1
|
Wassenegger M, Krczal G. Nomenclature and functions of RNA-directed RNA polymerases. TRENDS IN PLANT SCIENCE 2006; 11:142-51. [PMID: 16473542 DOI: 10.1016/j.tplants.2006.01.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/16/2005] [Accepted: 01/27/2006] [Indexed: 05/06/2023]
Abstract
There is little relationship between eukaryotic RNA-directed RNA polymerases (RDRs), viral RNA-dependent RNA polymerases (RdRps) and DNA-dependent RNA polymerases, indicating that RDRs evolved as an independent class of enzymes early in evolution. In fungi, plants and several animal systems, RDRs play a key role in RNA-mediated gene silencing [post-transcriptional gene silencing (PTGS) in plants and RNA interference (RNAi) in non-plants] and are indispensable for heterochromatin formation, at least, in Schizosaccharomyces pombe and plants. Recent findings indicate that PTGS, RNAi and heterochromatin formation not only function as host defence mechanisms against invading nucleic acids but are also involved in natural gene regulation. RDRs are required for these processes, initiating a broad interest in this enzyme class.
Collapse
|
Review |
19 |
222 |
2
|
Dalakouras A, Wassenegger M, McMillan JN, Cardoza V, Maegele I, Dadami E, Runne M, Krczal G, Wassenegger M. Induction of Silencing in Plants by High-Pressure Spraying of In vitro-Synthesized Small RNAs. FRONTIERS IN PLANT SCIENCE 2016; 7:1327. [PMID: 27625678 PMCID: PMC5003833 DOI: 10.3389/fpls.2016.01327] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 05/19/2023]
Abstract
In this report, we describe a method for the delivery of small interfering RNAs (siRNAs) into plant cells. In vitro synthesized siRNAs that were designed to target the coding region of a GREEN FLUORESCENT PROTEIN (GFP) transgene were applied by various methods onto GFP-expressing transgenic Nicotiana benthamiana plants to trigger RNA silencing. In contrast to mere siRNA applications, including spraying, syringe injection, and infiltration of siRNAs that all failed to induce RNA silencing, high pressure spraying of siRNAs resulted in efficient local and systemic silencing of the GFP transgene, with comparable efficiency as was achieved with biolistic siRNA introduction. High-pressure spraying of siRNAs with sizes of 21, 22, and 24 nucleotides (nt) led to local GFP silencing. Small RNA deep sequencing revealed that no shearing of siRNAs was detectable by high-pressure spraying. Systemic silencing was basically detected upon spraying of 22 nt siRNAs. Local and systemic silencing developed faster and more extensively upon targeting the apical meristem than spraying of mature leaves.
Collapse
|
brief-report |
9 |
88 |
3
|
Dalakouras A, Jarausch W, Buchholz G, Bassler A, Braun M, Manthey T, Krczal G, Wassenegger M. Delivery of Hairpin RNAs and Small RNAs Into Woody and Herbaceous Plants by Trunk Injection and Petiole Absorption. FRONTIERS IN PLANT SCIENCE 2018; 9:1253. [PMID: 30210521 PMCID: PMC6120046 DOI: 10.3389/fpls.2018.01253] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/07/2018] [Indexed: 05/19/2023]
Abstract
Since its discovery, RNA interference has been widely used in crop protection. Recently, transgene-free procedures that were based on exogenous application of RNA molecules having the capacity to trigger RNAi in planta have been reported. Yet, efficient delivery of such RNA molecules to plants and particularly to trees poses major technical challenges. Here, we describe simple methods for efficient delivery of hairpin RNAs (hpRNAs) and small interfering RNAs (siRNAs) to Malus domestica, Vitis vinifera, and Nicotiana benthamiana that are based on trunk injection and/or petiole absorption. The applied RNA molecules were efficiently taken up and systemically transported. In apical leaves, the RNA was already detectable 1 day post-application (dpa) and could be detected at least up to 10 dpa, depending on the method of application. Confocal microscopy revealed that the uptaken and systemically transported RNA molecules were strictly restricted to the xylem and apoplast which may illustrate why the applied hpRNAs were not processed into siRNAs by plant DICER-LIKE (DCL) endonucleases. These innovative methods may have great impact in pest management against chewing and/or xylem sap-feeding vectors and eukaryotic pathogens that reside in the xylem.
