1
|
Sutter G, Moss B. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci U S A 1992; 89:10847-51. [PMID: 1438287 PMCID: PMC50439 DOI: 10.1073/pnas.89.22.10847] [Citation(s) in RCA: 458] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Modified vaccinia Ankara (MVA), a highly attenuated vaccinia virus strain that has been safety tested in humans, was evaluated for use as an expression vector. MVA has multiple genomic deletions and is severely host cell restricted: it grows well in avian cells but is unable to multiply in human and most other mammalian cells tested. Nevertheless, we found that replication of viral DNA appeared normal and that both early and late viral proteins were synthesized in human cells. Proteolytic processing of viral structural proteins was inhibited, however, and only immature virus particles were detected by electron microscopy. We constructed an insertion plasmid with the Escherichia coli lacZ gene under the control of the vaccinia virus late promoter P11, flanked by sequences of MVA DNA, to allow homologous recombination at the site of a naturally occurring 3500-base-pair deletion within the MVA genome. MVA recombinants were isolated and propagated in permissive avian cells and shown to express the enzyme beta-galactosidase upon infection of nonpermissive human cells. The amount of enzyme made was similar to that produced by a recombinant of vaccinia virus strain Western Reserve, which also had the lacZ gene under control of the P11 promoter, but multiplied to high titers. Since recombinant gene expression is unimpaired in nonpermissive human cells, MVA may serve as a highly efficient and exceptionally safe vector.
Collapse
|
research-article |
33 |
458 |
2
|
Meyer H, Sutter G, Mayr A. Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J Gen Virol 1991; 72 ( Pt 5):1031-8. [PMID: 2033387 DOI: 10.1099/0022-1317-72-5-1031] [Citation(s) in RCA: 360] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Different passages of the vaccinia virus strain Ankara (CVA wild-type) during attenuation to MVA (modified vaccinia virus Ankara) have been analysed to detect alterations in the genome. Physical maps for the restriction enzymes HindIII and XhoI have been established. Six major deletions relative to the wild-type strain CVA could be localized. They reduce the size of the entire genome from 208 kb (CVA wild-type) to 177 kb for the MVA strain. Four deletions occurred during the first 382 passages and the resulting variant (CVA 382) displays an attenuated phenotype similar to that of the MVA strain. The deletions are located in both terminal fragments, affect two-thirds of the host range gene K1L and eliminate 3.5 kb of a highly conserved region in the HindIII A fragment. During the next 190 passages leading to MVA two additional deletions appeared. Again, one is located in the left terminal fragment, and the other includes the A-type inclusion body gene. Neither of the deletions appear to participate in further attenuation of the virus. Rescue of the partially deleted host range region with the corresponding wild-type DNA restored the ability of the attenuated strains MVA and CVA 382 to grow in some non-permissive tissue cultures. Nevertheless, the complete host range of the wild-type strain was not recovered. Also, plaque-forming behaviour and reduced virulence were not influenced. From the data presented it may be concluded that the partially deleted host range gene is not solely responsible for attenuation.
Collapse
|
|
34 |
360 |
3
|
Hirsch VM, Fuerst TR, Sutter G, Carroll MW, Yang LC, Goldstein S, Piatak M, Elkins WR, Alvord WG, Montefiori DC, Moss B, Lifson JD. Patterns of viral replication correlate with outcome in simian immunodeficiency virus (SIV)-infected macaques: effect of prior immunization with a trivalent SIV vaccine in modified vaccinia virus Ankara. J Virol 1996; 70:3741-52. [PMID: 8648709 PMCID: PMC190250 DOI: 10.1128/jvi.70.6.3741-3752.1996] [Citation(s) in RCA: 259] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The dynamics of plasma viremia were explored in a group of 12 simian immunodeficiency virus (SIV)-infected rhesus macaques (Macaca mulatta) that had received prior immunization with either nonrecombinant or trivalent (gag-pol, env) SIV-recombinant vaccinia viruses. Three distinct patterns of viral replication observed during and following primary viremia accounted for significant differences in survival times. High-level primary plasma viremia with subsequently increasing viremia was associated with rapid progression to AIDS (n = 2). A high-level primary plasma virus load with a transient decline and subsequent progressive increase in viremia in the post-acute phase of infection was associated with progression to AIDS within a year (n = 6). Low levels of primary plasma viremia followed by sustained restriction of virus replication were associated with maintenance of normal lymphocyte subsets and intact lymphoid architecture (n = 4), reminiscent of the profile observed in human immunodeficiency virus type 1-infected long-term nonprogressors. Three of four macaques that showed this pattern had been immunized with an SIV recombinant derived from the attenuated vaccinia virus, modified vaccinia virus Ankara. These data link the dynamics and extent of virus replication to disease course and suggest that sustained suppression of virus promotes long-term, asymptomatic survival of SIV-infected macaques. These findings also suggest that vaccine modulation of host immunity may have profound beneficial effects on the subsequent disease course, even if sterilizing immunity is not achieved.
