1
|
Abd El-Hack ME, El-Saadony MT, Shafi ME, Qattan SYA, Batiha GE, Khafaga AF, Abdel-Moneim AME, Alagawany M. Probiotics in poultry feed: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2020; 104:1835-1850. [PMID: 32996177 DOI: 10.1111/jpn.13454] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
The use of antibiotics to maintain animal well-being, promote growth and improve efficiency has been practised for more than 50 years. However, as early as the 1950s, researchers identified concern on the development of resistant bacteria for the antibiotics streptomycin and tetracycline used in turkeys and broilers respectively. These findings laid the groundwork for agricultural officials to impose stricter regulatory parameters on the use of antibiotics in poultry feeds. Probiotics are live micro-organisms included in the diet of animals as feed additives or supplements. Commonly known as a direct-fed microbial, probiotics provide beneficial properties to the host, primarily through action in the gastrointestinal tract (GIT) of the animal. Supplementation of probiotics in the diet can improve animal health and performance, through contributions to gut health and nutrient use. For instance, supplementation of probiotics has been demonstrated to benefit farm animals in immune modulation, structural modulation and increased cytokine production, which positively affect the intestinal mucosal lining against pathogens. Bacillus subtilis has been a popular bacterium used within the industry and was shown to improve intestinal villus height. Increasing the villus height and structure of the crypts in the GIT allows for the improvement of nutrient digestion and absorption. Tight junctions maintain important defences against pathogenic bacteria and cellular homeostasis. Heat stress can be a major environmental challenge in the poultry industry. Heat stress causes the bird to fluctuate its internal core temperature beyond their comfort zone. To overcome such challenges, poultry will attempt to balance its heat production and dissipation through behavioural and physiological adaptation mechanisms.
Collapse
|
Review |
5 |
176 |
2
|
El-Tarabily KA, El-Saadony MT, Alagawany M, Arif M, Batiha GE, Khafaga AF, Elwan HA, Elnesr SS, E. Abd El-Hack M. Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi J Biol Sci 2021; 28:5145-5156. [PMID: 34466092 PMCID: PMC8380992 DOI: 10.1016/j.sjbs.2021.05.033] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
The increase of resistant bacteria puts a huge pressure on the antimicrobials in current use. Antimicrobial resistance (AMR) results from antibiotic misuse and abuse over many years and is a global financial burden. New polices must be developed for the use of antimicrobials and to continue research efforts to mitigate AMR. It is essential to target the most harmful bacteria and concentrate on their mechanisms of resistance to develop successful antimicrobials. Essential oils (EOs) are occur naturally in plants and have long been used as antimicrobials, but most have not been researched. This review explores EOs as alternative antimicrobials, investigating their ability to decrease or inhibit biofilm formation, and assess their ability to contribute to AMR control. Low concentrations of EOs can inhibit Gram-positive and Gram-negative pathogenic bacteria. Some EOs have demonstrated strong anti-biofilm activities. If EOs are successful against biofilm formation, particularly in bacteria developing AMR, they could be incorporated into new antimicrobials. Therefore, there is a need to investigate these EOs' potential, particularly for surface disinfection, and against bacteria from food, clinical and non-clinical environments.
Collapse
|
Review |
4 |
108 |
3
|
Yaqoob MU, El-Hack MEA, Hassan F, El-Saadony MT, Khafaga AF, Batiha GE, Yehia N, Elnesr SS, Alagawany M, El-Tarabily KA, Wang M. The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance, gut microbiome, and intestinal morphology. Poult Sci 2021; 100:101143. [PMID: 34062442 PMCID: PMC8170421 DOI: 10.1016/j.psj.2021.101143] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/12/2021] [Accepted: 03/14/2021] [Indexed: 12/02/2022] Open
Abstract
Prebiotics may modify the biological processes in the chickens' gastrointestinal tract to improve poultry performance and health. Prebiotics are natural feed additives that offer many economic advantages by decreasing mortality rates, increasing growth rates, and improving birds' feed efficiency. Prebiotic action potentially affects the degradation of indigestible dietary compounds, the synthesis of nitrogen components and vitamins, and simplifies the removal of undesirable elements in the diet. Prebiotics could also induce desirable gut microbiome modifications and affect host metabolism and immune health. It is worth mentioning that gut bacteria metabolize the prebiotic compounds into organic compounds that the host can subsequently use. It is important to limit the concept of prebiotics to compounds that influence the metabolism of resident microorganisms. Any medicinal component or feed ingredient beneficial to the intestinal microecosystem can be considered a prebiotic. In this review, the impacts of prebiotics on the gut microbiome and physiological structure are discussed, emphasizing the poultry's growth performance. The current review will highlight the knowledge gaps in this area and future research directions.