Collapse
|
research-article |
7 |
70 |
4
|
Boonrod K, Galetzka D, Nagy PD, Conrad U, Krczal G. Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat Biotechnol 2004; 22:856-62. [PMID: 15195103 DOI: 10.1038/nbt983] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 05/07/2004] [Indexed: 11/08/2022]
Abstract
Crop loss due to viral diseases is still a major problem for agriculture today. We present a strategy to achieve virus resistance based on the expression of single-chain Fv fragments (scFvs) against a conserved domain in a plant viral RNA-dependent RNA polymerase (RdRp), a key enzyme in virus replication. The selected scFvs inhibited complementary RNA synthesis of different plant virus RdRps in vitro and virus replication in planta. Moreover, the scFvs also bound to the RdRp of the distantly related hepatitis C virus. T(1) and T(2) progeny of transgenic lines of Nicotiana benthamiana expressing different scFvs either in the cytosol or in the endoplasmic reticulum showed varying degrees of resistance against four plant viruses from different genera, three of which belong to the Tombusviridae family. Virus resistance based on antibodies to RdRps adds another tool to the repertoire for combating plant viruses.
Collapse
|
|
21 |
62 |
5
|
Schwind N, Zwiebel M, Itaya A, Ding B, Wang MB, Krczal G, Wassenegger M. RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. MOLECULAR PLANT PATHOLOGY 2009; 10:459-69. [PMID: 19523100 PMCID: PMC6640329 DOI: 10.1111/j.1364-3703.2009.00546.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Because of their highly ordered structure, mature viroid RNA molecules are assumed to be resistant to degradation by RNA interference (RNAi). In this article, we report that transgenic tomato plants expressing a hairpin RNA (hpRNA) construct derived from Potato spindle tuber viroid (PSTVd) sequences exhibit resistance to PSTVd infection. Resistance seems to be correlated with high-level accumulation of hpRNA-derived short interfering RNAs (siRNAs) in the plant. Thus, although small RNAs produced by infecting viroids [small RNAs of PSTVd (srPSTVds)] do not silence viroid RNAs efficiently to prevent their replication, hpRNA-derived siRNAs (hp-siRNAs) appear to effectively target the mature viroid RNA. Genomic mapping of the hp-siRNAs revealed an unequal distribution of 21- and 24-nucleotide siRNAs of both (+)- and (-)-strand polarities along the PSTVd genome. These data suggest that RNAi can be employed to engineer plants for viroid resistance, as has been well established for viruses.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Southern
- Chromosome Segregation
- Gene Expression Regulation, Viral
- Immunity, Innate/immunology
- Solanum lycopersicum/genetics
- Solanum lycopersicum/virology
- Nucleic Acid Conformation
- Plant Diseases/genetics
- Plant Diseases/virology
- Plant Tubers/virology
- Plant Viruses/genetics
- Plants, Genetically Modified
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Temperature
- Viroids/chemistry
- Viroids/genetics
- Viroids/physiology
Collapse
|
research-article |
16 |
54 |
6
|
Wetzel T, Meunier L, Jaeger U, Reustle GM, Krczal G. Complete nucleotide sequences of the RNAs 2 of German isolates of grapevine fanleaf and Arabis mosaic nepoviruses. Virus Res 2001; 75:139-45. [PMID: 11325468 DOI: 10.1016/s0168-1702(01)00235-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNAs 2 of an Arabis mosaic virus (ArMV) and a grapevine fanleaf virus (GFLV) isolate, originating from South West of Germany near Neustadt an der Weinstrasse (NW), were sequenced. They are 3820 and 3775 nucleotides long respectively, and both contain one open reading frame encoding a polypeptide of 1110 amino acids. Their 5' non-coding regions contain conserved and repeated sequences, which are able to form stem-loop structures. Nucleotide sequence comparisons between the full-length RNAs 2 revealed homology levels of 84 and 82% between the ArMV-NW and the ArMV-L and -U, respectively, 90% between GFLV-NW and GFLV-F13, and 72% between ArMV-NW and GFLV-NW. Amino acid sequence comparisons showed that the greatest difference was found between the 2A proteins of the different ArMV isolates, the 2A protein of the ArMV-NW showing more similarity to the 2A protein of GFLV-NW than to those of ArMV-L2 or -U2.