Collapse
|
research-article |
29 |
259 |
4
|
Sutter G, Wyatt LS, Foley PL, Bennink JR, Moss B. A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 1994; 12:1032-40. [PMID: 7975844 DOI: 10.1016/0264-410x(94)90341-7] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The immunogenicity of a recombinant virus derived from modified vaccinia virus Ankara (MVA), a host range-restricted, highly attenuated and safety-tested strain, was investigated. Plasmid transfer vectors that provide strong synthetic early/late promoters for the simultaneous expression of two genes as well as a transient or stable selectable marker and flanking sequences for homologous recombination with the MVA genome were constructed. A recombinant MVA containing influenza virus haemagglutinin and nucleoprotein genes was isolated in avian cells and shown to express both proteins efficiently upon infection of human or mouse cells in which abortive replication occurs. Mice, inoculated by various routes with recombinant MVA, produced antibody and cytotoxic T-lymphocyte responses to influenza virus proteins and were protected against a lethal influenza virus challenge as effectively as mice immunized with a recombinant derived from the replication-competent WR strain of vaccinia virus.
Collapse
|
|
31 |
216 |
5
|
Volz A, Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res 2016; 97:187-243. [PMID: 28057259 PMCID: PMC7112317 DOI: 10.1016/bs.aivir.2016.07.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology.
Collapse
|
Historical Article |
9 |
215 |
6
|
Sutter G, Ohlmann M, Erfle V. Non-replicating vaccinia vector efficiently expresses bacteriophage T7 RNA polymerase. FEBS Lett 1995; 371:9-12. [PMID: 7664891 DOI: 10.1016/0014-5793(95)00843-x] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Modified vaccinia virus Ankara (MVA), a host range restricted and highly attenuated vaccinia virus strain, is unable to multiply in human and most other mammalian cell lines. Since viral gene expression is unimpaired in non-permissive cells recombinant MVA viruses are efficient as well as exceptionally safe expression vectors. We constructed a recombinant MVA that expresses the bacteriophage T7 RNA polymerase and tested its usefulness for transient expression of recombinant genes under the control of a T7 promoter. Using the chloramphenicol acetyltransferase (CAT) gene as a reporter gene, infection with MVA-T7pol allowed efficient synthesis of recombinant enzyme in mammalian cells. Despite the severe host restriction of MVA, enzyme activities induced by infection with MVA-T7pol were similar to those determined after infection with a replication-competent vaccinia-T7pol recombinant virus. Thus, MVA-T7pol may be used as a novel vaccinia vector to achieve T7 RNA polymerase-specific recombinant gene expression in the absence of productive vaccinia virus replication.
Collapse
|
|
30 |
199 |
7
|
Drexler I, Heller K, Wahren B, Erfle V, Sutter G. Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J Gen Virol 1998; 79 ( Pt 2):347-52. [PMID: 9472619 DOI: 10.1099/0022-1317-79-2-347] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although desirable for safety reasons, the host range restrictions of modified vaccinia virus Ankara (MVA) make it less applicable for general use. Propagation in primary chicken embryo fibroblasts (CEF) requires particular cell culture experience and has no pre-established record of tissue culture reproducibility. We investigated a variety of established cell lines for productive virus growth and recombinant gene expression. Baby hamster kidney cells (BHK), a well-characterized, easily maintained cell line, supported MVA growth and as proficient expression of the E. coli lacZ reporter gene as the highly efficient CEF, whereas other cell lines were non-permissive or allowed only very limited MVA replication. Importantly, no virus production occurred in patient-derived infected primary human cells. These results emphasize the safety and now improved accessibility of MVA for the development of expression vectors and live recombinant vaccines.
