1
|
Wallace RH, Scheffer IE, Barnett S, Richards M, Dibbens L, Desai RR, Lerman-Sagie T, Lev D, Mazarib A, Brand N, Ben-Zeev B, Goikhman I, Singh R, Kremmidiotis G, Gardner A, Sutherland GR, George AL, Mulley JC, Berkovic SF. Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet 2001; 68:859-65. [PMID: 11254444 PMCID: PMC1275639 DOI: 10.1086/319516] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Accepted: 01/30/2001] [Indexed: 11/03/2022] Open
Abstract
Generalized epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome characterized by the presence of febrile and afebrile seizures. The first gene, GEFS1, was mapped to chromosome 19q and was identified as the sodium-channel beta1-subunit, SCN1B. A second locus on chromosome 2q, GEFS2, was recently identified as the sodium-channel alpha1-subunit, SCN1A. Single-stranded conformation analysis (SSCA) of SCN1A was performed in 53 unrelated index cases to estimate the frequency of mutations in patients with GEFS+. No mutations were found in 17 isolated cases of GEFS+. Three novel SCN1A mutations-D188V, V1353L, and I1656M-were found in 36 familial cases; of the remaining 33 families, 3 had mutations in SCN1B. On the basis of SSCA, the combined frequency of SCN1A and SCN1B mutations in familial cases of GEFS+ was found to be 17%.
Collapse
|
research-article |
24 |
242 |
2
|
Ried K, Finnis M, Hobson L, Mangelsdorf M, Dayan S, Nancarrow JK, Woollatt E, Kremmidiotis G, Gardner A, Venter D, Baker E, Richards RI. Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet 2000; 9:1651-63. [PMID: 10861292 DOI: 10.1093/hmg/9.11.1651] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fluorescence in situ hybridization of a tile path of DNA subclones has previously enabled the cyto-genetic definition of the minimal DNA sequence which spans the FRA16D common chromosomal fragile site, located at 16q23.2. Homozygous deletion of the FRA16D locus has been reported in adenocarcinomas of stomach, colon, lung and ovary. We have sequenced the 270 kb containing the FRA16D fragile site and the minimal homozygously deleted region in tumour cells. This sequence enabled localization of some of the tumour cell breakpoints to regions which contain AT-rich secondary structures similar to those associated with the FRA10B and FRA16B rare fragile sites. The FRA16D DNA sequence also led to the identification of an alternatively spliced gene, named FOR (fragile site FRA16D oxidoreductase), exons of which span both the fragile site and the minimal region of homozygous deletion. In addition, the complete DNA sequence of the FRA16D-containing FOR intron reveals no evidence of additional authentic transcripts. Alternatively spliced FOR transcripts (FOR I, FOR II and FOR III) encode proteins which share N-terminal WW domains and differ at their C-terminus, with FOR III having a truncated oxidoreductase domain. FRA16D-associated deletions selectively affect the FOR gene transcripts. Three out of five previously mapped translocation breakpoints in multiple myeloma are also located within the FOR gene. FOR is therefore the principle genetic target for DNA instability at 16q23.2 and perturbation of FOR function is likely to contribute to the biological consequences of DNA instability at FRA16D in cancer cells.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Blotting, Northern
- Chromosome Fragile Sites
- Chromosome Fragility
- Chromosomes, Human, Pair 16/genetics
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Molecular Sequence Data
- Neoplasms/genetics
- Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
|
|
25 |
217 |
3
|
Hou X, Mrug M, Yoder BK, Lefkowitz EJ, Kremmidiotis G, D'Eustachio P, Beier DR, Guay-Woodford LM. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 2002. [PMID: 11854326 DOI: 10.1172/jci0214099] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The congenital polycystic kidney (cpk) mutation is the most extensively characterized mouse model of polycystic kidney disease (PKD). The renal cystic disease is fully expressed in homozygotes and is strikingly similar to human autosomal recessive PKD (ARPKD), whereas genetic background modulates the penetrance of the corresponding defect in the developing biliary tree. We now describe the positional cloning, mutation analysis, and expression of a novel gene that is disrupted in cpk mice. The cpk gene is expressed primarily in the kidney and liver and encodes a hydrophilic, 145-amino acid protein, which we term cystin. When expressed exogenously in polarized renal epithelial cells, cystin is detected in cilia, and its expression overlaps with polaris, another PKD-related protein. We therefore propose that the single epithelial cilium is important in the functional differentiation of polarized epithelia and that ciliary dysfunction underlies the PKD phenotype in cpk mice.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