Collapse
|
Review |
4 |
69 |
4
|
Algammal AM, Hetta HF, Batiha GE, Hozzein WN, El Kazzaz WM, Hashem HR, Tawfik AM, El-Tarabili RM. Virulence-determinants and antibiotic-resistance genes of MDR-E. coli isolated from secondary infections following FMD-outbreak in cattle. Sci Rep 2020; 10:19779. [PMID: 33188216 PMCID: PMC7666185 DOI: 10.1038/s41598-020-75914-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023] Open
Abstract
This study aimed to evaluate the prevalence, multidrug-resistance traits, PCR-detection of virulence, and antibiotic-resistance genes of E. coli isolated from secondary infections following FMD-outbreak in cattle. A total of 160 random samples were gathered from private dairy farms in Damietta Province, Egypt. The specimens were subjected to bacteriological examination, serotyping, congo-red binding assay, antibiogram-testing, and PCR-monitoring of virulence-determinant genes (tsh, phoA, hly, eaeA, sta, and lt) as well as the antibiotic-resistance genes (blaTEM, blaKPC, and blaCTX). The prevalence of E. coli was 30% (n = 48) distributed in 8 serogroups (40/48, 83.3%), while 8 isolates (8/48, 16.6%) were untypable. Besides, 83.3% of the examined isolates were positive for CR-binding. The tested strains harbored the virulence genes phoA, hly, tsh, eaeA, sta, and lt with a prevalence of 100% and 50%, 45.8%, 25%, 8.4%, and 6.2%, respectively. Furthermore, 50% of the recovered strains were multidrug-resistant (MDR) to penicillins, cephalosporins, and carbapenems, and are harboring the blaTEM, blaCTX, and blaKPC genes. Moreover, 25% of the examined strains are resistant to penicillins, and cephalosporins, and are harboring the blaTEM and blaCTX genes. To the best of our knowledge, this is the first report concerning the E. coli secondary bacterial infections following the FMD-outbreak. The emergence of MDR strains is considered a public health threat and indicates complicated treatment and bad prognosis of infections caused by such strains. Colistin sulfate and levofloxacin have a promising in vitro activity against MDR-E. coli.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
51 |
5
|
Algammal AM, El-Sayed ME, Youssef FM, Saad SA, Elhaig MM, Batiha GE, Hozzein WN, Ghobashy MOI. Prevalence, the antibiogram and the frequency of virulence genes of the most predominant bacterial pathogens incriminated in calf pneumonia. AMB Express 2020; 10:99. [PMID: 32472209 PMCID: PMC7260340 DOI: 10.1186/s13568-020-01037-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/23/2020] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was to investigate the prevalence, antibiotic resistance and certain virulence genes of the most predominant bacterial pathogens causing BRD. A total of 225 calves; 55 apparently healthy and 170 diseased; were sampled. Bacteriological examination, antimicrobial susceptibility testing and PCR based detection of some virulence genes were performed. In addition, the serotyping of E. coli was performed using the slide agglutination test. The most predominant bacterial pathogens retrieved from apparently healthy calves were E. coli (16.4%) and S. aureus (10.9%), and in pneumonic calves were E. coli (23.5%), P. vulgaris (12.4%) and S. aureus (11.8%). The most prevalent virulence gene in E. coli was the fimH gene (100%), followed by eaeA gene (24.5%) and hly gene (20.4%). All the examined S. aureus strains harbored spa and coa genes; likewise, all P. multocida strains harbored toxA gene. The majority of the isolated strains displayed remarkable sensitivity to norfloxacin and enrofloxacin; furthermore, the retrieved E. coli strains exhibited multidrug-resistance to gentamicin, erythromycin, streptomycin and trimethoprim-sulphamethoxazole, in addition, the isolated S. aureus and P. aeruginosa strains showed multidrug-resistance to amoxicillin, ampicillin and tetracycline. E. coli serogroups including O18, O143, O1, and O6 were retrieved from pneumonic calves as the first report in Egypt. In conclusion, the synergism between the conventional and genotypic analysis is an effective gadget for the characterization of bacterial pathogens causing BRD. Continuous surveillance of antimicrobial susceptibility is essential to select the drug of choice due to the development of multidrug-resistant strains.
Collapse
|
Journal Article |
5 |
37 |
6
|
Elgeddawy SA, Shaheen HM, El-Sayed YS, Abd Elaziz M, Darwish A, Samak D, Batiha GE, Mady RA, Bin-Jumah M, Allam AA, Alagawany M, Taha AE, El-Mleeh A, El-Sayed SAA, Abd El-Hack ME, Elnesr SS. Effects of the dietary inclusion of a probiotic or prebiotic on florfenicol pharmacokinetic profile in broiler chicken. J Anim Physiol Anim Nutr (Berl) 2020; 104:549-557. [PMID: 32017274 DOI: 10.1111/jpn.13317] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/24/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
We evaluated the effect of prebiotic or probiotic as feed additives on florfenicol kinetic in broilers feed. Unsexed two hundred, thirty-five-day-old broiler chickens, were put in four equal groups (n = 50). The first group was administrated florfenicol intravenous at 30 mg/kg body weight (BW) only once dosage without pre- or probiotic administration to determine the bioavailability. While, the second group was administrated florfenicol (intracrop routes; a dosage of 30 mg/kg BW for five progressive days) without pre- or probiotic co-administration. The third and the fourth groups were administrated the same dose of florfenicol (intracrop route) for five successive days, followed by 10 days of prebiotic or probiotic treatment respectively. The plasma florfenicol % was identified by high-pressure liquid chromatography (HPLC) after the first florfenicol administration (intravenous or intracrop routes) in all groups. Then, the residual levels of florfenicol were determined in liver, kidney and muscle tissues from the second, third and fourth groups which were exposed to florfenicol orally. Our results demonstrated that broilers pre-treated with prebiotic or probiotic significantly increased Cmax , AUC0- t , AUC0-inf as well as AUMC values, while significant drop was recorded in V/F and CL/F. Prebiotic or probiotic influenced the cumulative effect of florfenicol in liver and kidney tissues of treated birds.