Collapse
|
|
27 |
189 |
8
|
Westenberger U, Thanner S, Ruf HH, Gersonde K, Sutter G, Trentz O. Formation of free radicals and nitric oxide derivative of hemoglobin in rats during shock syndrome. FREE RADICAL RESEARCH COMMUNICATIONS 1990; 11:167-78. [PMID: 1963618 DOI: 10.3109/10715769009109680] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Free radicals have been postulated to play an important role as mediators in the pathogenesis of shock syndrome and multiple-organ failure. We attempted to directly detect the increased formation of radicals by Electron Spin Resonance (ESR) in animal models of shock, namely the endotoxin (ETX) shock or the hemorrhagic shock of the rat. In freeze-clamped lung tissue, a small but significant increase of a free radical signal was detected after ETX application. In the blood of rats under ETX shock, a significant ESR signal with a triplet hyperfine structure was observed. The latter ESR signal evolved within several hours after the application of ETX and was localized in the red blood cells. This signal was assigned to a nitric oxide (NO) adduct of hemoglobin with the tentative structure [alpha 2+ NO)beta 3+)2. The amount of hemoglobin-NO formed, up to 0.8% of total hemoglobin, indicated that under ETX shock a considerable amount of NO was produced in the vascular system. This NO production was strongly inhibited by the arginine analog NG-monomethyl-arginine (NMMA). The ESR signal of Hb-NO was also observed after severe hemorrhagic shock. There are three questions, namely (i) the type of vascular cells and the regulation of the process forming such a large amount of NO during ETX shock, (ii) the pathophysiological implications of the formed NO, effects which have been described as cytotoxic mediator, endothelium-derived relaxing factor (EDRF) or inhibitor of platelet aggregation, and (iii) the possible use of Hb-NO for monitoring phases of shock syndrome.
Collapse
|
|
35 |
113 |
9
|
Rimmelzwaan GF, Nieuwkoop N, Brandenburg A, Sutter G, Beyer WE, Maher D, Bates J, Osterhaus AD. A randomized, double blind study in young healthy adults comparing cell mediated and humoral immune responses induced by influenza ISCOM vaccines and conventional vaccines. Vaccine 2000; 19:1180-7. [PMID: 11137255 DOI: 10.1016/s0264-410x(00)00310-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although current influenza vaccines have been shown to reduce influenza-related morbidity and mortality, there is a desire to develop more efficacious products. Vaccines which can induce CD8(+) cytotoxic T cell (CTL) responses in addition to strong antibody responses may be more effective in preventing disease since it has been demonstrated that CTL contribute to protective immunity, even against drift variants of influenza A viruses. The immunogenicity of two types of experimental influenza vaccines, which were based on immune stimulating complexes (ISCOM), were evaluated and compared with a conventional non-adjuvanted inactivated split virion vaccine, after immunization of human volunteers. In this randomized, double blind study, it was shown that the ISCOM vaccines altered the kinetics of the serum antibody response, resulting in more rapid titer rises against the vaccine strains. This accelerated antibody response coincided with enhanced in vitro proliferative T cell responses, which were observed shortly after vaccination. In addition, CTL responses were observed in a higher proportion of the vaccinees receiving an ISCOM vaccine, than in vaccinees receiving the conventional influenza vaccine.
Collapse
|
Clinical Trial |
25 |
112 |
10
|
Moss B, Carroll MW, Wyatt LS, Bennink JR, Hirsch VM, Goldstein S, Elkins WR, Fuerst TR, Lifson JD, Piatak M, Restifo NP, Overwijk W, Chamberlain R, Rosenberg SA, Sutter G. Host range restricted, non-replicating vaccinia virus vectors as vaccine candidates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 397:7-13. [PMID: 8718576 PMCID: PMC2562214 DOI: 10.1007/978-1-4899-1382-1_2] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Three model systems were used to demonstrate the immunogenicity of highly attenuated and replication-defective recombinant MVA. (1) Intramuscular inoculation of MVA-IN-Fha/np induced humoral and cell-mediated immune responses in mice and protectively immunized them against a lethal respiratory challenge with influenza virus. Intranasal vaccination was also protective, although higher doses were needed. (2) In rhesus macaques, an immunization scheme involving intramuscular injections of MVA-SIVenv/gag/pol greatly reduced the severity of disease caused by an SIV challenge. (3) In a murine cancer model, immunization with MVA-beta gal prevented the establishment of tumor metastases and even prolonged life in animals with established tumors. These results, together with previous data on the safety of MVA in humans, suggest the potential usefulness of recombinant MVA for prophylactic vaccination and therapeutic treatment of infectious diseases and cancer.
