a concentration of 500 μg/mL. The synthesized AgNPs showed excellent toxicity in MCF-7 cells, and specifically, pq70 AgNP inhibited the growth of MCF-7 cells by 52% at a concentration of 3.125 μg/mL. Conclusion: It was determined that the AgNPs, which had been synthesized from extracts that contained a high phenolic composition, were smaller in size, and showed high anticancer and antimicrobial properties.
Collapse
|
|
4 |
|
23
|
Uçar S, Ülger H, Al Ö, Nisari M, Şeker Karatoprak G, Cantürk Tan F, Farooqi AA, Yılmaz S. Assessment of in vivo and in vitro anti-tumoral effects of Lycium barbarum extract on Ehrlich ascites tumor cells: histopathology, DNA damage and AgNOR. Cell Mol Biol (Noisy-le-grand) 2024; 70:49-57. [PMID: 39605124 DOI: 10.14715/cmb/2024.70.10.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 11/29/2024]
Abstract
Natural product research has an exciting and glorious past that spans over millennia. Accordingly, natural products mediated inhibition of carcinogenesis by mechanistic modulation of deregulated signaling pathways has revolutionized the field of translational oncology. Lycium barbarum has antioxidant and anticarcinogenic effects. The antioxidant activity of the extract and its effect on Ehrlich ascites tumor (EAT) were investigated using in vivo and in vitro techniques. EAT cells were injected into Balb/C mice to create stock mice. EAT cells withdrawn from stock mice were used in equal volumes in the studies. The in vivo study consisted of control and treatment groups (200 mg/kg fractions above and below 50 kDa of extracts). The liver tissues were evaluated for histopathological (H&E), DNA damage (Comet assay), and proliferation (AgNOR staining) status. The in vitro study consisted of control and treatment groups (1500 and 2000 µg/ml of extracts). Cell viability and apoptosis were evaluated. As a result, a decrease in the adhesion of EAT cells, and decreased DNA damage were observed in mice intraperitoneally administered with the fractions of Lycium barbarum. The extracts both below and above 50 kDa increased apoptotic death in cancer cells. The extract above 50 kDa was more active than those below 50 kDa. Lycium barbarum consumption may be effectual in preventing cancer formation and slowing the progression of cancer.
Collapse
|
|
1 |
|
24
|
Akkol EK, Karatoprak GŞ, Carpar E, Hussain Y, Khan H, Aschner M. Effects of Natural Products on Neuromuscular Junction. Curr Neuropharmacol 2021; 20:594-610. [PMID: 34561984 DOI: 10.2174/1570159x19666210924092627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/05/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
Neuromuscular junction (NMJ) disorders result from damage, malfunction or absence of one or more key proteins involved in neuromuscular transmission, comprising a wide range of disorders. The most common pathology is antibody-mediated or downregulation of ion channels or receptors, resulting in Lambert-Eaton myasthenic syndrome, myasthenia gravis, and acquired neuromyotonia (Isaac's syndrome), and rarely congenital myasthenic syndromes caused by mutations in NMJ proteins. A wide range of symptomatic treatments, immunomodulating therapies, or immunosuppressive drugs have been used to treat NMJ diseases. Future research must be directed at better understanding of the pathogenesis of these diseases, and developing novel disease-specific treatments. Numerous secondary metabolites, especially alkaloids isolated from plants have been used to treat NMJ diseases in traditional and clinical practices. An ethnopharmacological approach has provided leads for identifying new treatment for NMJ diseases. In this review, we performed a literature survey in Pubmed, Science Direct, and Google Scholar to gather information on drug discovery from plant sources for NMJ disease treatments. To date, most research has focused on the effect of herbal remedies on cholinesterase inhibitory and antioxidant activities. This review provides leads for identifying potential new drugs from plant sources for the treatment of NMJ diseases.
Collapse
|
|
4 |
|
25
|
İlgün S, Şeker Karatoprak G, Çiçek Polat D, Köngül Şafak E, Yücel Ç, İnce U, Uvat HÖ, Küpeli Akkol E. Assessment of Phenolic Composition, Antioxidant Potential, Antimicrobial Properties, and Antidiabetic Activity in Extracts Obtained from Schinus molle L. Leaves and Fruits. FRONT BIOSCI-LANDMRK 2023; 28:353. [PMID: 38179764 DOI: 10.31083/j.fbl2812353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND The current research centers on exploring the antioxidant, antimicrobial, and antidiabetic features of Schinus molle L. grown in Turkey. METHODS Quantitative analysis of chlorogenic acid, caffeic acid, and hyperoside levels in leaf, ripe fruit, and raw fruit extracts was conducted using High-Performance Liquid Chromatography (HPLC) in a 70% methanol-water mixture. Among the extracts, the methanol extract from ripe fruits displayed the highest chlorogenic acid concentration, measuring at 2.040% ± 0.172% standard deviation (SD). Moreover, analysis of their total phenolic and flavonoid contents was carried out. Antioxidant power was assessed through different chemical assays, together with their antimicrobial and anti-diabetic properties. RESULTS The results of DPPH (2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and reducing power assays showed that leaf and ripe fruit alcoholic extract exhibited peak performance. While the MIC ( minimum inhibitory concentration) values of the extracts were determined to have moderate bactericidal effects on Staphylococcus aureus, Escherichia coli, and Candida albicans it was observed that none of the extracts displayed biofilm inhibition. The inhibition percentage of α-glucosidase enzyme activity for the methanol extract of raw fruits was determined to be 99.11 ± 1.61. In diabetic β-TC cells, glucose level was measured as 129 ± 2.03 mg/dL, and insulin amount was measured as 37.2 ± 0.02 mg/dL. CONCLUSIONS The findings of our study seem to have important implications for future research, as Schinus molle L. may be a potential pharmaceutical candidate with important pharmacological activities.
Collapse
|
|
2 |
|