1
|
Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RRE. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog 2015; 7:29. [PMID: 26561503 PMCID: PMC4641401 DOI: 10.1186/s13099-015-0076-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic inflammatory diseases of the intestine impart a significant and negative impact on the health and well-being of human and non-human mammalian animals. Understanding the underlying mechanisms of inflammatory disease is mandatory to develop effective treatment and prevention strategies. As inflammatory disease etiologies are multifactorial, the use of appropriate animal models and associated metrics of disease are essential. In this regard, animal models used alone or in combination to study acute and chronic inflammatory disease of the mammalian intestine paired with commonly used inflammation-inducing agents are reviewed. This includes both chemical and biological incitants of inflammation, and both non-mammalian (i.e. nematodes, insects, and fish) and mammalian (i.e. rodents, rabbits, pigs, ruminants, dogs, and non-human primates) models of intestinal inflammation including germ-free, gnotobiotic, as well as surgical, and genetically modified animals. Importantly, chemical and biological incitants induce inflammation via a multitude of mechanisms, and intestinal inflammation and injury can vary greatly according to the incitant and animal model used, allowing studies to ascertain both long-term and short-term effects of inflammation. Thus, researchers and clinicians should be aware of the relative strengths and limitations of the various animal models used to study acute and chronic inflammatory diseases of the mammalian intestine, and the scope and relevance of outcomes achievable based on this knowledge. The ability to induce inflammation to mimic common human diseases is an important factor of a successful animal model, however other mechanisms of disease such as the amount of infective agent to induce disease, invasion mechanisms, and the effect various physiologic changes can have on inducing damage are also important features. In many cases, the use of multiple animal models in combination with both chemical and biological incitants is necessary to answer the specific question being addressed regarding intestinal disease. Some incitants can induce acute responses in certain animal models while others can be used to induce chronic responses; this review aims to illustrate the strengths and weaknesses in each animal model and to guide the choice of an appropriate acute or chronic incitant to facilitate intestinal disease.
Collapse
|
Review |
10 |
143 |
2
|
Kalischuk LD, Inglis GD, Buret AG. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts. Gut Pathog 2009; 1:2. [PMID: 19338680 PMCID: PMC2653720 DOI: 10.1186/1757-4749-1-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 02/03/2009] [Indexed: 02/08/2023] Open
Abstract
Background Campylobacter enteritis represents a risk factor for the development of inflammatory bowel disease (IBD) via unknown mechanisms. As IBD patients exhibit inflammatory responses to their commensal intestinal microflora, factors that induce translocation of commensal bacteria across the intestinal epithelium may contribute to IBD pathogenesis. This study sought to determine whether Campylobacter induces translocation of non-invasive intestinal bacteria, and characterize underlying mechanisms. Methods Mice were infected with C. jejuni and translocation of intestinal bacteria was assessed by quantitative bacterial culture of mesenteric lymph nodes (MLNs), liver, and spleen. To examine mechanisms of Campylobacter-induced bacterial translocation, transwell-grown T84 monolayers were inoculated with non-invasive Escherichia coli HB101 ± wild-type Campylobacter or invasion-defective mutants, and bacterial internalization and translocation were measured. Epithelial permeability was assessed by measuring flux of a 3 kDa dextran probe. The role of lipid rafts was assessed by cholesterol depletion and caveolin co-localization. Results C. jejuni 81–176 induced translocation of commensal intestinal bacteria to the MLNs, liver, and spleen of infected mice. In T84 monolayers, Campylobacter-induced internalization and translocation of E. coli occurred via a transcellular pathway, without increasing epithelial permeability, and was blocked by depletion of epithelial plasma membrane cholesterol. Invasion-defective mutants and Campylobacter-conditioned cell culture medium also induced E. coli translocation, indicating that C. jejuni does not directly 'shuttle' bacteria into enterocytes. In C. jejuni-treated monolayers, translocating E. coli associated with lipid rafts, and this phenomenon was blocked by cholesterol depletion. Conclusion Campylobacter, regardless of its own invasiveness, promotes the translocation of non-invasive bacteria across the intestinal epithelium via a lipid raft-mediated transcellular process.
Collapse
|
Journal Article |
16 |
120 |
3
|
Inglis GD, Kalischuk LD. Use of PCR for direct detection of Campylobacter species in bovine feces. Appl Environ Microbiol 2003; 69:3435-47. [PMID: 12788747 PMCID: PMC161499 DOI: 10.1128/aem.69.6.3435-3447.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study reports on the use of PCR to directly detect and distinguish Campylobacter species in bovine feces without enrichment. Inhibitors present in feces are a major obstacle to using PCR to detect microorganisms. The QIAamp DNA stool minikit was found to be an efficacious extraction method, as determined by the positive amplification of internal control DNA added to bovine feces before extraction. With nested or seminested multiplex PCR, Campylobacter coli, C. fetus, C. hyointestinalis, and C. jejuni were detected in all fecal samples inoculated at approximately 10(4) CFU g(-1), and 50 to 83% of the samples inoculated at approximately 10(3) CFU g(-1) were positive. At approximately 10(2) CFU g(-1), C. fetus, C. hyointestinalis, and C. jejuni (17 to 50% of the samples) but not C. coli were detected by PCR. From uninoculated bovine feces, a total of 198 arbitrarily selected isolates of Campylobacter were recovered on four commonly used isolation media incubated at three temperatures. The most frequently isolated taxa were C. jejuni (152 isolates) and C. lanienae (42 isolates), but isolates of C. fetus subsp. fetus, Arcobacter butzleri, and A. skirrowii also were recovered (</=2 isolates per taxon). Considerable variability was observed in the frequency of isolation of campylobacters among the four media and three incubation temperatures tested. With genus-specific primers, Campylobacter DNA was detected in 75% of the fecal samples, representing an 8% increase in sensitivity relative to that obtained with microbiological isolation across the four media and three incubation temperatures tested. With nested primers, C. jejuni and C. lanienae were detected in 25 and 67% of the samples, respectively. In no instance was DNA from either C. coli, C. fetus, or C. hyointestinalis detected in uninoculated bovine feces. PCR was more sensitive than isolation on microbiological media for detecting C. lanienae (17%) but not C. jejuni. Campylobacters are a diverse and fastidious group of bacteria, and the development of direct PCR not only will increase the understanding of Campylobacter species diversity and their frequency of occurrence in feces but also will enhance the knowledge of their role in the gastrointestinal tract of livestock and of the factors that influence shedding.