Collapse
|
Review |
29 |
102 |
11
|
Osterhaus AD, van Baalen CA, Gruters RA, Schutten M, Siebelink CH, Hulskotte EG, Tijhaar EJ, Randall RE, van Amerongen G, Fleuchaus A, Erfle V, Sutter G. Vaccination with Rev and Tat against AIDS. Vaccine 1999; 17:2713-4. [PMID: 10418922 DOI: 10.1016/s0264-410x(98)00498-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
|
26 |
83 |
12
|
Messud-Petit F, Gelfi J, Delverdier M, Amardeilh MF, Py R, Sutter G, Bertagnoli S. Serp2, an inhibitor of the interleukin-1beta-converting enzyme, is critical in the pathobiology of myxoma virus. J Virol 1998; 72:7830-9. [PMID: 9733819 PMCID: PMC110100 DOI: 10.1128/jvi.72.10.7830-7839.1998] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 07/02/1998] [Indexed: 11/20/2022] Open
Abstract
Recently, myxoma virus was shown to encode an additional member of the serpin superfamily. The viral gene, called serp2, was cloned, and the Serp2 protein was shown to specifically bind to interleukin-1beta (IL-1beta)-converting enzyme (ICE), thus inhibiting the cleavage of pro-IL-1beta by the protease (F. Petit, S. Bertagnoli, J. Gelfi, F. Fassy, C. Boucraut-Baralon, and A. Milon, J. Virol. 70:5860-5866, 1996). Here, we address the role of Serp2 in the development of myxomatosis, a lethal infectious disease of the European rabbit. A Serp2 mutant myxoma virus was constructed by disruption of the single-copy serp2 gene and insertion of the Escherichia coli gpt gene serving as the selectable marker. A revertant virus was obtained by replacing the E. coli gpt gene by the intact serp2 open reading frame. The Serp2(-) mutant virus replicated with wild-type kinetics both in rabbit fibroblasts and a rabbit CD4(+) T-cell line (RL5). Moderate reduction of cell surface levels of major histocompatibility complex I was observed after infection with wild-type or Serp2(-) mutant myxoma virus, and both produced white pocks on the chorioallantoic membrane of the chick embryo. After the infection of European rabbits, the Serp2(-) mutant virus proved to be highly attenuated compared to wild-type myxoma virus, as demonstrated by the clinical course of myxomatosis and the survival rates of infected animals. Pathohistological examinations revealed that infection with wild-type myxoma virus resulted in a blockade of the inflammatory response at the vascular level. In contrast, rapid inflammatory reactions occurred upon infection with the Serp2(-) mutant virus. Furthermore, lymphocytes in lymph nodes derived from animals inoculated with Serp2 mutant virus were shown to rapidly undergo apoptosis. We postulate that the virulence of myxoma virus in the European rabbit can be partially attributed to an impairment of host inflammatory processes and to the prevention of apoptosis in lymphocytes. The weakening of host defense is directly linked to serp2 gene function and is likely to involve the inhibition of IL-1beta-converting-enzyme-dependent pathways.
Collapse
|
research-article |
27 |
80 |
13
|
Hinkula J, Svanholm C, Schwartz S, Lundholm P, Brytting M, Engström G, Benthin R, Glaser H, Sutter G, Kohleisen B, Erfle V, Okuda K, Wigzell H, Wahren B. Recognition of prominent viral epitopes induced by immunization with human immunodeficiency virus type 1 regulatory genes. J Virol 1997; 71:5528-39. [PMID: 9188627 PMCID: PMC191795 DOI: 10.1128/jvi.71.7.5528-5539.1997] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mice immunized with the regulatory genes nef, rev, and tat from human immunodeficiency virus type 1 developed both humoral and cellular immune responses to the gene products Nef, Rev, and Tat. This study demonstrates that it is feasible to induce immune reactions to all of these regulatory gene products. Humoral responses were seen after DNA boosts, while potent T-cell proliferative responses were noted already after a single immunization. A Th1-directed immune response was demonstrated early after immunization. A 3- to 75-fold-stronger T-cell response was seen in animals receiving DNA epidermally compared to that in animals receiving intramuscular injections. Nef, Rev, and Tat putative B- and T-cell epitopes were clearly mapped by using peptides derived from the regulatory proteins and were similar to those which are detected in human immunodeficiency virus infection. Although immunization by the Nef, Rev, and Tat proteins raised high immunoglobulin G titers in serum, the epitope spreading appeared broader after DNA immunization. The combination of all of these regulatory genes together with two genes for structural proteins, the envelope and gag genes, demonstrated that a combined approach is feasible in that reactivities to all antigens persisted or were even augmented. No interference between plasmids was noted.