Collapse
|
Comparative Study |
24 |
48 |
7
|
Jamous RM, Boonrod K, Fuellgrabe MW, Ali-Shtayeh MS, Krczal G, Wassenegger M. The helper component-proteinase of the Zucchini yellow mosaic virus inhibits the Hua Enhancer 1 methyltransferase activity in vitro. J Gen Virol 2011; 92:2222-2226. [PMID: 21593273 DOI: 10.1099/vir.0.031534-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The helper component-proteinase (HC-Pro) is a multifunctional protein found among potyviruses. With respect to its silencing suppressor function, small RNA binding appears to be the major activity of HC-Pro. HC-Pro could also exhibit other suppressor activities. HC-Pro may inhibit the Hua Enhancer 1 (HEN1) activity. There is indirect evidence showing that either transient or stable expression of HC-Pro in plants results in an increase of non-methylated small RNAs. Here, we demonstrated that recombinant Zucchini yellow mosaic virus (ZYMV) HC-Pro inhibited the methyltransferase activity of HEN1 in vitro. Moreover, we found that the HC-Pro(FINK) mutant, which has lost small RNA-binding activity, inhibited HEN1 activity, while the truncated proteins and total soluble bacterial proteins did not. Using the ELISA-binding assay, we provided evidence that the HC-Pro(FRNK) wild-type and HC-Pro(FINK) both bound to HEN1, with HC-Pro(FRNK) binding stronger than HC-Pro(FINK). Motif mapping analysis revealed that the amino acids located between positions 139 and 320 of ZYMV HC-Pro were associated with HEN1 interaction.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
43 |
8
|
Wetzel T, Jardak R, Meunier L, Ghorbel A, Reustle GM, Krczal G. Simultaneous RT/PCR detection and differentiation of arabis mosaic and grapevine fanleaf nepoviruses in grapevines with a single pair of primers. J Virol Methods 2002; 101:63-9. [PMID: 11849684 DOI: 10.1016/s0166-0934(01)00422-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The movement protein genes from several isolates of ArMV and GFLV of different geographical origins were amplified by RT/PCR using degenerate primers, cloned and sequenced. A single pair of degenerate primers was designed from these sequences to allow the simultaneous amplification of parts of the movement protein genes of ArMV and GFLV. Their use in an immunocapture-RT/PCR for the detection of ArMV or GFLV in infected grapevines proved to be ten times more sensitive than the corresponding ArMV or GFLV ELISA tests. A Sph1 restriction site found in the sequences corresponding to the amplified products from the GFLV isolates, but not in the amplified products from the ArMV isolates, allowed the differentiation between ArMV and GFLV in the infected grapevines by a Sph1 restriction digestion of the amplified products.
Collapse
|
Comparative Study |
23 |
35 |
9
|
Dadami E, Dalakouras A, Zwiebel M, Krczal G, Wassenegger M. An endogene-resembling transgene is resistant to DNA methylation and systemic silencing. RNA Biol 2014; 11:934-41. [PMID: 25180820 PMCID: PMC4179966 DOI: 10.4161/rna.29623] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
In plants, endogenes are less prone to RNA silencing than transgenes. While both can be efficiently targeted by small RNAs for post-transcriptional gene silencing (PTGS), generally only transgene PTGS is accompanied by transitivity, RNA-directed DNA methylation (RdDM) and systemic silencing. In order to investigate whether a transgene could mimick an endogene and thus be less susceptible to RNA silencing, we generated an intron-containing, endogene-resembling GREEN FLUORESCENT PROTEIN (GFP) transgene (GFP(endo)). Upon agroinfiltration of a hairpin GFP (hpF) construct, transgenic Nicotiana benthamiana plants harboring GFP(endo) (Nb-GFP(endo)) were susceptible to local PTGS. Yet, in the local area, PTGS was not accompanied by RdDM of the GFP(endo) coding region. Importantly, hpF-agroinfiltrated Nb-GFP(endo) plants were resistant to systemic silencing. For reasons of comparison, transgenic N. benthamiana plants (Nb-GFP(cDNA)) carrying a GFP cDNA transgene (GFP(cDNA)) were included in the analysis. HpF-agroinfiltrated Nb-GFP(cDNA) plants exhibited local PTGS and RdDM. In addition, systemic silencing was established in Nb-GFP(cDNA) plants. In agreement with previous reports using grafted scions, in systemically silenced tissue, siRNAs mapping to the 3' of GFP were predominantly detectable by Northern blot analysis. Yet, in contrast to other reports, in systemically silenced leaves, PTGS was also accompanied by dense RdDM comprising the entire GFP(cDNA) coding region. Overall, our analysis indicated that cDNA transgenes are prone to systemic PTGS and RdDM, while endogene-resembling ones are resistant to RNA silencing.