Collapse
|
research-article |
22 |
114 |
4
|
Inglis GD, Kalischuk LD. Direct quantification of Campylobacter jejuni and Campylobacter lanienae in feces of cattle by real-time quantitative PCR. Appl Environ Microbiol 2004; 70:2296-306. [PMID: 15066825 PMCID: PMC383034 DOI: 10.1128/aem.70.4.2296-2306.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Campylobacter species are fastidious to culture, and the ability to directly quantify biomass in microbiologically complex substrates using real-time quantitative (RTQ) PCR may enhance our understanding of their biology and facilitate the development of efficacious mitigation strategies. This study reports the use of nested RTQ-PCR to directly quantify Campylobacter jejuni and Campylobacter lanienae in cattle feces. For C. jejuni, the single-copy mapA gene was selected. For C. lanienae, the three-copy 16S rRNA gene was targeted. RTQ-PCR primers were tested alone or they were nested with species-specific primers, and amplification products were detected using the intercalating dye SYBR Green. Nesting did not increase the specificity or sensitivity of C. jejuni quantification, and the limit of quantification was 19 to 25 genome copies ( approximately 3 x 10(3) CFU/g of feces). In contrast, nested RTQ-PCR was necessary to confer specificity on C. lanienae by targeting the 16S rRNA gene. The limit of quantification was 1.8 genome copies ( approximately 250 CFU/g of feces), and there was no discernible difference between the two C. lanienae secondary primer sets evaluated. Detection and quantification of C. jejuni in naturally infested cattle feces by RTQ-PCR were comparable to the results of culture-based methods. In contrast, culturing did not detect C. lanienae in 6 of 10 fecal samples positive for the bacterium and substantially underestimated cell densities relative to nested RTQ-PCR. The results of this study illustrate that RTQ-PCR can be used to directly quantify campylobacters, including very fastidious species, in a microbiologically and chemically complex substrate. Furthermore, targeting of a multicopy universal gene provided highly sensitive quantification of C. lanienae, but nested RTQ-PCR was necessary to confer specificity. This method will facilitate subsequent studies to elucidate the impact of this group of bacteria within the gastrointestinal tracts of livestock and studies of the factors that influence colonization success and shedding.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
73 |
5
|
Abstract
AIMS To determine the prevalence of chronic shedding of Campylobacter species by beef cattle, a longitudinal study of shedding patterns was conducted in a cohort of 60 beef steers over a 4-month period. METHODS AND RESULTS Steers were maintained in a simulated feedlot setting but individually in pens to minimize transmission among animals. At each collection time, campylobacters in faeces were detected using conventional PCR. In addition, quantities of Campylobacter jejuni and C. lanienae in faeces were measured using real-time quantitative (RTQ) PCR. All of the steers tested shed Campylobacter species during the course of the study, and overall, 90% of the 299 samples tested were positive for Campylobacter DNA. The majority of the animals (86%) shed campylobacters at >/=4 sample times. The most prevalent taxon detected in bovine faeces was C. lanienae (56% of samples) followed by C. jejuni (13%), C. hyointestinalis (8%), and C. fetus (2%). No C. coli was detected, and 13% of the faecal samples contained two or more of the above species. Seven (12%) and 34 (57%) animals shed C. jejuni and C. lanienae at >/=3 sample times, respectively. For both C. lanienae and C. jejuni, a substantial number of cells were detected in faeces using RTQ-PCR; 27% of the samples positive for C. jejuni contained populations >10(4) cells g(-1) (maximum of 5 x 10(5) cells g(-1)), and 44% of samples positive for C. lanienae possessed populations >10(6) cells g(-1) (maximum of 4 x 10(8) cells g(-1)). A significant correlation was observed between shedding of C. lanienae and the severity of liver abscesses. In 27% of the samples, an amplicon was obtained for genus-specific but not for the species-specific primers. Sequencing of the partial 16S rRNA gene suggested the presence of at least two undescribed Campylobacter species but this has yet to be confirmed. CONCLUSIONS A high percentage of feedlot cattle shed large quantities of Campylobacter species in their faeces over a protracted period of time (ca 112 days). SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study of longitudinal shedding patterns of campylobacters in beef cattle using PCR-detection methods. In addition, this is the first use of RTQ-PCR to directly quantify C. jejuni or C. lanienae in faeces. The results of the study show that a large number of cattle (>85%) chronically shed campylobacters in feedlots.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
60 |
6
|
Brassard J, Gagné MJ, Lamoureux L, Inglis GD, Leblanc D, Houde A. Molecular detection of bovine and porcine Torque teno virus in plasma and feces. Vet Microbiol 2007; 126:271-6. [PMID: 17723280 DOI: 10.1016/j.vetmic.2007.07.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/06/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
Torque teno virus (TTV) is frequently detected in humans, livestock and some companion animals. Very little is known about presence of TTV in Canadian livestock and the goal of this study was to evaluate the presence of TTV in swine and cattle using molecular tools. TTV DNA was detected and confirmed by sequencing in the plasma of 90.5% and in the feces of 60.3% of the animals tested in a single swine herd as well as 80.9% and 1.1% in the plasma of individuals from general Quebec swine and cattle populations, respectively. The impact of the TTV presence in livestock population for the agri-food chain should be further investigated.