Collapse
|
Journal Article |
5 |
25 |
7
|
Johnson TO, Adegboyega AE, Iwaloye O, Eseola OA, Plass W, Afolabi B, Rotimi D, Ahmed EI, Albrakati A, Batiha GE, Adeyemi OS. Computational study of the therapeutic potentials of a new series of imidazole derivatives against SARS-CoV-2. J Pharmacol Sci 2021; 147:62-71. [PMID: 34294374 PMCID: PMC8141268 DOI: 10.1016/j.jphs.2021.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Owing to the urgent need for therapeutic interventions against the SARS-coronavirus 2 (SARS-CoV-2) pandemic, we employed an in silico approach to evaluate the SARS-CoV-2 inhibitory potential of newly synthesized imidazoles. The inhibitory potentials of the compounds against SARS-CoV-2 drug targets - main protease (Mpro), spike protein (Spro) and RNA-dependent RNA polymerase (RdRp) were investigated through molecular docking analysis. The binding free energy of the protein-ligand complexes were estimated, pharmacophore models were generated and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of the compounds were determined. The compounds displayed various levels of binding affinities for the SARS-CoV-2 drug targets. Bisimidazole C2 scored highest against all the targets, with its aromatic rings including the two imidazole groups contributing to the binding. Among the phenyl-substituted 1H-imidazoles, C9 scored highest against all targets. C11 scored highest against Spro and C12 against Mpro and RdRp among the thiophene-imidazoles. The compounds interacted with HIS 41 - CYS 145 and GLU 288 – ASP 289 – GLU 290 of Mpro, ASN 501 of Spro receptor binding motif and some active site amino acids of RdRp. These novel imidazole compounds could be further developed as drug candidates against SARS-CoV-2 following lead optimization and experimental studies.
Collapse
|
Journal Article |
4 |
24 |
8
|
Abdeen EE, Mousa WS, Abdelsalam SY, Heikal HS, Shawish RR, Nooruzzaman M, Soliman MM, Batiha GE, Hamad A, Abdeen A. Prevalence and Characterization of Coagulase Positive Staphylococci from Food Products and Human Specimens in Egypt. Antibiotics (Basel) 2021; 10:antibiotics10010075. [PMID: 33466771 PMCID: PMC7829985 DOI: 10.3390/antibiotics10010075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains have veterinary and public health importance as they are responsible for a wide range of difficult to treat infections and food poisoning. Two hundred samples (50 samples each of minced meat, beef luncheon, Karish cheese, and human samples (pus swab from open wounds)) were cultured, and MRSA strains were identified using disk diffusion tests and mecA gene-based PCR. A total of 35% (70/200) of the examined samples were confirmed as coagulase-positive S. aureus in minced meat (46%), beef luncheon (44%), Karish cheese (44%), and human samples (22%). The MRSA strains showed resistance to amoxicillin (91.4%), penicillin (97.1%), cefoxitin (85.7%), cephradine (82.9%), tetracycline (57.2%), and erythromycin (52.8%). More than half of the tested S. aureus isolates harbored the mecA gene. The sequence analysis of the mecA gene from the minced meat, Karish cheese, and human samples revealed high genetic similarities between the S. aureus isolates from these sources. In conclusion, our findings indicate a risk for the transmission of the mecA gene of S. aureus across the food chain between humans and animal food products. Further studies should focus on finding additional epidemiological aspects of the MRSA strains in food chain.
Collapse
|
Journal Article |
4 |
15 |
9
|
Hussein MA, Rehan IF, Rehan AF, Eleiwa NZ, Abdel-Rahman MAM, Fahmy SG, Ahmed AS, Youssef M, Diab HM, Batiha GE, Alrashood ST, Khan HA, Shanab O, Ahmed E, Hassan H, Elnagar A, Elkelish A, Hesham AEL, Maky MA. Egg Yolk IgY: A Novel Trend of Feed Additives to Limit Drugs and to Improve Poultry Meat Quality. Front Vet Sci 2020; 7:350. [PMID: 32760743 PMCID: PMC7371932 DOI: 10.3389/fvets.2020.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023] Open
Abstract
Drugs that are commonly used in poultry farms can potentially cause a detrimental effect on meat consumers as a result of chemical residues. Therefore, seeking a natural alternative is crucial for the health of the consumers. The egg yolk immunoglobulin Y (IgY) is a promising natural replacement for antibiotics in the broilers' diet. There is a scarce focus on the influence of probiotics and IgY on the quality and the nutritive values of broiler meat and whether it can efficiently displace the anti-microbial power of antibiotics. Herein we used 40 Ross chicks (1.2 ± 0.43 days old) and separated them into four groups with variant feed additives (basal diet "control," probiotic, IgY, and probiotic + IgY). Our findings showed that the combination of probiotic and IgY supplementation enhanced the carcass quality traits and decreased the pH values that could retard spoilage due to bacteria and improve shelf life and meat quality. The same group also achieved a significant reduction in thiobarbituric acid value, indicating an improvement of meat quality. Moreover, color, shear force, water holding capacity, and cooking loss were most acceptable in broiler meat supplemented with IgY, which confirmed the highest carcass quality. Notably, the weight gain in the combination group has been greatly increased. Also, the protein percentage was the highest (22.26 ± 0.29, P < 0.001) in this combined supplementation group, which revealed the highest nutritive values. Staphylococcus aureus and Escherichia coli could not be detected in the meat of the probiotics group and/or in the combined treatment group. Interestingly, the IgY group showed an evidence of the killing power (log colony-forming units per milliliter) of S. aureus and Listeria monocytogenes at 1,500 μg/ml. Our findings, in vitro as well as in vivo, revealed that the combination group had antimicrobial bioactivity and enhanced the chickens' immunity. Therefore, IgY, a novel trend of feed additives, can be used to limit drugs. Additionally, the mortality percentage recorded was zero in all groups that received feed supplementation, while the combination group reached the best financial advantages. We concluded that feeding IgY powder with probiotic is a frontier to improve the productivity, immunity, and meat quality of broilers.