23 |
150 |
4
|
Flynn BL, Gill GS, Grobelny DW, Chaplin JH, Paul D, Leske AF, Lavranos TC, Chalmers DK, Charman SA, Kostewicz E, Shackleford DM, Morizzi J, Hamel E, Jung MK, Kremmidiotis G. Discovery of 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties. J Med Chem 2011; 54:6014-27. [PMID: 21774499 PMCID: PMC3172808 DOI: 10.1021/jm200454y] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A structure-activity relationship (SAR) guided design of novel tubulin polymerization inhibitors has resulted in a series of benzo[b]furans with exceptional potency toward cancer cells and activated endothelial cells. The potency of early lead compounds has been substantially improved through the synergistic effect of introducing a conformational bias and additional hydrogen bond donor to the pharmacophore. Screening of a focused library of potent tubulin polymerization inhibitors for selectivity against cancer cells and activated endothelial cells over quiescent endothelial cells has afforded 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105, 8) as a potent and selective antiproliferative. Because of poor solubility, 8 is administered as its disodium phosphate ester prodrug 9 (BNC105P), which is rapidly cleaved in vivo to return the active 8. 9 exhibits both superior vascular disrupting and tumor growth inhibitory properties compared with the benchmark agent combretastatin A-4 disodium phosphate 5 (CA4P).
Collapse
|
research-article |
14 |
131 |
5
|
Bhalla K, Phillips HA, Crawford J, McKenzie OLD, Mulley JC, Eyre H, Gardner AE, Kremmidiotis G, Callen DF. The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene. J Hum Genet 2004; 49:308-311. [PMID: 15148587 DOI: 10.1007/s10038-004-0145-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Accepted: 02/27/2004] [Indexed: 10/26/2022]
Abstract
The 16p13.3 breakpoints of two de novo translocations of chromosome 16, t(1;16) and t(14;16), were shown by initial mapping studies to have physically adjacent breakpoints. The translocations were ascertained in patients with abnormal phenotypes characterized by predominant epilepsy in one patient and mental retardation in the other. Distamycin/DAPI banding showed that the chromosome 1 breakpoint of the t(1;16) was in the pericentric heterochromatin therefore restricting potential gene disruption to the 16p13.3 breakpoint. The breakpoints of the two translocations were localized to a region of 3.5 and 115 kb respectively and were approximately 900 kb apart. The mapping was confirmed by fluorescence in situ hybridization (FISH) of clones that spanned the breakpoints to metaphase spreads derived from the patients. The mapping data showed both translocations disrupted the ataxin-2-binding protein 1 ( A2BP1) gene that encompasses a large genomic region of 1.7 Mb. A2BP1 encodes a protein that is known to interact with the spinocerebellar ataxia type 2 ( SCA2) protein. It is proposed that disruption of the A2BP1 gene is a cause of the abnormal phenotype of the two patients. Ninety-six patients with sporadic epilepsy and 96 female patients with mental retardation were screened by SSCP for potential mutations of A2BP1. No mutations were found, suggesting that disruption of the A2BP1 gene is not a common cause of sporadic epilepsy or mental retardation.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
122 |
6
|
Hou X, Mrug M, Yoder BK, Lefkowitz EJ, Kremmidiotis G, D'Eustachio P, Beier DR, Guay-Woodford LM. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 2002; 109:533-40. [PMID: 11854326 PMCID: PMC150876 DOI: 10.1172/jci14099] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2001] [Accepted: 01/07/2002] [Indexed: 11/17/2022] Open
Abstract