Collapse
|
Journal Article |
18 |
58 |
7
|
Kalischuk LD, Inglis GD. Comparative genotypic and pathogenic examination of Campylobacter concisus isolates from diarrheic and non-diarrheic humans. BMC Microbiol 2011; 11:53. [PMID: 21406111 PMCID: PMC3068073 DOI: 10.1186/1471-2180-11-53] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/15/2011] [Indexed: 12/13/2022] Open
Abstract
Background Campylobacter concisus is an emerging enteric pathogen, yet it is commonly isolated from feces and the oral cavities of healthy individuals. This genetically complex species is comprised of several distinct genomospecies which may vary in pathogenic potential. Results We compared pathogenic and genotypic properties of C. concisus fecal isolates from diarrheic and healthy humans residing in the same geographic region. Analysis of amplified fragment length polymorphism (AFLP) profiles delineated two main clusters. Isolates assigned to AFLP cluster 1 belonged to genomospecies A (based on genomospecies-specific differences in the 23S rRNA gene) and were predominantly isolated from healthy individuals. This cluster also contained a reference oral strain. Isolates assigned to this cluster induced greater expression of epithelial IL-8 mRNA and more frequently contained genes coding for the zonnula occludins toxin and the S-layer RTX. Furthermore, isolates from healthy individuals induced greater apoptotic DNA fragmentation and increased metabolic activity than those from diarrheic individuals, and isolates assigned to genomospecies A (of which the majority were from healthy individuals) exhibited higher haemolytic activity compared to genomospecies B isolates. In contrast, AFLP cluster 2 was predominated by isolates belonging to genomospecies B and those from diarrheic individuals. Isolates from this cluster displayed greater mean epithelial invasion and translocation than cluster 1 isolates. Conclusion Two main genetically distinct clusters (i.e., genomospecies) were identified among C. concisus fecal isolates from healthy and diarrheic individuals. Strains within these clusters differed with respect to clinical presentation and pathogenic properties, supporting the hypothesis that pathogenic potential varies between genomospecies. ALFP cluster 2 isolates were predominantly from diarrheic patients, and exhibited higher levels of epithelial invasion and translocation, consistent with known roles for these factors in diarrhoeal disease. Conversely, isolates from healthy humans and AFLP cluster 1 or genomospecies A (which were predominantly isolated from healthy humans) exhibited increased haemolytic ability, apoptotic DNA fragmentation, IL-8 induction, and/or carriage of toxin genes. Given that this cluster contains an oral reference strain, it is possible that some of the AFLP cluster 1 isolates are periodontal pathogens and may cause disease, albeit via a different mechanism than those from AFLP cluster 2.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
54 |
8
|
Inglis GD, McAllister TA, Busz HW, Yanke LJ, Morck DW, Olson ME, Read RR. Effects of subtherapeutic administration of antimicrobial agents to beef cattle on the prevalence of antimicrobial resistance in Campylobacter jejuni and Campylobacter hyointestinalis. Appl Environ Microbiol 2005; 71:3872-81. [PMID: 16000800 PMCID: PMC1169002 DOI: 10.1128/aem.71.7.3872-3881.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influence of antimicrobial agents on the development of antimicrobial resistance (AMR) in Campylobacter isolates recovered from 300 beef cattle maintained in an experimental feedlot was monitored over a 315-day period (11 sample times). Groups of calves were assigned to one of the following antimicrobial treatments: chlortetracycline and sulfamethazine (CS), chlortetracycline alone (Ct), virginiamycin, monensin, tylosin phosphate, and no antimicrobial agent (i.e., control treatment). In total, 3,283 fecal samples were processed for campylobacters over the course of the experiment. Of the 2,052 bacterial isolates recovered, 92% were Campylobacter (1,518 were Campylobacter hyointestinalis and 380 were C. jejuni). None of the antimicrobial treatments decreased the isolation frequency of C. jejuni relative to the control treatment. In contrast, C. hyointestinalis was isolated less frequently from animals treated with CS and to a lesser extent from animals treated with Ct. The majority (> or =94%) of C. jejuni isolates were sensitive to ampicillin, erythromycin, and ciprofloxacin, but more isolates with resistance to tetracycline were recovered from animals fed Ct. All of the 1,500 isolates of C. hyointestinalis examined were sensitive to ciprofloxacin. In contrast, 11%, 10%, and 1% of these isolates were resistant to tetracycline, erythromycin, and ampicillin, respectively. The number of animals from which C. hyointestinalis isolates with resistance to erythromycin and tetracycline were recovered differed among the antimicrobial treatments. Only Ct administration increased the carriage rates of erythromycin-resistant isolates of C. hyointestinalis, and the inclusion of CS in the diet increased the number of animals from which tetracycline-resistant isolates were recovered. The majority of C. hyointestinalis isolates with resistance to tetracycline were obtained from cohorts within a single pen, and most of these isolates were recovered from cattle during feeding of a forage-based diet as opposed to a grain-based diet. The findings of this study show that the subtherapeutic administration of tetracycline, alone and in combination with sulfamethazine, to feedlot cattle can select for the carriage of resistant strains of Campylobacter species. Considering the widespread use of in-feed antimicrobial agents and the high frequency of beef cattle that shed campylobacters, the development of AMR should be monitored as part of an on-going surveillance program.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
54 |
9
|
Brown K, Abbott DW, Uwiera RRE, Inglis GD. Removal of the cecum affects intestinal fermentation, enteric bacterial community structure, and acute colitis in mice. Gut Microbes 2018; 9:218-235. [PMID: 29227180 PMCID: PMC6291264 DOI: 10.1080/19490976.2017.1408763] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The murine cecum is a major site of fermentation of dietary materials, and production of short chain fatty acids (SCFAs). To examine the role that the cecum plays in acute bacterial infection in mice, the cecum was surgically removed, and changes in bacterial communities and production of SCFAs were analyzed relative to surgical sham animals. To incite bacterial colitis, mice were orally challenged with Citrobacter rodentium. The impact of butyrate administered directly into the colon was also examined. Concentrations of SCFAs in feces were substantially lower in mice with an excised cecum. Bacterial communities were also less diverse in cecectomized mice, and densities of major SCFA-producing taxa including bacteria within the Ruminococcaceae and Lachnospiraceae families were reduced. Colonization of the intestine by C. rodentium was not affected by removal of the cecum, and the bacterium equally incited acute colitis in mice with and without a cecum. However, cecectomized mice exhibited lower body weights at later stages of infection indicating an impaired ability to recover following challenge with C. rodentium. Furthermore, removal of the cecum altered immune and inflammatory responses to infection including increased inflammatory markers in the proximal colon (Tnfα, Il10, βd1), and heightened inflammatory response in the proximal and distal colon (Ifnγ, Tnfα, Relmβ). Exogenous administration of butyrate was insufficient to normalize responses to C. rodentium in cecectomized mice. The murine cecum plays a critical role in maintaining intestinal health, and the murine cecectomy model may be a useful tool in elucidating key aspects of intestine-pathogen-microbiota interactions.