Collapse
MESH Headings
- AIDS Vaccines/immunology
- Animals
- B-Lymphocytes/immunology
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Gene Products, rev/genetics
- Gene Products, rev/immunology
- Gene Products, tat/genetics
- Gene Products, tat/immunology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunization
- Male
- Mice
- Mice, Inbred Strains
- Rats
- T-Lymphocytes/immunology
- Vaccines, DNA/immunology
- nef Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
|
research-article |
28 |
72 |
14
|
Kreijtz JHCM, Suezer Y, de Mutsert G, van den Brand JMA, van Amerongen G, Schnierle BS, Kuiken T, Fouchier RAM, Löwer J, Osterhaus ADME, Sutter G, Rimmelzwaan GF. Recombinant modified vaccinia virus Ankara expressing the hemagglutinin gene confers protection against homologous and heterologous H5N1 influenza virus infections in macaques. J Infect Dis 2009; 199:405-13. [PMID: 19061423 DOI: 10.1086/595984] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Highly pathogenic avian influenza viruses of the H5N1 subtype have been responsible for an increasing number of infections in humans since 2003. More than 60% of infected individuals die, and new infections are reported frequently. In light of the pandemic threat caused by these events, the rapid availability of safe and effective vaccines is desirable. Modified vaccinia virus Ankara (MVA) expressing the hemagglutinin (HA) gene of H5N1 viruses is a promising candidate vaccine that induced protective immunity against infection with homologous and heterologous H5N1 influenza virus in mice. METHODS In the present study, we evaluated a recombinant MVA vector expressing the HA gene of H5N1 influenza virus A/Vietnam/1194/04 (MVA-HA-VN/04) in nonhuman primates. Cynomolgus macaques were immunized twice and then were challenged with influenza virus A/Vietnam/1194/04 (clade 1) or A/Indonesia/5/05 (clade 2.1) to assess the level of protective immunity. RESULTS Immunization with MVA-HA-VN/04 induced (cross-reactive) antibodies and prevented virus replication in the upper and lower respiratory tract and the development of severe necrotizing bronchointerstitial pneumonia. CONCLUSION Therefore, MVA-HA-VN/04 is a promising vaccine candidate for the induction of protective immunity against highly pathogenic H5N1 avian influenza viruses in humans.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
67 |
15
|
Staib C, Drexler I, Ohlmann M, Wintersperger S, Erfle V, Sutter G. Transient host range selection for genetic engineering of modified vaccinia virus Ankara. Biotechniques 2000; 28:1137-42, 1144-6, 1148. [PMID: 10868279 DOI: 10.2144/00286st04] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recombinant vaccinia viruses are extremely valuable tools for research in molecular biology and immunology. The extension of vaccinia vector technology to replication-deficient and safety-tested virus strains such as modified vaccinia virus Ankara (MVA) have made this versatile eukaryotic expression system even more attractive for basic and clinical research. Here, we report on easily obtaining recombinant MVA using stringent growth selection on rabbit kidney RK-13 cells. We describe the construction and use of new MVA vector plasmids that carry an expression cassette of the vaccinia virus host range gene, K1L, as a transient selectable marker. These plasmids allow either stable insertion of additional recombinant genes into the MVA genome or precisely targeted mutagenesis of MVA genomic sequences. Repetitive DNA sequences flanking the K1L gene were designed to remove the marker gene from the viral genome by homologous recombination under nonselective growth conditions. The convenience of this new selection technique is demonstrated by isolating MVA recombinants that produce green fluorescent protein and by generating MVA deletion mutants.
Collapse
|
|
25 |
66 |
16
|
Rosales R, Sutter G, Moss B. A cellular factor is required for transcription of vaccinia viral intermediate-stage genes. Proc Natl Acad Sci U S A 1994; 91:3794-8. [PMID: 8170989 PMCID: PMC43668 DOI: 10.1073/pnas.91.9.3794] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cytoplasmic location of vaccinia virus replication and evidence that the multisubunit DNA-dependent RNA polymerase, early and late stage transcription factors, capping and methylating enzymes, and poly(A) polymerase are virus encoded raised the possibility that all of the proteins needed for viral mRNA synthesis are of viral origin. Previous studies showed that four components from infected cells, the viral RNA polymerase and capping enzyme and two factors called vaccinia virus intermediate transcription factors (VITFs) 1 and 2, can reconstitute transcription of vaccinia virus intermediate-stage genes in vitro. Here, we demonstrate that VITF-2 can be isolated from the nuclei of uninfected HeLa cells as well as from the cytoplasm of infected cells. The proteins with VITF-2 activity from uninfected and infected cells cochromatographed and cosedimented, suggesting that they are identical. VITF-2 activity was found in extracts of other uninfected human and monkey cells but not in nonpermissive Trichoplusia ni insect cells or in conditionally permissive rabbit kidney 13 cells. VITF-2 activity was present, however, in a permissive line of rabbit kidney 13 cells that had been stably transfected with the vaccinia virus K1L host range gene. We suggest that the VITF-2 level acts as a gauge of the permissive state of the cell and thereby regulates the length of the early prereplicative phase of the infection.