Collapse
|
research-article |
11 |
34 |
10
|
Heim F, Lot H, Delecolle B, Bassler A, Krczal G, Wetzel T. Complete nucleotide sequence of a putative new cytorhabdovirus infecting lettuce. Arch Virol 2007; 153:81-92. [PMID: 17943394 DOI: 10.1007/s00705-007-1071-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
The full-length nucleotide sequence of the genomic RNA of a new cytorhabdovirus infecting lettuce was determined. Six open reading frames were found in the antigenomic sequence of the 12,926-nt negative-sense viral RNA genome. The genomic organisation was similar to that of lettuce necrotic yellows virus (LNYV), the type member of the genus Cytorhabdovirus: 3'-N-P-3-M-G-L-5', where N is the capsid protein gene, P the putative phosphoprotein gene, 3 a gene coding for a putative protein of unknown function, M the putative matrix protein gene, G the glycoprotein gene, and L the putative polymerase gene. Amino acid sequence comparison with the corresponding sequences of other rhabdoviruses revealed the closest relationship to LNYV, with identities ranging from 41% for the matrix proteins and 65% for the L polymerase proteins. These results indicate that this virus may be a member of a new cytorhabdovirus species, for which the name Lettuce yellow mottle virus (LYMoV) is proposed.
Collapse
|
|
18 |
29 |
11
|
Dalakouras A, Dadami E, Zwiebel M, Krczal G, Wassenegger M. Transgenerational maintenance of transgene body CG but not CHG and CHH methylation. Epigenetics 2012; 7:1071-8. [PMID: 22863736 PMCID: PMC3466191 DOI: 10.4161/epi.21644] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In plants, RNA-directed DNA methylation (RdDM) can target both transgene promoters and coding regions/gene bodies. RdDM leads to methylation of cytosines in all sequence contexts: CG, CHG and CHH. Upon segregation of the RdDM trigger, at least CG methylation can be maintained at promoter regions in the progeny. So far, it is not clear whether coding region methylation can be also maintained. We showed that the body of Potato spindle tuber viroid (PSTVd) transgene constructs became densely de novo methylated at CG, CHG and CHH sites upon PSTVd infection. In this study, we demonstrate that in viroid-free progeny plants, asymmetric CHH and CHG methylation was completely lost. However, symmetric CG methylation was stably maintained for at least two generations. Importantly, the presence of transgene body methylation did not lead to an increase of dimethylation of histone H3 lysine 9 or a decrease of acetylation of H3. Our data supports the view that CG methylation can be maintained not only in promoters but also in the body of transgenes. They further suggest that maintenance of methylation may occur independently of tested chromatin modifications.
Collapse
|
research-article |
13 |
28 |
12
|
Dadami E, Moser M, Zwiebel M, Krczal G, Wassenegger M, Dalakouras A. An endogene-resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Lett 2013; 587:706-10. [PMID: 23380068 DOI: 10.1016/j.febslet.2013.01.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 01/19/2023]
Abstract
In plants, transgenes are generally more sensitive against RNA silencing than endogenes are. In this study, we generated a transgene that structurally mimicks an endogene. It is composed of endogenous promoter, 5'-UTR, introns, 3'-UTR and terminator elements. Our data revealed that, in contrast to a conventional transgene, an endogene-resembling transgene was more stably expressed and poorly processed into small RNAs. In addition, although both constructs triggered methylation of homologous DNA sequences at similar levels, the endogene-resembling transgene exhibited significantly delayed onset of local and systemic silencing.
Collapse
|
|
12 |
27 |
13
|
Dalakouras A, Moser M, Zwiebel M, Krczal G, Hell R, Wassenegger M. A hairpin RNA construct residing in an intron efficiently triggered RNA-directed DNA methylation in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:840-51. [PMID: 19702668 DOI: 10.1111/j.1365-313x.2009.04003.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
So far, conventional hairpin RNA (hpRNA) constructs consisting of an inverted repeat (IR) of target promoters directly introduced into an expression cassette have been used to mediate de novo DNA methylation. Transcripts of such constructs resemble mRNA molecules, and are likely to be exported to the cytoplasm. The presence of hpRNAs in the cytoplasm and the nucleus may account for the simultaneous activation of post-transcriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM). We hypothesized that by retaining hpRNAs in the nucleus, efficient induction of only RdDM may be achieved. Thus, we introduced into tobacco a transgene containing an intron into which an IR of a target promoter was inserted. The intronic hpRNA initiated highly specific cis- and trans-methylation, but did not induce PTGS. No spreading of methylation into sequences flanking the region of homology between the hpRNA and the target DNA was detectable. The efficient methylation-directing activity of the intronic hpRNA may indicate a previously unrecognized role of introns, potentially regulating gene expression at the transcriptional level.