Collapse
|
research-article |
7 |
49 |
10
|
Inglis GD, Kawchuk LM. Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol 2002; 48:60-70. [PMID: 11888164 DOI: 10.1139/w01-130] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fourteen fungi (primarily representing mycoparasitic and biocontrol fungi) were tested for their ability to grow on and degrade cell walls (CWs) of an oomycete (Pythium ultimum), ascomycete (Fusarium equisetii), and basidiomycete (Rhizoctonia solani), and their hydrolytic enzymes were characterized. Protein was detected in the cultural medium of eleven of the test isolates, and these fungi significantly degraded CWs over the 14-day duration of the experiment. In general, a greater level of CW degradation occurred for F. equisetii and P. ultimum than for R. solani. Fungi that degraded F. equisetii CWs were Coniothyrium minitans, Gliocladium roseum, Myrothecium verrucaria, Talaromyces flavus, and Trichoderma harzianum. Taxa degrading P ultimum CWs included Chaetomium globosum, Coniothyrium minitans, M. verrucaria, Seimatosporium sp., Talaromyces flavus, Trichoderma hamatum, Trichoderma harzianum, and Trichoderma viride. Production of extracellular protein was highly correlated with CW degradation. Considerable variation in the molecular weights of CW-degrading enzymes were detected among the test fungi and the CW substrates in zymogram electrophoresis. Multivariate analysis between CW degradation and hydrolysis of barley beta-glucan (beta1,3- and beta1,4-glucanases), laminarin (beta1,3- and beta1,6-glucanases), carboxymethyl cellulose (endo-beta1,4-glucanases), colloidal chitin (chitinases), and chitosan (chitosanases) was conducted. For F. equisetii CWs, the regression model accounted for 80% of the variability, and carboxymethyl cellulases acting together with beta-glucanases contributed an R2 of 0.52, whereas chitinases and beta-glucanases alone contributed an R2 of 0.11 and 0.12, respectively. Only 61% of the variability observed in the degradation of P. ultimum CWs was explained by the enzyme classes tested, and primarily beta-glucanases (R2 of 0.53) and carboxymethyl cellulases (R2 of 0.08) alone contributed to CW break down. Too few of the test fungi degraded R. solani CWs to perform multivariate analysis effectively. This study identified several fungi that degraded ascomyceteous and oomyceteous, and to a lesser extent, basidiomycetous CWs. An array of enzymes were implicated in CW degradation.
Collapse
|
Comparative Study |
23 |
48 |
11
|
Jones DR, Thomas D, Alger N, Ghavidel A, Inglis GD, Abbott DW. SACCHARIS: an automated pipeline to streamline discovery of carbohydrate active enzyme activities within polyspecific families and de novo sequence datasets. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:27. [PMID: 29441125 PMCID: PMC5798181 DOI: 10.1186/s13068-018-1027-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/18/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Deposition of new genetic sequences in online databases is expanding at an unprecedented rate. As a result, sequence identification continues to outpace functional characterization of carbohydrate active enzymes (CAZymes). In this paradigm, the discovery of enzymes with novel functions is often hindered by high volumes of uncharacterized sequences particularly when the enzyme sequence belongs to a family that exhibits diverse functional specificities (i.e., polyspecificity). Therefore, to direct sequence-based discovery and characterization of new enzyme activities we have developed an automated in silico pipeline entitled: Sequence Analysis and Clustering of CarboHydrate Active enzymes for Rapid Informed prediction of Specificity (SACCHARIS). This pipeline streamlines the selection of uncharacterized sequences for discovery of new CAZyme or CBM specificity from families currently maintained on the CAZy website or within user-defined datasets. RESULTS SACCHARIS was used to generate a phylogenetic tree of a GH43, a CAZyme family with defined subfamily designations. This analysis confirmed that large datasets can be organized into sequence clusters of manageable sizes that possess related functions. Seeding this tree with a GH43 sequence from Bacteroides dorei DSM 17855 (BdGH43b, revealed it partitioned as a single sequence within the tree. This pattern was consistent with it possessing a unique enzyme activity for GH43 as BdGH43b is the first described α-glucanase described for this family. The capacity of SACCHARIS to extract and cluster characterized carbohydrate binding module sequences was demonstrated using family 6 CBMs (i.e., CBM6s). This CBM family displays a polyspecific ligand binding profile and contains many structurally determined members. Using SACCHARIS to identify a cluster of divergent sequences, a CBM6 sequence from a unique clade was demonstrated to bind yeast mannan, which represents the first description of an α-mannan binding CBM. Additionally, we have performed a CAZome analysis of an in-house sequenced bacterial genome and a comparative analysis of B. thetaiotaomicron VPI-5482 and B. thetaiotaomicron 7330, to demonstrate that SACCHARIS can generate "CAZome fingerprints", which differentiate between the saccharolytic potential of two related strains in silico. CONCLUSIONS Establishing sequence-function and sequence-structure relationships in polyspecific CAZyme families are promising approaches for streamlining enzyme discovery. SACCHARIS facilitates this process by embedding CAZyme and CBM family trees generated from biochemically to structurally characterized sequences, with protein sequences that have unknown functions. In addition, these trees can be integrated with user-defined datasets (e.g., genomics, metagenomics, and transcriptomics) to inform experimental characterization of new CAZymes or CBMs not currently curated, and for researchers to compare differential sequence patterns between entire CAZomes. In this light, SACCHARIS provides an in silico tool that can be tailored for enzyme bioprospecting in datasets of increasing complexity and for diverse applications in glycobiotechnology.