Collapse
|
research-article |
31 |
63 |
17
|
Schneider H, Spielhofer P, Kaelin K, Dötsch C, Radecke F, Sutter G, Billeter MA. Rescue of measles virus using a replication-deficient vaccinia-T7 vector. J Virol Methods 1997; 64:57-64. [PMID: 9029530 DOI: 10.1016/s0166-0934(96)02137-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A system which allows the reconstitution of measles virus (MV) from cloned cDNA is described. The severely host cell restricted vaccinia vector MVA-T7 expressing bacteriophage T7 RNA polymerase was used to generate full-length antigenomic MV RNA and simultaneously the mRNAs encoding the viral N, P and L proteins in order to produce replicationally and transcriptionally active nucleocapsids. The functionality of the N, P and L proteins was demonstrated first by their ability to rescue MV specific subgenomic RNAs. Assembly and budding of reconstituted MV was shown by syncytia formation and subsequently by virus isolation. The inability of MVA-T7 to produce progeny virus in most mammalian cells circumvents the necessity to separate the reconstituted MV from the MVA-T7 helper virus. Since all components are expressed transiently, this system is especially suitable for studying the functions of N, P and L. Furthermore, it is useful for investigating later steps in the MV life cycle.
Collapse
|
|
28 |
59 |
18
|
Nilsson C, Mäkitalo B, Berglund P, Bex F, Liljeström P, Sutter G, Erfle V, ten Haaft P, Heeney J, Biberfeld G, Thorstensson R. Enhanced simian immunodeficiency virus-specific immune responses in macaques induced by priming with recombinant Semliki Forest virus and boosting with modified vaccinia virus Ankara. Vaccine 2001; 19:3526-36. [PMID: 11348720 DOI: 10.1016/s0264-410x(01)00034-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The immunogenicity of two vector-based vaccines, either given alone or in a prime-boost regimen, was investigated. Cynomolgus macaques were immunised with modified vaccinia virus Ankara (MVA) expressing simian immunodeficiency virus (SIV)macJ5 env, gag-pol, nef, rev, and tat genes (MVA-SIVmac) or primed with a Semliki forest virus (SFV) vaccine expressing the same genes (SFV-SIVmac) and boosted with MVA-SIVmac. Generally, antibody responses, T-cell proliferative responses and cytotoxic T-cell responses remained low or undetectable in vaccinees receiving MVA-SIVmac or SFV-SIVmac alone. In contrast, monkeys who first received SFV-SIVmac twice and then were boosted with MVA-SIVmac showed increased antibody responses as well as high T-cell proliferative responses. Three of these vaccinees had cytotoxic T-lymphocytes directed against three or four of the gene products. No evidence of protection was seen against an intrarectal heterologous SIVsm challenge given 3 months after the last immunisation. The study demonstrates a prime-boost strategy that efficiently induces both humoral and cellular immune responses.
Collapse
|
Research Support, Non-U.S. Gov't |
24 |
58 |
19
|
Fischer SF, Ludwig H, Holzapfel J, Kvansakul M, Chen L, Huang DCS, Sutter G, Knese M, Häcker G. Modified vaccinia virus Ankara protein F1L is a novel BH3-domain-binding protein and acts together with the early viral protein E3L to block virus-associated apoptosis. Cell Death Differ 2005; 13:109-18. [PMID: 16003387 DOI: 10.1038/sj.cdd.4401718] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Infection with viruses often protects the infected cell against external stimuli to apoptosis. Here we explore the balance of apoptosis induction and inhibition for infection with the modified vaccinia virus Ankara (MVA), using two MVA mutants with experimentally introduced deletions. Deletion of the E3L-gene from MVA transformed the virus from an inhibitor to an inducer of apoptosis. Noxa-deficient mouse embryonic fibroblasts (MEF) were resistant to MVA-DeltaE3L-induced apoptosis. When the gene encoding F1L was deleted from MVA, apoptosis resulted that required Bak or Bax. MVA-DeltaF1L-induced apoptosis was blocked by Bcl-2. When expressed in HeLa cells, F1L blocked apoptosis induced by forced expression of the BH3-only proteins, Bim, Puma and Noxa. Finally, biosensor analysis confirmed direct binding of F1L to BH3 domains. These data describe a molecular framework of how a cell responds to MVA infection by undergoing apoptosis, and how the virus blocks apoptosis by interfering with critical steps of its signal transduction.