Collapse
|
research-article |
5 |
12 |
10
|
Batiha GE, El-Far AH, El-Mleeh AA, Alsenosy AA, Abdelsamei EK, Abdel-Daim MM, El-Sayed YS, Shaheen HM. In vitro study of ivermectin efficiency against the cattle tick, Rhipicephalus ( Boophilus) annulatus, among cattle herds in El-Beheira, Egypt. Vet World 2019; 12:1319-1326. [PMID: 31641314 PMCID: PMC6755390 DOI: 10.14202/vetworld.2019.1319-1326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND AIM Ivermectin (IVM) has been used in veterinary practice to control different parasitic infestations over the past two decades. This study aimed to re-assess the acaricidal effects of IVM, as well as to evaluate its efficacy against Rhipicephalus (Boophilus) annulatus by determining the mortality rate, γ-aminobutyric acid (GABA) level, and oxidative/antioxidative homeostasis (malondialdehyde [MDA] levels and glutathione S-transferase [GST] activities). MATERIALS AND METHODS Adult female Rhipicephalus (Boophilus) annulatus were picked from cattle farms in El-Beheira Governorate, Egypt. Ticks were equally allocated to seven experimental groups to assess the acaricidal potential of IVM chemotherapeutics in controlling R. (B.) annulatus. IVM was prepared at three concentrations (11.43, 17.14, and 34.28 µM of IVM). RESULTS Mortality rate was calculated among the treated ticks. In addition, GABA, GST, and MDA biomarker levels were monitored. The data revealed a noticeable change in GST activity, a detoxification enzyme found in R. (B.) annulatus, through a critical elevation in mortality percentage. CONCLUSION IVM-induced potent acaricidal effects against R. (B.) annulatus by repressing GST activity for the initial 24 h after treatment. Collectively, this paper reports the efficacy of IVM in a field population of R. (B.) annulatus in Egypt.
Collapse
|
research-article |
6 |
10 |
11
|
Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE, Pottoo FH, Pottoo FH. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr Drug Metab 2022; 23:735-756. [PMID: 35980054 DOI: 10.2174/1389200223666220817115003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.
Collapse
|
Review |
3 |
5 |
12
|
Al-Kuraishy HM, Al-Gareeb AI, Atanu FO, El-Zamkan MA, Diab HM, Ahmed AS, Al-Maiahy TJ, Obaidullah AJ, Alshehri S, Ghoniem MM, Batiha GE. Maternal Transmission of SARS-CoV-2: Safety of Breastfeeding in Infants Born to Infected Mothers. Front Pediatr 2021; 9:738263. [PMID: 34956971 PMCID: PMC8696119 DOI: 10.3389/fped.2021.738263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a recent epidemic disease caused by severe acute respiratory syndrome virus type 2 (SARS-CoV-2). In pregnancy, SARS-Cov-2 infection creates additional alarm due to concerns regarding the potential for transmission from the mother to the baby during both the antenatal and postpartum times. In general, breastfeeding is seldom disallowed because of infection of the mother. However, there are few exceptions with regards to certain infectious organisms with established transmission evidence from mother to infant and the link of infection of a newborn with significant morbidity and mortality. It is confirmed that pregnant women can become infected with SARS-CoV-2, although the debate on the possible vertical transmission of SARS-CoV-2 infection during pregnancy is still open. In this regard, the literature is still poor. On the contrary, the information on the safety of breastfeeding even during infections seems reassuring when the mother takes the necessary precautions. However, there are still answered questions regarding the precautions to be taken during breastfeeding by COVID-19 patients. This paper reviews the existing answers to these and many other questions. This review therefore presents a summary of the present-day understanding of infection with SARS-CoV-2 and discusses the answers around the maternal transmission of COVID-19 and the potential threat of breastfeeding to babies born to infected pregnant mothers. In conclusion, intrauterine transmission of SARS-CoV-2 infection is less likely to occur during pregnancy. Most studies suggest that COVID-19 is not transmitted through breast milk. Correspondingly, COVID-19-infected neonates might acquire the infection via the respiratory route because of the postnatal contact with the mother rather than during the prenatal period. International organizations encourage breastfeeding regardless of the COVID-19 status of the mother or child as long as proper hygienic and safety measures are adhered to so as to minimize the chance of infant infection by droplets and direct contact with the infected mother. Pasteurized donor human milk or infant formula as supplemental feeding can be quite beneficial in the case of mother-infant separation till breastfeeding is safe.