Collapse
|
research-article |
7 |
47 |
12
|
Jiminez JA, Uwiera TC, Abbott DW, Uwiera RRE, Inglis GD. Impacts of resistant starch and wheat bran consumption on enteric inflammation in relation to colonic bacterial community structures and short-chain fatty acid concentrations in mice. Gut Pathog 2016; 8:67. [PMID: 28031748 PMCID: PMC5178079 DOI: 10.1186/s13099-016-0149-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Background
Identifying the connection among diet, the intestinal microbiome, and host health is currently an area of intensive research, but the potential of dietary fiber (DF) consumption to ameliorate intestinal inflammation has not been extensively studied. We examined the impacts of the DFs, wheat bran (WB) and resistant starch (RS) on host enteric health. A murine model of acute Th1/Th17 colitis (i.e. incited by Citrobacter rodentium) was used. Results Diets enriched with RS increased weight gain in mice inoculated with C. rodentium compared to mice consuming a conventional control (CN) diet. Short-chain fatty acid (SCFA) quantities in the cecum and distal colon were higher in mice consuming DFs, and these mice exhibited higher butyrate concentrations in the distal colon during inflammation. Histopathologic scores of inflammation in the proximal colon on day 14 post-inoculation (p.i.) (peak infection) and 21 p.i. (late infection) were lower in mice consuming DF-enriched diets compared to the CN diet. Consumption of WB reduced the expression of Th1/Th17 cytokines. As well, the expression of bacterial recognition and response genes such as Relmβ, RegIIIγ, and Tlr4 increased in mice consuming the RS-enriched diets. Furthermore, each diet generated a region-specific bacterial community, suggesting a link between selection for specific bacterial communities, SCFA concentrations, and inflammation in the murine colon. Conclusions Collectively, data indicated that the consumption of DF-rich diets ameliorates the effects of C. rodentium-induced enteritis by modifying the host microbiota to increase SCFA production, and bacterial recognition and response mechanisms to promote host health.
Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0149-6) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
9 |
45 |
13
|
Inglis GD, Kalischuk LD, Busz HW. A survey of Campylobacter species shed in faeces of beef cattle using polymerase chain reaction. Can J Microbiol 2004; 49:655-61. [PMID: 14735214 DOI: 10.1139/w03-087] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A polymerase chain reaction (PCR)-based survey of campylobacters associated with faeces collected from 382 beef cattle was undertaken. To ensure the removal of PCR inhibitors present in faeces and determine if adequate extraction was achieved, faeces were seeded with internal control DNA (i.e., DNA designed to amplify with the Campylobacter genus primer set, but provide a smaller amplicon) before the extraction procedure. In only two samples (0.5%) were the internal control or Campylobacter genus amplicons not detected. In the remaining 380 faecal samples, Campylobacter DNA was detected in 83% of the faecal samples (80% of the faecal samples were positive for Campylobacter genus DNA, and 3% of the samples were negative for Campylobacter genus DNA but positive for DNA of individual species). The most frequently detected species was Campylobacter lanienae (49%), a species only recently connected to livestock hosts. Campylobacter jejuni DNA was detected in 38% of the faecal samples, and Campylobacter hyointestinalis and Campylobacter coli DNA were detected in 8% and 0.5% of the samples, respectively. Campylobacter fetus DNA was not detected. Twenty-four percent of the faecal samples contained DNA of at least two species of Campylobacter. Of these samples, the majority (81%) contained DNA of C. jejuni and C. lanienae. The results of this study indicate that beef cattle commonly release a variety of Campylobacter species into the environment and may contribute to the high prevalence of campylobacteriosis in humans inhabiting areas of intensive cattle production, such as southern Alberta. Furthermore, this study demonstrates the utility of using PCR as a rapid and accurate method for simultaneously detecting the DNA of a diverse number of Campylobacter species associated with bovine faeces.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
40 |
14
|
Inglis GD, Thomas MC, Thomas DK, Kalmokoff ML, Brooks SPJ, Selinger LB. Molecular methods to measure intestinal bacteria: a review. J AOAC Int 2012; 95:5-23. [PMID: 22468337 DOI: 10.5740/jaoacint.sge_inglis] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The intestine is an exceptionally rich ecosystem encompassing a complex interaction among microorganisms, influenced by host factors, ingested food, and liquid. Characterizing the intestinal microbiota is currently an active area of research. Various molecular-based methods are available to characterize the intestinal microbiota, but all methods possess relative strengths, as well as salient weaknesses. It is important that researchers are cognizant of the limitations of these methods, and that they take the appropriate steps to mitigate weaknesses. Here, we discuss methodologies used to monitor intestinal bacteria including: (i) traditional clone libraries; (ii) direct sequencing using next-generation parallel sequencing technology; (iii) denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis; (iv) terminal restriction fragment length polymorphism analysis; (v) fluorescent in situ hybridization; and (vi) quantitative PCR. In addition, we also discuss experimental design, sample collection and storage, DNA extraction, gene targets, PCR bias, and methods to reduce PCR bias.
Collapse
|
Journal Article |
13 |
38 |
15
|
Kalischuk LD, Leggett F, Inglis GD. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut Pathog 2010; 2:14. [PMID: 21040540 PMCID: PMC2987776 DOI: 10.1186/1757-4749-2-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/01/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. RESULTS C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. CONCLUSION These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.