Collapse
|
|
20 |
55 |
20
|
Sutter G, Ramsey-Ewing A, Rosales R, Moss B. Stable expression of the vaccinia virus K1L gene in rabbit cells complements the host range defect of a vaccinia virus mutant. J Virol 1994; 68:4109-16. [PMID: 8207789 PMCID: PMC236334 DOI: 10.1128/jvi.68.7.4109-4116.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA), having acquired genomic deletions during passage in chicken embryo fibroblasts, is highly attenuated and unable to productively infect most mammalian cell lines. Multiplication in rabbit kidney-derived RK13 cells, but not other nonpermissive cells, can be restored by insertion of the vaccinia virus K1L gene into the MVA genome. During nonproductive infection of RK13 cells by MVA, transcription of representative viral early genes was revealed by Northern (RNA) blotting, whereas synthesis of an intermediate mRNA and replication of viral DNA could not be detected. Despite the persistence of viral early mRNA for at least several hours, synthesis of virus-induced polypeptides occurred only during the first hour and was followed by abrupt inhibition of all protein synthesis. Transfection of RK13 cells with a eukaryotic expression plasmid that contained the K1L gene allowed MVA infection to proceed to late stages of viral protein synthesis. Moreover, RK13 cell lines that stably expressed the K1L gene were permissive for MVA as well as a K1E deletion mutant of the WR strain of vaccinia virus. This is the first description of the complementation of a poxvirus mutant by cells that stably express a viral gene.
Collapse
|
research-article |
31 |
51 |
21
|
Mäkitalo B, Lundholm P, Hinkula J, Nilsson C, Karlén K, Mörner A, Sutter G, Erfle V, Heeney JL, Wahren B, Biberfeld G, Thorstensson R. Enhanced cellular immunity and systemic control of SHIV infection by combined parenteral and mucosal administration of a DNA prime MVA boost vaccine regimen. J Gen Virol 2004; 85:2407-2419. [PMID: 15269383 DOI: 10.1099/vir.0.79869-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The immunogenicity and protective efficacy of a DNA and recombinant modified vaccinia Ankara (MVA) vaccine administered by two different routes were investigated. DNA expressing HIV-1 IIIB env, gag, RT, rev, tat and nef, and MVA expressing HIV-1 IIIB nef, tat and rev and simian immunodeficiency virus (SIV) macJ5 gag/pol and vaccinia HIV-1 env, were used as immunogens. Four cynomolgus macaques received DNA intramuscularly (i.m.) at month 0 and intrarectally (i.r.) and intra-orally (i.o.) at 2 months, followed by MVA i.m. at 4 months and i.r. and i.o. at 8 months. Another group of four monkeys received the same immunogens but only i.m.. Overall, stronger cellular immune responses measured by ELISPOT and T-cell proliferation assay were detected in the group primed i.m. and boosted mucosally. Following homologous intravenous simian-human immunodeficiency virus (SHIV) challenge, one of eight vaccinated animals was completely protected. This monkey, immunized i.m. and i.r.+i.o., exhibited the highest levels of HIV Env, Nef and Tat antibodies, high HIV Tat cytotoxic T-lymphocyte activity and T-lymphocyte proliferative responses to HIV Env. Four weeks post-challenge none of the monkeys immunized i.m. and i.r.+i.o., and only two out of four animals immunized i.m., demonstrated detectable plasma viral RNA levels. In contrast, all eight control animals had demonstrable plasma viral RNA levels 4 weeks post-challenge. Thus, stronger cellular immune responses and reduction of challenge virus burden were demonstrated in animals immunized i.m. as well as mucosally, compared with animals immunized i.m. only. The breadth and magnitude of the induced immune responses correlated with protective efficacy.