Collapse
|
|
16 |
23 |
14
|
Jarausch B, Schwind N, Jarausch W, Krczal G, Dickler E, Seemüller E. First Report of Cacopsylla picta as a Vector of Apple Proliferation Phytoplasma in Germany. PLANT DISEASE 2003; 87:101. [PMID: 30812685 DOI: 10.1094/pdis.2003.87.1.101a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Since 2000, a serious epidemic of apple proliferation (AP) reappeared in southwestern Germany. Molecular analyses revealed that the AP phytoplasma is associated with this disease. Since no curative treatments or resistant cultivars exist, the only means to reduce spread of the disease is the control of the insect vector. Recently, Frisinghelli et al. (1) identified Cacopsylla costalis as a vector of AP phytoplasma in northern Italy. Following this result, transmission trials with C. picta (synonym C. costalis) were conducted in southwestern Germany at Neustadt (Rheinland-Pfalz) and Dossenheim (Baden-Württemberg) since 2001. Overwintering psyllids were captured from March to May in different orchards. Groups of 5 to 30 C. picta were caged for 2 to 4 weeks on apple seedlings or healthy micropropagated plants. Leaf midribs of test plants were sampled 2 to 3 months after inoculation feeding and tested by polymerase chain reaction (PCR) for AP phytoplasma with specific primers AP5/AP4 (2). In 2001, 1 of 10 test plants, and in 2002, 7 of 40 test plants became AP infected. In 2002, one to four C. picta specimens fed on plants which became infected were tested AP phytoplasma positive by PCR while all psyllids recollected from PCR-negative plants were tested negative. Transmission of the AP phytoplasma was successful at both sites. To our knowledge, this is the first report of C. picta as a vector of the AP phytoplasma in Germany. References: (1) C. Frisinghelli et al. J. Phytopathol. 148:425, 2000. (2) W. Jarausch et al. Appl. Environ. Microbiol. 60:2916, 1994.
Collapse
|
|
22 |
21 |
15
|
Wetzel T, Beck A, Wegener U, Krczal G. Complete nucleotide sequence of the RNA 1 of a grapevine isolate of Arabis mosaic virus. Arch Virol 2004; 149:989-95. [PMID: 15098112 DOI: 10.1007/s00705-003-0277-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 11/12/2003] [Indexed: 11/28/2022]
Abstract
The complete nucleotide sequence of the genomic RNA 1 of the grapevine isolate NW (Neustadt an der Weinstrasse) of Arabis mosaic virus (ArMV) was determined. It is 7334 nucleotides long excluding the poly(A) tail, and contains one long open reading frame encoding a polypeptide of 2284 amino acids. The 5' and 3' non-coding regions were 227 and 252 nucleotides long respectively, and showed stretches of high identity with the corresponding 5' and 3' non-coding regions of ArMV-NW RNA 2. The analysis of the amino acid sequence of the polyprotein encoded by the RNA 1 of the ArMV-NW showed that the conserved amino acid motifs, characteristic for the viral protease co-factor, the NTP-binding protein, the cystein protease, and the RdRp core domains, were all present. Amino acid sequence comparisons between the polyproteins encoded by the RNAs 1 of ArMV-NW and other nepoviruses showed 75% identity with the GFLV-F13, and up to 36% with other nepoviruses.
Collapse
|
Journal Article |
21 |
21 |
16
|
Boonrod K, Munteanu B, Jarausch B, Jarausch W, Krczal G. An immunodominant membrane protein (Imp) of 'Candidatus Phytoplasma mali' binds to plant actin. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:889-95. [PMID: 22432876 DOI: 10.1094/mpmi-11-11-0303] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The phytopathogenic, cell-wall-less phytoplasmas exhibit a dual life cycle: they multiply in the phloem of their host plant and in the body of their insect vector. Their membrane proteins are in direct contact with both hosts and are supposed to play a crucial role in the phytoplasma spread within the plant as well as by the insect vector. Three types of nonhomologous but highly abundant and immunodominant membrane proteins (IDP) have been identified within the phytoplasmas: Amp, IdpA, and Imp. Although recent results indicate that Amp is involved in vector specificity interacting with insect proteins such as actin, little is known about the interaction of IDP with the plant. We could demonstrate that transiently expressed Imp of 'Candidatus Phytoplasma mali' as well as the Imp without transmembrane domain (Imp▴Tm) bind with plant actins in vivo. Moreover, in vitro co-sediment and binding assays showed that Escherichia coli-expressed recombinant Imp▴Tm-His binds to both G- and F-actins isolated from rabbit muscle. Transgenic plants expressing Imp- or Imp▴Tm-green fluorescent protein did not exhibit any remarkable change of phenotype compared with the wild-type plant. These results indicate that Imp specifically binds to plant actin and a role of Imp-actin binding in phytoplasma motility is hypothesized.