Collapse
|
Journal Article |
15 |
38 |
16
|
Kalischuk LD, Inglis GD, Buret AG. Strain-dependent induction of epithelial cell oncosis by Campylobacter jejuni is correlated with invasion ability and is independent of cytolethal distending toxin. MICROBIOLOGY-SGM 2007; 153:2952-2963. [PMID: 17768238 PMCID: PMC2884957 DOI: 10.1099/mic.0.2006/003962-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Induction of host cell death is thought to play an important role in bacterial pathogenesis. Campylobacter jejuni is a prevalent cause of bacterial enteritis; however, its effects on enterocytes remain unclear. The present study indicates for the first time that C. jejuni induces oncotic, rather than apoptotic death of T84 enterocytes. C. jejuni-treated enterocytes exhibited extensive cytoplasmic vacuolation, rapid (3–6 h) loss of plasma membrane integrity (‘cytotoxicity’), loss of mitochondrial transmembrane potential, and ATP depletion. Enterocytes also exhibited increased oligonucleosomal DNA fragmentation, a feature characteristic of apoptosis. However, consistent with a non-apoptotic process, DNA fragmentation and cytotoxicity were not caspase dependent. During apoptosis, caspases mediate cleavage of poly(ADP-ribose) polymerase; however, cleavage was not observed in C. jejuni-treated monolayers. Cytotoxicity, ATP depletion and DNA fragmentation were not prevented by the deletion of the cytolethal distending toxin (CDT) gene, indicating that C. jejuni causes enterocyte oncosis via a mechanism that is CDT independent. The ability to cause oncosis was significantly decreased in a FlaAFlaB mutant (CDT+) that was defective in the ability to adhere and invade enterocytes. Analysis of clinical isolates revealed that oncosis was strain dependent and correlated with increased invasive ability. These observations offer new insights into the pathogenesis of C. jejuni infection.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
33 |
17
|
Inglis GD, Morck DW, McAllister TA, Entz T, Olson ME, Yanke LJ, Read RR. Temporal prevalence of antimicrobial resistance in Campylobacter spp. from beef cattle in Alberta feedlots. Appl Environ Microbiol 2006; 72:4088-95. [PMID: 16751519 PMCID: PMC1489659 DOI: 10.1128/aem.02830-05] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) was temporally assessed in campylobacters isolated from beef cattle (7,738 fecal samples from 2,622 animals) in four commercial feedlots in Alberta. All calves were administered chlortetracycline and oxytetracycline in feed, and a majority of the animals (93%) were injected with long-acting oxytetracycline upon arrival at the feedlot. Fecal samples from individual animals were collected upon arrival (i.e., entry sample), 69 days (standard deviation [SD] = 3 days) after arrival (i.e., interim sample), and 189 days (SD = 33 days) after arrival (i.e., exit sample) at the feedlot. In total, 1,586 Campylobacter isolates consisting of Campylobacter coli (n = 154), Campylobacter fetus (n = 994), Campylobacter jejuni (n = 431), Campylobacter hyointestinalis (n = 4), and Campylobacter lanienae (n = 3) were recovered and characterized. The administration of antimicrobials did not decrease carriage rates of campylobacters, and minimal resistance (< or =4%) to azithromycin, ciprofloxacin, enrofloxacin, gentamicin, and meropenem was observed. In contrast, substantive increases in the prevalence of isolates resistant to tetracycline and doxycycline (56 to 89%) for C. coli, C. fetus, and C. jejuni, as well as in the number of animals (7 to 42%) from which resistant isolates were recovered, were observed during the feedlot period. Increased resistance to erythromycin (total isolates and carriages rates) was also observed in isolates of C. coli over the three isolation times. The majority of C. fetus isolates recovered were resistant to nalidixic acid, but this was independent of when they were isolated. A relatively limited number of multidrug-resistant isolates were recovered and consisted primarily of C. coli resistant to tetracyclines and erythromycin (10% of isolates). Over the course of the feedlot period, considerable increases in antimicrobial resistance were observed in C. coli, C. fetus, and C. jejuni, but with the exception of erythromycin resistance in C. coli, the administration of antimicrobial agents to beef cattle was found to have a minimal impact on resistance to macrolides and fluoroquinolones, the two classes of antimicrobials used to treat campylobacteriosis in humans. However, the widespread use of antimicrobial agents in beef production and the possible horizontal transfer of mobile genetic elements with antimicrobial resistance determinants among Campylobacter and other bacterial taxa emphasize the need to monitor AMR development in bacteria from beef cattle.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
32 |
18
|
Inglis GD, Kalischuk LD, Busz HW, Kastelic JP. Colonization of cattle intestines by Campylobacter jejuni and Campylobacter lanienae. Appl Environ Microbiol 2005; 71:5145-53. [PMID: 16151098 PMCID: PMC1214653 DOI: 10.1128/aem.71.9.5145-5153.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The location and abundance of Campylobacter jejuni and Campylobacter lanienae in the intestines of beef cattle were investigated using real-time quantitative PCR in two studies. In an initial study, digesta and tissue samples were obtained along the digestive tract of two beef steers known to shed C. jejuni and C. lanienae (steers A and B). At the time of slaughter, steer B weighed 540 kg, compared to 600 kg for steer A, yet the intestine of steer B (40.5 m) was 36% longer than the intestine of steer A (26.1 m). In total, 323 digesta samples (20-cm intervals) and 998 tissue samples (3.3- to 6.7-cm intervals) were processed. Campylobacter DNA was detected in the digesta and in association with tissues throughout the small and large intestines of both animals. Although C. jejuni and C. lanienae DNA were detected in both animals, only steer A contained substantial quantities of C. jejuni DNA. In both digesta and tissues of steer A, C. jejuni was present in the duodenum and jejunum. Considerable quantities of C. jejuni DNA also were observed in the digesta obtained from the cecum and ascending colon, but minimal DNA was associated with tissues of these regions. In contrast, steer B contained substantial quantities of C. lanienae DNA, and DNA of this bacterium was limited to the large intestine (i.e., the cecum, proximal ascending colon, descending colon, and rectum); the majority of tissue-associated C. lanienae DNA was present in the cecum, descending colon, and rectum. In a second study, the location and abundance of C. jejuni and C. lanienae DNA were confirmed in the intestines of 20 arbitrarily selected beef cattle. DNA of C. jejuni and C. lanienae were detected in the digesta of 57% and 95% of the animals, respectively. C. jejuni associated with intestinal tissues was most abundant in the duodenum, ileum, and rectum. However, one animal contributed disproportionately to the abundance of C. jejuni DNA in the ileum and rectum. C. lanienae was most abundant in the large intestine, and the highest density of DNA of this bacterium was found in the cecum. Therefore, C. jejuni colonized the proximal small intestine of asymptomatic beef cattle, whereas C. lanienae primarily resided in the cecum, descending colon, and rectum. This information could be instrumental in developing efficacious strategies to manage the release of these bacteria from the gastrointestinal tracts of cattle.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
31 |
19
|
Costa E, Uwiera RR, Kastelic JP, Selinger LB, Inglis GD. Non-therapeutic administration of a model antimicrobial growth promoter modulates intestinal immune responses. Gut Pathog 2011; 3:14. [PMID: 21943280 PMCID: PMC3195107 DOI: 10.1186/1757-4749-3-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/25/2011] [Indexed: 01/08/2023] Open
Abstract
Background The development of efficacious alternatives to antimicrobial growth promoters (AGP) in livestock production is an urgent issue, but is hampered by a lack of knowledge regarding the mode of action of AGP. The belief that AGP modulate the intestinal microbiota has become prominent in the literature; however, there is a lack of experimental evidence to support this hypothesis. Using a chlortetracycline-murine-Citrobacter rodentium model, the ability of AGP to modulate the intestinal immune system in mammals was investigated. Results C. rodentium was transformed with the tetracycline resistance gene, tetO, and continuous oral administration of a non-therapeutic dose of chlortetracycline to mice did not affect densities of C. rodentium CFU in feces throughout the experiment or associated with mucosal surfaces in the colon (i.e. at peak and late infection). However, chlortetracycline regulated transcription levels of Th1 and Th17 inflammatory cytokines in a temporal manner in C. rodentium-inoculated mice, and ameliorated weight loss associated with infection. In mice inoculated with C. rodentium, those that received chlortetracycline had less pathologic changes in the distal colon than mice not administered CTC (i.e. relative to untreated mice). Furthermore, chlortetracycline administration at a non-therapeutic dose did not impart either prominent or consistent effects on the colonic microbiota. Conclusion Data support the hypothesis that AGP function by modulating the intestinal immune system in mammals. This finding may facilitate the development of biorationale-based and efficacious alternatives to AGP.