Collapse
|
Review |
4 |
5 |
13
|
Omoboyowa DA, Balogun TA, Saibu OA, Chukwudozie OS, Alausa A, Olubode SO, Aborode AT, Batiha GE, Bodun DS, Musa SO. Structure-based discovery of selective CYP 17A 1 inhibitors for Castration-resistant prostate cancer treatment. Biol Methods Protoc 2021; 7:bpab026. [PMID: 35146123 PMCID: PMC8824735 DOI: 10.1093/biomethods/bpab026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy found in men and the second leading cause of cancer-related death worldwide. Castration-resistant PCa (CRPC) is defined by PCa cells that stop responding to hormone therapy. Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) plays a critical role in the biosynthesis of androgens in humans. Androgen signaling cascade is a principal survival pathway for PCa cells and androgen-deprivation therapy (ADT) remains the key treatment for patients marked with locally advanced and metastatic PCa cells. Available synthetic drugs have been reported for toxicity, drug resistance, and decreasing efficacy. Thus, the design of novel selective inhibitors of CYP17A1 lyase would help circumvent associated side effects and improve pharmacological activities. Therefore, we employed structural bioinformatics techniques via molecular docking; molecular mechanics generalized born surface area (MM-GBSA), molecular dynamics (MD) simulation, and pharmacokinetic study to identify putative CYP17A1 lyase inhibitors. The results of the computational investigation showed that the Prunus dulcis compounds exhibited higher binding energy than the clinically approved abiraterone acetate. The stability of the ligand with the highest binding affinity (quercetin-3-o-rutinoside) was observed during MD simulation for 10 ns. Quercetin-3-o-rutinoside was observed to be stable within the active site of CYP17A1Lyase throughout the simulation period. The result of the pharmacokinetic study revealed that these compounds are promising therapeutic agents. Collectively, this study proposed that bioactive compounds from P. dulcis may be potential selective inhibitors of CYP17A1Lyase in CRPC treatments.
Collapse
|
research-article |
4 |
4 |
14
|
Elnagar A, El-Dawy K, El-Belbasi HI, Rehan IF, Embark H, Al-Amgad Z, Shanab O, Mickdam E, Batiha GE, Alamery S, Fouad SS, Cavalu S, Youssef M. Ameliorative Effect of Oxytocin on FBN1 and PEPCK Gene Expression, and Behavioral Patterns in Rats' Obesity-Induced Diabetes. Front Public Health 2022; 10:777129. [PMID: 35462799 PMCID: PMC9021505 DOI: 10.3389/fpubh.2022.777129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Amelioration of hyperinsulinemia and insulin resistance associated with obesity is a cardinal target for therapeutics. Therefore, we investigated the relation of Fibrilln-1 (FBN1) mRNA expression and hepatic phosphoenolpyruvate caboxykinase (PEPCK) enzyme to the ameliorative impact of oxytocin on obesity-induced diabetes, suggesting glycogenolysis markers in diabetic models. Four groups of forty male Wistar rats were formed (n = 10): a control group fed basal diet and intraperitoneal injections of saline; an oxytocin-injected group; a diet-induced obese group fed a high-fat/high-sugar diet and injected with saline; a diet-induced obese group injected with oxytocin. Depending on blood glucose levels, obese groups were further sub-grouped into prediabetic, and diabetic rats, with 5 rats each, at the ninth and the 16th week of the feeding period, respectively. FBN1 expression and PEPCK activity were determined using the qPCR technique and some biochemical parameters (glycemic, lipid profile, kidney, and liver functions) were determined using kits. Obese groups showed an elevation of brain FBN1 expression, high serum lipid profile, high glucose level, and a deleterious impact on liver and kidney functions. Obese groups showed the stimulator effect of the PEPCK enzyme and time-dependent pathological changes in renal and hepatic tissues. The motor activities were negatively correlated with FBN1 gene expression in prediabetic and diabetic rats. In addition to our previous review of the crucial role of asprosin, here we showed that oxytocin could ameliorate obesity-induced diabetes and decrease FBN1 gene expression centrally to block appetite. Oxytocin caused decreases in PEPCK enzyme activity as well as glycogenolysis in the liver. Therefore, oxytocin has a potential effect on FBN1 expression and PEPCK enzyme activity in the obesity-induced diabetic-rat model.