The congenital polycystic kidney (cpk) mutation is the most extensively characterized mouse model of polycystic kidney disease (PKD). The renal cystic disease is fully expressed in homozygotes and is strikingly similar to human autosomal recessive PKD (ARPKD), whereas genetic background modulates the penetrance of the corresponding defect in the developing biliary tree. We now describe the positional cloning, mutation analysis, and expression of a novel gene that is disrupted in cpk mice. The cpk gene is expressed primarily in the kidney and liver and encodes a hydrophilic, 145-amino acid protein, which we term cystin. When expressed exogenously in polarized renal epithelial cells, cystin is detected in cilia, and its expression overlaps with polaris, another PKD-related protein. We therefore propose that the single epithelial cilium is important in the functional differentiation of polarized epithelia and that ciliary dysfunction underlies the PKD phenotype in cpk mice.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- Cilia/metabolism
- Cloning, Molecular
- DNA, Complementary/genetics
- Disease Models, Animal
- Gene Expression
- Homozygote
- Humans
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Mice, Mutant Strains
- Molecular Sequence Data
- Mutation
- Polycystic Kidney, Autosomal Dominant/etiology
- Polycystic Kidney, Autosomal Dominant/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
|
research-article |
23 |
88 |
7
|
Kremmidiotis G, Leske AF, Lavranos TC, Beaumont D, Gasic J, Hall A, O'Callaghan M, Matthews CA, Flynn B. BNC105: a novel tubulin polymerization inhibitor that selectively disrupts tumor vasculature and displays single-agent antitumor efficacy. Mol Cancer Ther 2010; 9:1562-73. [PMID: 20515948 DOI: 10.1158/1535-7163.mct-09-0815] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular disruption agents (VDA) cause occlusion of tumor vasculature, resulting in hypoxia-driven tumor cell necrosis. Tumor vascular disruption is a therapeutic strategy of great potential; however, VDAs currently under development display a narrow therapeutic margin, with cardiovascular toxicity posing a dose-limiting obstacle. Discovery of new VDAs, which display a wider therapeutic margin, may allow attainment of improved clinical outcomes. To identify such compounds, we used an in vitro selectivity screening approach that exploits the fact that tumor endothelial cells are in a constant state of activation and angiogenesis and do not undergo senescence. Our effort yielded the compound BNC105. This compound acts as a tubulin polymerization inhibitor and displays 80-fold higher potency against endothelial cells that are actively proliferating or are engaged in the formation of in vitro capillaries compared with nonproliferating endothelial cells or endothelium found in stable capillaries. This selectivity was not observed with CA4, a VDA currently under evaluation in phase III clinical trials. BNC105 is more potent and offers a wider therapeutic window. CA4 produces 90% vascular disruption at its no observed adverse event level (NOAEL), whereas BNC105 causes 95% vascular disruption at 1/8th of its NOAEL. Tissue distribution analysis of BNC105 in tumor-bearing mice showed that while the drug is cleared from all tissues 24 hours after administration, it is still present at high concentrations within the solid tumor mass. Furthermore, BNC105 treatment causes tumor regressions with complete tumor clearance in 20% of treated animals.
Collapse
|
Journal Article |
15 |
67 |
8
|
Kremmidiotis G, Baker E, Crawford J, Eyre HJ, Nahmias J, Callen DF. Localization of human cadherin genes to chromosome regions exhibiting cancer-related loss of heterozygosity. Genomics 1998; 49:467-71. [PMID: 9615235 DOI: 10.1006/geno.1998.5281] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This report presents the chromosomal localization of cadherin genes. Cadherins are cellular adhesion molecules. Since disturbance of intracellular adhesion is important for invasion and metastasis of tumor cells, cadherins are considered prime candidates for tumor suppressor genes. A variety of solid tumors show loss of heterozygosity of the long arm of chromosome 16, which is indicative of the potential location of tumor suppressor genes. Refined and new localizations of six cadherin genes (CDH3, 5, 8, 11, 13, and 15) to the long arm of chromosome 16 are shown. CDH15 was localized to 16q24.3, in a region that exhibits loss of heterozygosity in a number of sporadic breast cancer tumors. Previous localization of CDH13 (H-cadherin) to 16q24 suggested this gene as a tumor suppressor candidate in the 16q24.3 loss of heterozygosity region; however, refined mapping presented in this report localizes CDH13 proximal to this region. A human EST homologous to the chicken cadherin-7 was partially sequenced and found to represent a new human cadherin. This cadherin mapped to chromosome 18q22-q23, a region that exhibits loss of heterozygosity in head and neck squamous cell carcinomas. CDH16 was localized to 8q22.1, a region exhibiting loss of heterozygosity in adult acute myeloid leukemia.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Cadherins/genetics