Collapse
|
Journal Article |
14 |
30 |
20
|
Buchanan CJ, Webb AL, Mutschall SK, Kruczkiewicz P, Barker DOR, Hetman BM, Gannon VPJ, Abbott DW, Thomas JE, Inglis GD, Taboada EN. A Genome-Wide Association Study to Identify Diagnostic Markers for Human Pathogenic Campylobacter jejuni Strains. Front Microbiol 2017; 8:1224. [PMID: 28713351 PMCID: PMC5492696 DOI: 10.3389/fmicb.2017.01224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022] Open
Abstract
Campylobacter jejuni is a leading human enteric pathogen worldwide and despite an improved understanding of its biology, ecology, and epidemiology, limited tools exist for identifying strains that are likely to cause disease. In the current study, we used subtyping data in a database representing over 24,000 isolates collected through various surveillance projects in Canada to identify 166 representative genomes from prevalent C. jejuni subtypes for whole genome sequencing. The sequence data was used in a genome-wide association study (GWAS) aimed at identifying accessory gene markers associated with clinically related C. jejuni subtypes. Prospective markers (n = 28) were then validated against a large number (n = 3,902) of clinically associated and non-clinically associated genomes from a variety of sources. A total of 25 genes, including six sets of genetically linked genes, were identified as robust putative diagnostic markers for clinically related C. jejuni subtypes. Although some of the genes identified in this study have been previously shown to play a role in important processes such as iron acquisition and vitamin B5 biosynthesis, others have unknown function or are unique to the current study and warrant further investigation. As few as four of these markers could be used in combination to detect up to 90% of clinically associated isolates in the validation dataset, and such markers could form the basis for a screening assay to rapidly identify strains that pose an increased risk to public health. The results of the current study are consistent with the notion that specific groups of C. jejuni strains of interest are defined by the presence of specific accessory genes.
Collapse
|
Journal Article |
8 |
30 |
21
|
Inglis GD, Sigler L, Goette MS. Aerobic microorganisms associated with alfalfa leafcutter bees (megachile rotundata). MICROBIAL ECOLOGY 1993; 26:125-143. [PMID: 24190009 DOI: 10.1007/bf00177048] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/1993] [Revised: 04/27/1993] [Indexed: 06/02/2023]
Abstract
Characterization of microorganisms associated with alfalfa leaf-cutter bee (Megachile rotundata) nectar, pollen, provisions, larval guts, and frass (excreta) in Alberta demonstrated a varied aerobic microflora. Yeasts were isolated frequently from nectar, pollen, and provisions but rarely from guts or frass. The most prevalent yeast taxa were: Candida bombicola, Cryptococcus albidus, Metschnikowia reukaufii, and Rhodotorula glutinis. Although few filamentous fungi were found in nectar, they were frequently isolated from pollen and provisions; the predominant taxa were Alternaria alternata, Cladosporium cladosporioides, C. herbarum, Epicoccum nigrum, and Penicillium chrysogenum. Bacteria, including species of Bacillus, Corynebacterium, Micrococcus, and the actinomycete Streptomyces, also were prevalent in provisions and/or on pollen. In general, the diversity of microorganisms isolated from alimentary canals and frass was lower than from nectar, pollen, and provisions. Bacillus firmus, B. licheniformis, B. megaterium, B. pumilus, and Streptomyces spp. were the most frequently isolated bacteria, whereas Trichosporonoides megachiliensis was the most common filamentous fungus isolated from larval guts and/or frass. These taxa may be part of the resident microflora of the alimentary canal. Populations of bacteria and filamentous fungi, but not yeasts, were larger from Ascosphaera aggregata-infected larvae than from healthy larvae. However, with the exception of Aspergillus niger and T. megachiliensis in frass from healthy larvae, no taxon of filamentous fungi was conspicuously present or absent in infected larvae, healthy larvae, or their frass.
Collapse
|
|
32 |
28 |
22
|
Holani R, Shah C, Haji Q, Inglis GD, Uwiera RRE, Cobo ER. Proline-arginine rich (PR-39) cathelicidin: Structure, expression and functional implication in intestinal health. Comp Immunol Microbiol Infect Dis 2016; 49:95-101. [PMID: 27865272 DOI: 10.1016/j.cimid.2016.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/29/2016] [Accepted: 10/20/2016] [Indexed: 01/22/2023]
Abstract
Proline-Arginine-39 (PR-39) is a small cationic, proline and arginine rich, cathelicidin that plays an important role in the porcine innate immune system. Although PR-39 was first discovered in intestinal cell lysates of pigs, subsequent research has indicated that it is primarily expressed in bone marrow and other lymphoid tissues including the thymus and spleen, as well as in leukocytes. Mature PR-39 cathelicidin has anti-microbial activity against many gram-negative and some gram-positive bacteria. PR-39 is also a bridge between the innate and adaptive immune system with recognized immunomodulatory, wound healing, anti-apoptotic, and pro-angiogenic functions. The purpose of this review is to summarize our current knowledge about the structure, expression, and functions of PR-39 and its potential to promote intestinal homeostasis. This understanding is relevant in the search of alternative therapeutics against diarrheic enterocolitis, a major problem faced by pork producers both in terms of costs and risk of zoonosis.