Collapse
|
|
3 |
3 |
15
|
Rehan IF, Rehan AF, Abouelnaga AF, Hussein MA, El-Ghareeb WR, Eleiwa NZ, Elnagar A, Batiha GE, Abdelgawad MA, Ghoneim MM, Hafiz AA, Gadallah HE, Abdel-Hamid SE, El-Naby GRH, Benowitz BM, Maky MA. Impact of Dietary Egg Yolk IgY Powder on Behavior, Meat Quality, Physiology, and Intestinal Escherichia coli Colonization of Broiler Chicks. Front Vet Sci 2022; 9:783094. [PMID: 35425829 PMCID: PMC9004463 DOI: 10.3389/fvets.2022.783094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The current study investigated the impact of different concentrations of purified egg yolk immunoglobulin Y (IgY) supplemental food on the growth performance, behaviors, cecal contents of Escherichia coli, and the meat quality of broiler chicks. Four dietary groups were given to 180 female Ross broiler chicks at random (n = 45 for each). The control group was fed a standard diet only, whereas the other three experimental groups were fed the same basic diet supplemented with 1,500, 3,000, and 4,000 μg/ml IgY for a duration of 42 days. Significant greater behavioral activities, including, feeding, drinking, and dust bathing (p < 0.05), in the birds fed 4,000 μg/ml of IgY compared to the control group were observed. Greater weight gains of the crop, proventriculus, gizzard, and intestine (p < 0.05) were observed for broiler chicks fed 4,000 μg/ml of IgY when compared to the control group. After 3 weeks of feeding, the groups fed 3,000 and 4,000 μg/ml IgY had significant lower E. coli counts in the muscle and cecal contents (p < 0.05) when compared to the control group. Moreover, dietary supplementation with 4,000 μg/ml IgY in the third week and 3,000 μg/ml IgY in the sixth week resulted in greater weight gain (p < 0.01) when compared to the control group. Also, at week 3, chicks fed 4,000 μg/ml of IgY had a lower feed conversion ratio (FCR) when compared to the control group (p < 0.05). At week 6, chicks fed 3,000 μg/ml of IgY had lower FCR than the control (p < 0.05). The circulating heterophile/lymphocyte ratio was simply altered in birds fed variable IgY concentrations (1,500, 3,000, and 4,000 μg/ml), with no significant differences compared to the control group due to the individual resistance of each bird to physiological stress. The addition of 4,000 μg/ml IgY to the diet enhanced the nutritive value of meat, including protein, fat, and ash content (p < 0.05). Our study concluded that dietary supplementation of 3,000 and/or 4,000 μg/ml IgY improved the growth rates, behavioral activities, intestinal health indices, and meat quality of broiler chicks.
Collapse
|
|
3 |
2 |
16
|
Bastos RG, Rodrigues SDO, Marques LA, Oliveira CMD, Salles BCC, Zanatta AC, Rocha FD, Vilegas W, Pagnossa JP, de A Paula FB, da Silva GA, Batiha GE, Aggad SS, Alotaibi BS, Yousef FM, da Silva MA. Eugenia sonderiana O. Berg leaves: Phytochemical characterization, evaluation of in vitro and in vivo antidiabetic effects, and structure-activity correlation. Biomed Pharmacother 2023; 165:115126. [PMID: 37494787 DOI: 10.1016/j.biopha.2023.115126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023] Open
Abstract
Several medicinal plants have drawn the attention of researchers by its phytochemical composition regarding their potential for treating chronic complications of diabetes mellitus. In this context, plants of the Myrtaceae family popularly used in Brazil for the treatment of diabetes mellitus, including Eugenia sonderiana, have shown beneficial effects due to the presence of phenolic compounds and saponins in their chemical constitution. Thus, the present work aimed to perform the phytochemical characterization of the hydroethanolic extract of E. sonderiana leaves using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS), along with in vitro and in vivo studies of antidiabetic activity. The chemical characterization revealed the presence of phenolic compounds, flavonoids, neolignans, tannins, and saponins. In addition, the extract exhibited minimum inhibitory concentrations of alpha-amylase and alpha-glycosidase higher than the acarbose in the in vitro tests. Also, the in vivo tests revealed a slight increase in body mass in diabetic rats, as well as a significant decrease in water and feed consumption provided by the extract. Regarding serum biochemical parameters, the extract showed significant activity in decreasing the levels of glucose, hepatic enzymes, and triglycerides, in addition to maintaining HDL cholesterol levels within normal ranges, protecting the cell membranes against oxidative damage. Thus, the extract of E. sonderiana leaves was considered promising pharmaceutical ingredient in the production of a phytotherapy medication.
Collapse
|
|
2 |
2 |
17
|
Apalowo OA, Adediji AO, Balogun OS, Fakolujo TI, Archibong JM, Izuogu NB, Abdelgawad MA, Ghoneim MM, Mustapha S, Qashqari FSI, Batiha GE, Atiri GI. Genetic Structure of Cucumber Mosaic Virus From Natural Hosts in Nigeria Reveals High Diversity and Occurrence of Putative Novel Recombinant Strains. Front Microbiol 2022; 13:753054. [PMID: 35222322 PMCID: PMC8866732 DOI: 10.3389/fmicb.2022.753054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cucumber mosaic virus (CMV, Bromoviridae: Cucummovirus), one of the most widespread plant viruses with several hosts, causes huge losses in yield quality and quantity. The occurrence of various CMV strains and high genetic diversity within the virus complicate its management. We describe the population structure of CMV in Nigeria using partial RNA1 and RNA3 gene sequences from three natural hosts: pepper (Capsicum annuum), tomato (Solanum lycopersicum), and watermelon (Citrullus lanatus). One hundred and six leaf samples were obtained from 16 locations across Nigeria, and specific primers were used to amplify the two gene fragments using PCR. Twenty-four samples tested positive for CMV using RNA1 primers, and amplicons were sequenced from 12 isolates, revealing 82.94–99.80% nucleotide and 85.42–100% amino acid sequence similarities within the population. The partial RNA3 fragment, corresponding to the complete coat protein (CP) gene, was sequenced from seven isolates, with 95.79–97.90% and 98.62–100% nucleotide and amino acid intrapopulation similarities, respectively. The isolates belonged to subgroup IB and formed distinct phylogenetic clusters in both gene sets, indicating putative novel strains. Recombination signals, supported by phylogenetic inferences, were detected within the RNA1 dataset (P ≤ 0.05) and identified a recombinant isolate within the Nigerian sequences. No recombination was detected within the CP genes. Population genetics parameters established high diversity within the Nigerian population compared to other isolates worldwide, while selection pressure estimates revealed the existence of negative selection in both gene sets. Although CMV subgroup IB strains were postulated to originate from Asia, this study reveals their prevalence across several hosts from different locations in Nigeria. To our knowledge, this is the first comprehensive description of a recombinant CMV subgroup IB isolate from West Africa, which has implications for its robust detection and overall management.