- Chromosome Mapping
- Chromosomes, Human
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 18
- Chromosomes, Human, Pair 5
- Chromosomes, Human, Pair 8
- Female
- Gene Deletion
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Neoplasms/genetics
Collapse
|
|
27 |
57 |
9
|
Rischin D, Bibby DC, Chong G, Kremmidiotis G, Leske AF, Matthews CA, Wong SS, Rosen MA, Desai J. Clinical, pharmacodynamic, and pharmacokinetic evaluation of BNC105P: a phase I trial of a novel vascular disrupting agent and inhibitor of cancer cell proliferation. Clin Cancer Res 2011; 17:5152-60. [PMID: 21690571 DOI: 10.1158/1078-0432.ccr-11-0937] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the recommended phase II dose and evaluate the safety and toxicity profile and pharmacokinetic (PK) and pharmacodynamic (PD) effects of BNC105P, an inhibitor of tubulin polymerization that has vascular disrupting and antiproliferative effects. EXPERIMENTAL DESIGN BNC105P was administered as a 10-minute infusion on days 1 and 8 of a 21-day cycle in a first-in-human phase I study. A dynamic accelerated dose titration method was used for dose escalation. Plasma concentrations of BNC105P (phosphate prodrug) and BNC105 (active agent) were determined. PD assessments were carried out using dynamic contrast enhanced (DCE)-MRI and analysis of a blood-borne biomarker. RESULTS Twenty-one subjects with advanced solid tumors were enrolled on 6 dose levels (range: 2.1-18.9 mg/m(2)). The recommended dose level was 16 mg/m(2) and was well tolerated. BNC105P (prodrug) rapidly converted to BNC105 with a half-life of 0.13 hours. Plasma concentrations of BNC105 generally increased in proportion to dose with a half-life of 0.57 hours. Pharmacodymanically active plasma levels were obtained with a dose dependant reduction in the levels of polymerized tubulin (on-target action) being observed in PBMCs. DCE-MRI also indicated blood flow changes in the tumor lesions of a number of subjects. CONCLUSIONS BNC105P has a favorable toxicity profile at the recommended dose of 16 mg/m(2) and is associated with PD changes consistent with its known mechanism of action. Phase II studies in renal cancer and mesothelioma have commenced.
Collapse
|
Journal Article |
14 |
50 |
10
|
Nowak AK, Brown C, Millward MJ, Creaney J, Byrne MJ, Hughes B, Kremmidiotis G, Bibby DC, Leske AF, Mitchell PL, Pavlakis N, Boyer M, Stockler MR. A phase II clinical trial of the Vascular Disrupting Agent BNC105P as second line chemotherapy for advanced Malignant Pleural Mesothelioma. Lung Cancer 2013; 81:422-427. [DOI: 10.1016/j.lungcan.2013.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/06/2013] [Accepted: 05/10/2013] [Indexed: 11/25/2022]
|
|
12 |
46 |
11
|
Kremmidiotis G, Lensink IL, Bilton RL, Woollatt E, Chataway TK, Sutherland GR, Callen DF. The Batten disease gene product (CLN3p) is a Golgi integral membrane protein. Hum Mol Genet 1999; 8:523-31. [PMID: 9949212 DOI: 10.1093/hmg/8.3.523] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Batten disease (juvenile neuronal ceroid lipofuscinosis) is a recessive neurodegenerative disorder of childhood. The gene, CLN3, was recently identified and found to encode a novel 438 amino acid protein of unknown function. In order to gain insight into the function of the Batten disease protein (CLN3p), we investigated its subcellular localization. Protein constructs incorporating CLN3p fused to the green fluorescence protein or an eight amino acid peptide tag were transiently expressed in fibroblasts, HeLa and COS-7 cells. A juxtanuclear, asymmetric localization pattern was observed that correlated with the Golgi apparatus in all three cell types. However, a proportion of transiently transfected cells exhibited a punctate vesicular distribution throughout the cytoplasm in addition to or without the Golgi localization. In order to account for localization patterns arising from intracellular protein transport disruption due to exaggerated overexpression in transiently transfected cells, we isolated a stably transfected cell line expressing only one copy of the CLN3 -GFP DNA construct. Fluorescence and biochemical analyses using this cell line demonstrated that CLN3p is an integral membrane protein that localizes primarily in the Golgi apparatus. The functional implications of this finding are discussed.