Collapse
|
|
21 |
44 |
22
|
Kreijtz J, Suezer Y, de Mutsert G, van den Brand J, van Amerongen G, Schnierle B, Kuiken T, Fouchier R, Löwer J, Osterhaus A, Sutter G, Rimmelzwaan G. Preclinical evaluation of a modified vaccinia virus Ankara (MVA)-based vaccine against influenza A/H5N1 viruses. Vaccine 2009; 27:6296-9. [DOI: 10.1016/j.vaccine.2009.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/03/2009] [Accepted: 03/09/2009] [Indexed: 11/15/2022]
|
|
16 |
35 |
23
|
Kohleisen B, Shumay E, Sutter G, Foerster R, Brack-Werner R, Nuesse M, Erfle V. Stable expression of HIV-1 Nef induces changes in growth properties and activation state of human astrocytes. AIDS 1999; 13:2331-41. [PMID: 10597774 DOI: 10.1097/00002030-199912030-00004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Nef was shown to be the predominant viral protein expressed in HIV-1-infected astrocytes in vivo and in vitro suggesting a distinct role of Nef in this cell type. Nef-induced activation of T cells is well described, whereas the functional activities of Nef in astrocytes are unknown. Our aim was to examine the effect of Nef on growth properties and activation of astrocytes. DESIGN Human Nef-expressing astrocytic cell lines were established by stable transfection with different wild-type and mutant nef genes derived from laboratory isolates and brain tissue. METHODS Nef-expressing astrocytes were characterized in terms of growth properties (proliferation, growth in soft agar, focus formation) and morphology. Apoptotic cell death and expression of activation markers were determined by fluorescent antibody cell sorting. RESULTS Astrocytic cell lines revealed persistent Nef expression--detectable at the levels of mRNA and protein--and showed altered growth properties and morphology. Elevated expression of activation markers such as glial fibrillary acidic protein and CD88 (complement receptor C5a) was observed; these are regarded as markers for inflammatory processes in the brain. This effect was independent of the nef type or the expression level of the Nef protein. In contrast with previous reports no evidence for increased apoptotic cell death was found in astrocytes expressing Nef stably. CONCLUSIONS Our findings suggest that Nef changes the cellular properties of astrocytes, thus contributing to astrocyte activation and induction of astrogliosis in the central nervous system of individuals with AIDS.
Collapse
|
|
26 |
33 |
24
|
Weidinger G, Ohlmann M, Schlereth B, Sutter G, Niewiesk S. Vaccination with recombinant modified vaccinia virus Ankara protects against measles virus infection in the mouse and cotton rat model. Vaccine 2001; 19:2764-8. [PMID: 11282186 DOI: 10.1016/s0264-410x(00)00531-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Modified vaccinia virus Ankara (MVA) has been used as an experimental vaccine vector against respiratory infections. We have tested the safety and immunogenicity of a recombinant virus expressing the hemagglutinin of measles virus (MVA-MV-H) using the mouse model of measles virus induced encephalitis and the cotton rat model for respiratory infection. MVA-MV-H proved to induce a TH1 response, neutralizing antibodies and conferred protection against both encephalitis and lung infection. The cotton rat is very sensitive to infection with replication competent vaccinia virus. In these animals MVA-MV-H proved to be a very well tolerated vaccine. However, the efficiency in the presence of MV specific maternal antibodies was low (even using a prime-boost strategy) and therefore might have to be improved.
Collapse
|
|
24 |
27 |
25
|
Valdez Graham V, Sutter G, José MV, García-Carranca A, Erfle V, Moreno Mendoza N, Merchant H, Rosales R. Human tumor growth is inhibited by a vaccinia virus carrying the E2 gene of bovine papillomavirus. Cancer 2000; 88:1650-62. [PMID: 10738224 DOI: 10.1002/(sici)1097-0142(20000401)88:7<1650::aid-cncr20>3.0.co;2-l] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Papillomavirus is the etiologic agent associated with cervical carcinoma. The papilloma E2 protein is able to regulate negatively the expression of E6 and E7 papilloma oncoproteins. Therefore, a new, highly attenuated vaccinia virus known as modified vaccinia virus Ankara (MVA), which carries the papillomavirus E2 gene, was used for the treatment of tumors associated with human papillomavirus. METHODS Analysis of expression of the E2 gene from the recombinant vaccinia virus was performed by reverse transcription-polymerase chain reaction of RNA isolated from infected cells. Detection of the E2 protein was done by immunoprecipitation from proteins labeled with [(35)S]-methionine, isolated from infected cells. The therapeutic effect of the MVA E2 recombinant virus over human tumors was tested in nude mice bearing tumors generated by inoculation of HeLa cells. Series of 10 nude mice with tumors of different sizes were injected with MVA, MVA E2, or phosphate-buffered saline. Tumor size was monitored every week to assess growth. RESULTS The MVA E2 recombinant virus efficiently expressed the E2 protein in BS-C-1 cells. This protein was able to repress, in vivo, the papillomavirus P105 promoter, which controls the expression of the E6 and E7 oncoproteins. In nude mice the MVA E2 virus reduced tumor growth very efficiently. In contrast, tumors continued to grow in mice treated with MVA or PBS. The life expectancy of MVA E2-treated mice was also increased three- to fourfold compared with that of animals that received MVA or PBS. CONCLUSIONS The growth of human tumors was efficiently inhibited by the MVA E2 recombinant vaccinia virus. The absence of side effects in treated animals suggested that the MVA E2 virus is a safe biologic agent that could in the future be used in humans for the treatment of cervical carcinoma.
Collapse
|
|
25 |
22 |