Collapse
|
|
3 |
2 |
18
|
Abd El-Hakim YM, Al-Sagheer AA, Khafaga AF, Batiha GE, Arif M, Abd El-Hack ME. Nigella sativa Supplementation in Ruminant Diets: Production, Health, and Environmental Perspectives. BLACK CUMIN (NIGELLA SATIVA) SEEDS: CHEMISTRY, TECHNOLOGY, FUNCTIONALITY, AND APPLICATIONS 2021:245-264. [DOI: 10.1007/978-3-030-48798-0_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
|
4 |
1 |
19
|
Awad S, Abd El Hafez M, Abd Elwahab M, Mady R, Batiha G, Shaheen H, Ghareeb D. Anti-inflammatory properties of Holothuria atra extract on lipopolysaccharide induced inflammation of White blood cells. DAMANHOUR JOURNAL OF VETERINARY SCIENCES 2023; 9:9-16. [DOI: 10.21608/djvs.2022.157375.1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
|
2 |
|
20
|
Zayed M, Abd El Hafez M, Abd Elwahab M, Mady R, Batiha G, Shaheen H, Ghareeb D. Sea cucumber (Holothuria atra) ethyl-acetate extract exerts anti-cholinesterase properties. DAMANHOUR JOURNAL OF VETERINARY SCIENCES 2023; 9:29-35. [DOI: 10.21608/djvs.2022.156975.1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
|
2 |
|
21
|
Tallei T, Pelealu J, Kolonam B, Batiha G, Lubis L, Mahmud S, Emran T. A molecular phylogeny of Taeniophyllum THRJ inferred from DNA barcode regions. JOURNAL OF ADVANCED BIOTECHNOLOGY AND EXPERIMENTAL THERAPEUTICS 2021; 4:171. [DOI: 10.5455/jabet.2021.d117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
|
4 |
|
22
|
Metwally S, Bkear N, Badr Y, Elshafey B, Alhag SK, Al-Shuraym LA, Batiha G, Fakhry B, Hamada R. A Newly Emerging Serotype A Strain in Foot-and-Mouth Disease Virus with Higher Severity and Mortality in Buffalo than in Cattle Calves in North Egypt. Vet Sci 2023; 10:488. [PMID: 37624275 PMCID: PMC10457878 DOI: 10.3390/vetsci10080488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
A severe foot-and-mouth disease (FMD) epidemic struck several Egyptian provinces recently, causing significant losses among animals even in vaccinated farms. This study indicated the existence of the newly emerging foot-and-mouth disease virus (FMDV) and first investigated its effect on the Egyptian water buffalo (Bubalus bubalis) and cattle calves in the Beheira province, north Egypt. Twenty tongue epithelial samples from diseased calves in five infected farms were randomly collected, prepared, and propagated using baby hamster kidney-21 (BHK-21) cells. Whole genomic RNA was extracted from the cells of the third passage. A FMDV genome was detected and serotyped using one-step reverse transcription polymerase chain reactions (RT-PCRs). Nucleotide sequencing of the purified serotype-specific PCR bands was performed, and a maximum likelihood phylogenetic tree based on 600 base pairs of VP1 was constructed. The results identified FMDV, serotype A in all infected samples, whereas the serotypes O and SAT2 were negative. The obtained 20 sequences were identical to each other and similar to the newly reported strain in Egypt that belongs to the Europe-South America (Euro-SA) topotype. The epidemiological and clinical parameters associated with such a strain were fully recorded by veterinarians and analyzed in a single infected farm including 70 cattle and buffalo calves. It caused higher peracute mortalities in buffalo (25.7%; 95% CI: 13-43) than in cattle (8.6%; 95% CI: 2-24) calves. Severe clinical signs such as dullness, hypothermia, bradycardia, and cardiac arrhythmia were common to both except in fatal cases, whereas hyperthermia and respiratory signs were prevalent in cattle calves. In conclusion, we first characterized the newly emerging FMDV in the calves of Beheira as more fatal and severe in buffalo than in cattle calves.