Collapse
|
|
13 |
18 |
17
|
Daldoul S, Guillaumie S, Reustle GM, Krczal G, Ghorbel A, Delrot S, Mliki A, Höfer MU. Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:489-98. [PMID: 21802607 DOI: 10.1016/j.plantsci.2010.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 06/17/2010] [Accepted: 07/22/2010] [Indexed: 05/11/2023]
Abstract
Salt stress adversely affects the growth of grapevine plants. In order to understand the molecular basis of salt stress response in grapevine plants, suppression subtractive hybridization (SSH) and microarray based screening approaches were combined. Two leaf-specific subtractive cDNA libraries were constructed from grapevine plants subjected to a moderate, incremental salt stress treatment. SSH were performed 6h and 24h after NaCl peaked at 100mM using cDNAs prepared from leaves of a salt tolerant cultivar (Razegui) as testers and cDNAs from unstressed leaves as drivers. Then, a pre-screened subset of cDNA clones from these SSH libraries were used to construct a Vitis vinifera cDNA array, in order to verify the expression changes of the genes upon salt treatment. Expression profiles were compared between the salt tolerant and a susceptible cultivar (Syrah) under both control conditions and after salt stress treatment. Seven cDNA clones were identified which were up-regulated by salt stress in two independent growth experiments and confirmed by RNA blot analysis. The transcript expression patterns of the selected genes differed between the contrasting grapevine cultivars tested with respect to stress-regulation. The possible relationship of individual cDNAs with salinity tolerance mechanisms is discussed.
Collapse
|
|
15 |
18 |
18
|
Wetzel T, Fuchs M, Bobko M, Krczal G. Size and sequence variability of the Arabis mosaic virus protein 2A. Arch Virol 2002; 147:1643-53. [PMID: 12181682 DOI: 10.1007/s00705-002-0828-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The RNA 2 of the nepovirus Arabis mosaic virus (ArMV) encodes a polyprotein from which protein 2A is released by proteolytic cleavage at the N-terminus. The 2A gene of 19 ArMV isolates from different geographical origin and 9 distinct natural hosts was amplified by RT/PCR and subsequently cloned and sequenced. These 19 isolates and those from databanks were classified into four groups based on the size of the protein 2A which ranged from 233 to 280 amino acids, and sequence identities. Sequence variability was mainly located in the N-terminus of the proteins, whereas the core region and the C-terminus were conserved.
Collapse
|
|
23 |
16 |
19
|
Dalakouras A, Dadami E, Wassenegger M, Krczal G, Wassenegger M. RNA-directed DNA methylation efficiency depends on trigger and target sequence identity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:202-14. [PMID: 27121647 DOI: 10.1111/tpj.13193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
RNA-directed DNA methylation (RdDM) in plants has been extensively studied, but the RNA molecules guiding the RdDM machinery to their targets are still to be characterized. It is unclear whether these molecules require full complementarity with their target. In this study, we have generated Nicotiana tabacum (Nt) plants carrying an infectious tomato apical stunt viroid (TASVd) transgene (Nt-TASVd) and a non-infectious potato spindle tuber viroid (PSTVd) transgene (Nt-SB2). The two viroid sequences exhibit 81% sequence identity. Nt-TASVd and Nt-SB2 plants were genetically crossed. In the progeny plants (Nt-SB2/TASVd), deep sequencing of small RNAs (sRNAs) showed that TASVd infection was associated with the accumulation of abundant small interfering RNAs (siRNAs) that mapped along the entire TASVd but only partially matched the SB2 transgene. TASVd siRNAs efficiently targeted SB2 RNA for degradation, but no transitivity was detectable. Bisulfite sequencing in the Nt-SB2/TASVd plants revealed that the TASVd transgene was targeted for dense cis-RdDM along its entire sequence. In the same plants, the SB2 transgene was targeted for trans-RdDM. The SB2 methylation pattern, however, was weak and heterogeneous, pointing to a positive correlation between trigger-target sequence identity and RdDM efficiency. Importantly, trans-RdDM on SB2 was also detected at sites where no homologous siRNAs were detected. Our data indicate that RdDM efficiency depends on the trigger-target sequence identity, and is not restricted to siRNA occupancy. These findings support recent data suggesting that RNAs with sizes longer than 24 nt (>24-nt RNAs) trigger RdDM.