Collapse
|
Review |
9 |
27 |
23
|
Zaytsoff SJM, Brown CLJ, Montina T, Metz GAS, Abbott DW, Uwiera RRE, Inglis GD. Corticosterone-mediated physiological stress modulates hepatic lipid metabolism, metabolite profiles, and systemic responses in chickens. Sci Rep 2019; 9:19225. [PMID: 31848364 PMCID: PMC6917734 DOI: 10.1038/s41598-019-52267-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/02/2019] [Indexed: 01/22/2023] Open
Abstract
The impact of physiological stress on lipid metabolism, the metabolome, and systemic responses was examined in chickens. To incite a stress response, birds were continuously administered corticosterone (CORT) in their drinking water at three doses (0 mg/L, 10 mg/L, and 30 mg/L), and they were sampled 1, 5, and 12 days after commencement of CORT administration. Corticosterone administration to birds differentially regulated lipogenesis genes (i.e. FAS, ACC, ME, and SREBF1), and histopathological examination indicated lipid deposition in hepatocytes. In addition, CORT affected water-soluble metabolite profiles in the liver, as well as in kidney tissue and breast muscle; thirteen unique metabolites were distinguished in CORT-treated birds and this was consistent with the dysregulation of lipid metabolism due to physiological stress. Acute phase responses (APRs) were also altered by CORT, and in particular, expression of SAA1 was decreased and expression of CP was increased. Furthermore, CORT administration caused lymphoid depletion in the bursa of Fabricius and elevated IL6 and TGFβ2 mRNA expression after 5 and 12 days of CORT administration. Collectively, incitement of physiological stress via administration of CORT in chickens modulated host metabolism and systemic responses, which indicated that energy potentials are diverted from muscle anabolism during periods of stress.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
26 |
24
|
Xu W, Reuter T, Inglis GD, Larney FJ, Alexander TW, Guan J, Stanford K, Xu Y, McAllister TA. A biosecure composting system for disposal of cattle carcasses and manure following infectious disease outbreak. JOURNAL OF ENVIRONMENTAL QUALITY 2009; 38:437-50. [PMID: 19202014 DOI: 10.2134/jeq2008.0168] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During outbreaks of infectious animal diseases, composting may be an effective method of disposing of mortalities and potentially contaminated manure. Duplicate biosecure structures containing 16 cattle (Bos taurus) mortalities (343 kg average weight) were constructed with carcasses placed on a 40-cm straw layer and overlaid with 160 cm of feedlot manure. At a depth of 80 cm (P80), compost heated rapidly, exceeding 55 degrees C after 8 d and maintained temperatures of 55 to 65 degrees C for > 35 d. Temperatures at 160 cm (P160) failed to exceed 55 degrees C, but remained above 40 degrees C for >4 mo. To investigate rates of microbial inactivation, Escherichia coli O157:H7, Campylobacter jejuni, and Newcastle disease virus (NDV) were inoculated in manure (E. coli O157:H7 and C. jejuni approximately 10(8) CFU g(-1); NDV, approximately 10(6) EID(50) g(-1)), embedded at P80 and P160 and retrieved at intervals during composting. Escherichia coli O157:H7 and NDV were undetectable after 7 d at both depths. The C. jejuni DNA was detected up to 84 d at P80 and >147 d at P160. To estimate degradation of recalcitrant substrates, bovine brain, hoof, and rib bones were also embedded at P80 and P160 and retrieved at intervals. Residues of soft tissues remained in carcasses after opening at 147 d and bovine tissue decomposition ranked as brain > hoof > bone. More than 90% dry matter (DM) of brain disappeared after 7 d and 80% DM of hoof decomposed after 56 d. High degradation of cattle carcasses, rapid suppression of E. coli O157:H7 and NDV and reduction in viable cell densities of >6 logs for C. jejuni demonstrates that the biosecure composting system can dispose of cattle carcasses and manure in an infectious disease outbreak.
Collapse
|
|
16 |
26 |
25
|
Thomas DK, Lone AG, Selinger LB, Taboada EN, Uwiera RRE, Abbott DW, Inglis GD. Comparative variation within the genome of Campylobacter jejuni NCTC 11168 in human and murine hosts. PLoS One 2014; 9:e88229. [PMID: 24516617 PMCID: PMC3917866 DOI: 10.1371/journal.pone.0088229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/03/2014] [Indexed: 11/18/2022] Open
Abstract
Campylobacteriosis incited by C. jejuni is a significant enteric disease of human beings. A person working with two reference strains of C. jejuni National Collection of Type Cultures (NCTC) 11168 developed symptoms of severe enteritis including bloody diarrhea. The worker was determined to be infected by C. jejuni. In excess of 50 isolates were recovered from the worker's stool. All of the recovered isolates and the two reference strains were indistinguishable from each other based on comparative genomic fingerprint subtyping. Whole genome sequence analysis indicated that the worker was infected with a C. jejuni NCTC 11168 obtained from the American Type Culture Collection; this strain (NCTC 11168-GSv) is the genome sequence reference. After passage through the human host, major genetic changes including indel mutations within twelve contingency loci conferring phase variations were detected in the genome of C. jejuni. Specific and robust single nucleotide polymorphism (SNP) changes in the human host were also observed in two loci (Cj0144c, Cj1564). In mice inoculated with an isolate of C. jejuni NCTC 11168-GSv from the infected person, the isolate underwent further genetic variation. At nine loci, mutations specific to inoculated mice including five SNP changes were observed. The two predominant SNPs observed in the human host reverted in mice. Genetic variations occurring in the genome of C. jejuni in mice corresponded to increased densities of C. jejuni cells associated with cecal mucosa. In conclusion, C. jejuni NCTC 11168-GSv was found to be highly virulent in a human being inciting severe enteritis. Host-specific mutations in the person with enteritis occurred/were selected for in the genome of C. jejuni, and many were not maintained in mice. Information obtained in the current study provides new information on host-specific genetic adaptation by C. jejuni.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
25 |