Collapse
|
research-article |
2 |
|
23
|
Rafeeq M, Jabir MS, Al-Kuraishy HM, Jeddoa ZMA, Jawad SF, Najm MAA, Almulla AF, Elekhnawy E, Tayyeb JZ, Turkistani A, Alsfouk BA, Batiha GE. Evaluation of the hematological and immunological markers after the first and second doses of BNT162b2 mRNA vaccine. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2024; 28:2605-2614. [PMID: 38567619 DOI: 10.26355/eurrev_202403_35766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Both humoral and cellular immunity can be significantly influenced by the immunological responses to vaccination, and both responses are essential. Vaccination is the most consistent, safe, and cost-efficient practice for controlling the COVID-19 pandemic. PATIENTS AND METHODS Blood samples were collected from participants who received two vaccine doses of COVID-19 Pfizer/BioNTech (BNT162b2) before and on days 7 and 10 after the first and second immunization. We evaluated some hematological and immunological markers responses to the 1st and 2nd doses of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine. RESULTS In healthy subjects' neutrophil and WBC counts significantly increased compared to those after the first dose. The results of all first-group participant categories demonstrated no discernible variations in lymphocyte counts. There was no change in IgM or IgG in all second-group cohorts, except for a considerable rise in IgG levels in people with a history of coronavirus infection following the second dosage compared to baseline. After the second dose, CD4+ T-cell and CD8+ T-cell levels rose in all groups compared to before the immunization and after the first dosage. Data demonstrated a substantial rise in neutrophil-lymphocyte ratio (NLR) after the second dose of the vaccine. Individuals who had previously had COVID-19 disease experienced a considerable increase in C3 and C4 levels after the first and second dosages compared to baseline. Additionally, compared to their levels after the first dosage, C4 levels increased significantly following the second dosage. Interleukin (IL)-6, IL-15, macrophage colony-stimulating factor (M-CSF), granulocyte colony stimulating factor (G-CSF), interferon gamma-induced protein 10 (IP-10/CXCL10), and macrophage inflammatory protein-1 alpha (MIP-1α/CCL3) levels were increased after boost correlated with Spike antibody levels, supporting their utility as indicators of successful humoral immunity development in response to vaccination. CONCLUSIONS We can conclude that the Pfizer/BioNTech vaccine produced a more potent T-cell response than humoral ones.
Collapse
|
|
1 |
|
24
|
El Nakib AM, Elsaeed M, Abdelsalam RA, Wafi K, Elekhnawy E, Alrouji M, Alsaleem M, Aljarba NH, Batiha GE, Negm WA, Mostafa SA. CYP24A1, AHR, CPEB4, TRIP13, and PIK3CA genes expression in colorectal cancer patients: novel diagnostic biomarkers. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2023; 27:7946-7955. [PMID: 37750623 DOI: 10.26355/eurrev_202309_33554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
OBJECTIVE This study aimed to investigate the CYP24A1, AHR, CPEB4, TRIP13, and PIK3CA mRNA expression in the blood of colorectal cancer patients in Egypt. This was performed to elucidate if there's a link between this gene expression and other clinicopathological characteristics of the tumor. PATIENTS AND METHODS A case-control study including 50 colorectal cancer patients and 50 healthy controls was conducted. Real-time polymerase chain reaction (rt-PCR) was utilized to assess the expression of CYP24A1, AHR, CPEB4, TRIP13, and PIK3CA mRNA in blood samples. RESULTS Patients with colorectal cancer had significantly higher levels of mRNA for the genes CYP24A1, AHR, CPEB4, TRIP13, and PIK3CA (p<0.001, p=0.021, p<0.001, and p<0.001, respectively) compared to controls. Remarkedly, the gene expression of AHR, TRIP13, and PIK3CA genes did not exhibit a significant correlation with the tumor stages (p=0.379, p=0.095, and p=0.526, respectively). However, there was a strong correlation between CYP24A1 and CPEB4 gene expression and tumor stages (p<0.001 and p=0.002, respectively). CONCLUSIONS Therefore, we can conclude that increased mRNA levels of CYP24A1, AHR, CPEB4, TRIP13, and PIK3CA in blood samples withdrawn from colorectal cancer patients could be a biomarker for the disease.
Collapse
|
|
2 |
|
25
|
Al-Kuraishy HM, Abd Hasan RR, Al-Gareeb AIA, Aggad SS, Aljohani ASM, El-Ashmawy IM, Elekhnawy E, Mostafa SA, Negm WA, Batiha GE. Elucidation of the role of α-lipoic acid and vitamin C in methotrexate-induced hepatoxicity in mice. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2023; 27:2277-2287. [PMID: 37013745 DOI: 10.26355/eurrev_202303_31761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
OBJECTIVE Although methotrexate (MTX) is used to treat several malignancies and chronic inflammatory diseases, its clinical use is constrained because of its negative side effects, the most prevalent of which are hepatotoxicity and nephrotoxicity. So, this study aims to determine whether α-lipoic acid (ALA) and vitamin C can protect mice against the liver damage that methotrexate causes. MATERIALS AND METHODS A total of 49 male mice were divided into seven groups at random. Group I received sodium bicarbonate, while groups II to VII received an intraperitoneal injection of MTX (20 mg/kg) on the tenth day, following ten days of pretreatment with ALA (60 mg/Kg), ALA (120 mg/Kg), vitamin C (100 mg/Kg), vitamin C (200 mg/Kg), ALA (60 mg/Kg), and vitamin C (100 mg/kg). RESULTS When compared to mice in group I, mice in group II (the control group) had significantly higher levels of the enzymes malondialdehyde (MDA), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) and significantly lower (p <0.05) levels of the enzymes superoxide dismutase (SOD) and glutathione (GSH). As compared to the control group, pretreatment groups with ALA and vitamin C showed a dose-dependent substantial rise (p <0.05) in GSH and SOD levels, a dose-dependent notable decrease (p <0.05) in MDA, ALT, ALP, and LDH levels, and better liver histological architecture. In order to increase the antioxidant capacity, pretreatment with ALA and vitamin C may be able to prevent MTX-induced hepatotoxicity. CONCLUSIONS These results imply that ALA and vitamin C are useful in the treatment of MTX-induced liver damage.
Collapse
|
|
2 |
|