Collapse
|
|
9 |
14 |
20
|
Weinheimer I, Boonrod K, Moser M, Wassenegger M, Krczal G, Butcher SJ, Valkonen JPT. Binding and processing of small dsRNA molecules by the class 1 RNase III protein encoded by sweet potato chlorotic stunt virus. J Gen Virol 2013; 95:486-495. [PMID: 24187016 DOI: 10.1099/vir.0.058693-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus, family Closteroviridae) causes heavy yield losses in sweet potato plants co-infected with other viruses. The dsRNA-specific class 1 RNase III-like endoribonuclease (RNase3) encoded by SPCSV suppresses post-transcriptional gene silencing and eliminates antiviral defence in sweet potato plants in an endoribonuclease activity-dependent manner. RNase3 can cleave long dsRNA molecules, synthetic small interfering RNAs (siRNAs), and plant- and virus-derived siRNAs extracted from sweet potato plants. In this study, conditions for efficient expression and purification of enzymically active recombinant RNase3 were established. Similar to bacterial class 1 RNase III enzymes, RNase3-Ala (a dsRNA cleavage-deficient mutant) bound to and processed double-stranded siRNA (ds-siRNA) as a dimer. The results support the classification of SPCSV RNase3 as a class 1 RNase III enzyme. There is little information about the specificity of RNase III enzymes on small dsRNAs. In vitro assays indicated that ds-siRNAs and microRNAs (miRNAs) with a regular A-form conformation were cleaved by RNase3, but asymmetrical bulges, extensive mismatches and 2'-O-methylation of ds-siRNA and miRNA interfered with processing. Whereas Mg(2+) was the cation that best supported the catalytic activity of RNase3, binding of 21 nt small dsRNA molecules was most efficient in the presence of Mn(2+). Processing of long dsRNA by RNase3 was efficient at pH 7.5 and 8.5, whereas ds-siRNA was processed more efficiently at pH 8.5. The results revealed factors that influence binding and processing of small dsRNA substrates by class 1 RNase III in vitro or make them unsuitable for processing by the enzyme.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
13 |
21
|
Saeed M, Briddon RW, Dalakouras A, Krczal G, Wassenegger M. Functional Analysis of Cotton Leaf Curl Kokhran Virus/Cotton Leaf Curl Multan Betasatellite RNA Silencing Suppressors. BIOLOGY 2015; 4:697-714. [PMID: 26512705 PMCID: PMC4690014 DOI: 10.3390/biology4040697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/13/2022]
Abstract
In South Asia, Cotton leaf curl disease (CLCuD) is caused by a complex of phylogenetically-related begomovirus species and a specific betasatellite, Cotton leaf curl Multan betasatellite (CLCuMuB). The post-transcriptional gene silencing (PTGS) suppression activities of the transcriptional activator protein (TrAP), C4, V2 and βC1 proteins encoded by Cotton leaf curl Kokhran virus (CLCuKoV)/CLCuMuB were assessed in Nicotiana benthamiana. A variable degree of local silencing suppression was observed for each viral protein tested, with V2 protein exhibiting the strongest suppression activity and only the C4 protein preventing the spread of systemic silencing. The CLCuKoV-encoded TrAP, C4, V2 and CLCuMuB-encoded βC1 proteins were expressed in Escherichia coli and purified. TrAP was shown to bind various small and long nucleic acids including single-stranded (ss) and double-stranded (ds) RNA and DNA molecules. C4, V2, and βC1 bound ssDNA and dsDNA with varying affinities. Transgenic expression of C4 under the constitutive 35S Cauliflower mosaic virus promoter and βC1 under a dexamethasone inducible promoter induced severe developmental abnormalities in N. benthamiana. The results indicate that homologous proteins from even quite closely related begomoviruses may differ in their suppressor activity and mechanism of action. The significance of these findings is discussed.
Collapse
|
Journal Article |
10 |
13 |
22
|
Dalakouras A, Moser M, Boonrod K, Krczal G, Wassenegger M. Diverse spontaneous silencing of a transgene among two Nicotiana species. PLANTA 2011; 234:699-707. [PMID: 21617990 DOI: 10.1007/s00425-011-1433-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/03/2011] [Indexed: 05/30/2023]
Abstract
In plants, transgenes frequently become spontaneously silenced for unknown reasons. Typically, transgene silencing involves the generation of small interfering RNAs (siRNAs) that directly or indirectly target cognate DNA and mRNA sequences for methylation and degradation, respectively. In this report, we compared spontaneous silencing of a transgene in Nicotiana benthamiana and Nicotiana tabacum. In both species, abundant siRNAs were produced. In N. benthamiana, the self-silencing process involved mRNA degradation and dense DNA methylation of the homologous coding region. In N. tabacum, self-silencing occurred without complete mRNA degradation and with low methylation of the cognate coding region. Our data indicated that in plants, siRNA-mediated spontaneous silencing is, in addition to mRNA degradation, based on translational inhibition. Differences in the initiation and establishment of self-silencing together with marked differences in the degree of de novo DNA methylation showed that the mechanistic details of RNA silencing, although largely conserved, may vary also in genetically close plant species.
Collapse
MESH Headings
- Cotyledon/genetics
- Cotyledon/metabolism
- DNA Methylation/genetics
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Plant/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plants, Genetically Modified
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- Nicotiana/genetics
- Nicotiana/metabolism
- Transcription, Genetic
- Transgenes/genetics
Collapse
|
|
14 |
12 |
23
|
Saeed M, Krczal G, Wassenegger M. Three gene products of a begomovirus-betasatellite complex restore expression of a transcriptionally silenced green fluorescent protein transgene in Nicotiana benthamiana. Virus Genes 2015; 50:340-4. [PMID: 25537949 DOI: 10.1007/s11262-014-1155-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/04/2014] [Indexed: 11/30/2022]
Abstract
Single-stranded DNA geminiviruses replicate via double-stranded DNA intermediates forming mini-chromosomes that are targets for transcriptional gene silencing (TGS) in plants. The ability of the cotton leaf curl Kokhran virus (CLCuKoV)-cotton leaf curl Multan betasatellite (CLCuMuB) proteins, replication-associated protein (Rep), transcriptional activator protein (TrAP), C4, V2 and βC1, to suppress TGS was investigated by using the Nicotiana benthamiana line 16-TGS (16-TGS) harbouring a transcriptionally silenced green fluorescent protein (GFP) transgene. Inoculation of 16-TGS plants with a recombinant potato virus X vector carrying Rep, TrAP or βC1 resulted in re-expression of GFP. Northern blot analysis confirmed that the observed GFP fluorescence was associated with GFP mRNA accumulation. These results indicated that Rep, TrAP and βC1 proteins of CLCuKoV-CLCuMuB can re-activate the expression of a transcriptionally silenced GFP transgene in N. benthamiana. Although Rep, TrAP, or βC1 proteins have, for other begomoviruses or begomoviruses-betasatellites, been previously shown to have TGS suppressor activity, this is the first report demonstrating that a single begomovirus-betasatellite complex encodes three suppressors of TGS.
Collapse
|
|
10 |
10 |
24
|
Feldhoff A, Wetzel T, Peters D, Kellner R, Krczal G. Characterization of petunia flower mottle virus (PetFMV), a new potyvirus infecting Petunia x hybrida. Arch Virol 1998; 143:475-88. [PMID: 9572549 DOI: 10.1007/s007050050304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the introduction of cutting-grown Petunia x hybrida plants on the European market, a new potyvirus which showed no serological reaction with antisera against any other potyviruses infecting petunias was discovered. Infected leaves contained flexuous rod-shaped virus particles of 750-800 nm in length and inclusion bodies (pinwheel structures) typical for potyviruses in ultrathin leaf sections. The purified coat protein with a Mr of approximately 36 kDa could be detected in Western immunoblots with a specific antibody to the coat protein of the petunia-infecting virus. The 3' end of the viral genome encompassing the 3' non-coding region, the coat protein gene, and part of the NIb gene was amplified from infected leaf material by IC/PCR using degenerate and specific primers. Sequences of PCR-generated cDNA clones were compared to other known sequences of potyviruses. Maximum homology of 56% was found in the 3' non-coding region between the petunia isolate and other potyviruses. A maximum homology of 69% was found between the amino acid sequence of the coat protein of the petunia isolate and corresponding sequences of other potyviruses. These data indicate that the petunia-infecting virus is a previously undescribed potyvirus and the name petunia flower mottle virus (PetFMV) is suggested.
Collapse
|
|
27 |
10 |
25
|
Dupuis L, Cobanov P, Bassler A, Krczal G, Wetzel T. Complete genome sequence of a virulent isolate of Arabis mosaic virus from privet (Ligustrum vulgare). Arch Virol 2008; 153:1611-3. [DOI: 10.1007/s00705-008-0126-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/25/2008] [Indexed: 11/29/2022]
|
|
17 |
10 |