Collapse
|
|
26 |
44 |
12
|
Kumar R, Manning J, Spendlove HE, Kremmidiotis G, McKirdy R, Lee J, Millband DN, Cheney KM, Stampfer MR, Dwivedi PP, Morris HA, Callen DF. ZNF652, A Novel Zinc Finger Protein, Interacts with the Putative Breast Tumor Suppressor CBFA2T3 to Repress Transcription. Mol Cancer Res 2006; 4:655-65. [PMID: 16966434 DOI: 10.1158/1541-7786.mcr-05-0249] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcriptional repressor CBFA2T3 is a putative breast tumor suppressor. To define the role of CBFA2T3, we used a segment of this protein as bait in a yeast two-hybrid screen and identified a novel uncharacterized protein, ZNF652. In general, primary tumors and cancer cell lines showed lower expression of ZNF652 than normal tissues. Together with the location of this gene on the long arm of chromosome 17q, a region of frequent loss of heterozygosity in cancer, these results suggest a possible role of ZNF652 in tumorigenesis. In silico analysis of this protein revealed that it contains multiple classic zinc finger domains that are predicted to bind DNA. Coimmunoprecipitation assays showed that ZNF652 strongly interacts with CBFA2T3 and this interaction occurs through the COOH-terminal 109 amino acids of ZNF652. In contrast, there was a weak interaction of ZNF652 with CBFA2T1 and CBFA2T2, the other two members of this ETO family. Transcriptional reporter assays further confirmed the strength and selectivity of the ZNF652-CBFA2T3 interaction. The transcriptional repression of growth factor independent-1 (GFI-1), a previously characterized ETO effector zinc finger protein, was shown to be enhanced by CBFA2T1, but to a lesser extent by CBFA2T2 and CBFA2T3. We therefore suggest that each of the various gene effector zinc finger proteins may specifically interact with one or more of the ETO proteins to generate a defined range of transcriptional repressor complexes.
Collapse
|
|
19 |
39 |
13
|
Kremmidiotis G, Zola H. Changes in CD44 expression during B cell differentiation in the human tonsil. Cell Immunol 1995; 161:147-57. [PMID: 7535194 DOI: 10.1006/cimm.1995.1021] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CD44 is a widely distributed cell surface glycoprotein that has been implicated in a number of cellular adhesion processes and signal transduction events. These functional capabilities qualify CD44 as a potential mediator of contact-signaling events underlying the process of antigen-dependent B cell differentiation in secondary lymphoid tissues. We postulated that changes in the expression of CD44 during B cell differentiation reflect the cells' changing requirements for this receptor. It has been reported that germinal center B cells are low to negative for CD44 expression, implying that the receptor is lost upon activation. Correlation of the expression of CD44 with surface immunoglobulin and a number of B cell differentiation markers revealed a trimodal expression pattern. High levels of CD44 are expressed on resting IgD+/IgM+ cells. The receptor is still expressed at the early activation stage defined by the expression of CD23. At the early blast stage, when the blast marker CD38 appears on the cell surface and IgD and CD23 disappear, CD44 is downregulated. The majority of CD38+/IgM+ blasts and CD38+/Ig- centroblasts are CD44 low/negative. The receptor is re-upregulated at the point of transition from the centroblast to the centrocyte level. Centrocytes expressing IgG or IgA comprise CD44high and CD44low fractions. IgG+ or IgA+ cells at the postgerminal center stage express high levels of CD44. The functional implications of this expression pattern are discussed.
Collapse
|
|
30 |
38 |
14
|
Powell JA, Gardner AE, Bais AJ, Hinze SJ, Baker E, Whitmore S, Crawford J, Kochetkova M, Spendlove HE, Doggett NA, Sutherland GR, Callen DF, Kremmidiotis G. Sequencing, transcript identification, and quantitative gene expression profiling in the breast cancer loss of heterozygosity region 16q24.3 reveal three potential tumor-suppressor genes. Genomics 2002; 80:303-10. [PMID: 12213200 DOI: 10.1006/geno.2002.6828] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of heterozygosity (LOH) of chromosome 16q24.3 is a common genetic alteration observed in invasive ductal and lobular breast carcinomas. We constructed a physical map and generated genomic DNA sequence data spanning 2.4 Mb in this region. Detailed in silico and in vitro analyses of the genomic sequence data enabled the identification of 104 genes. It was hypothesized that tumor-suppressor genes would exhibit marked mRNA expression variability in a panel of breast cancer cell lines as a result of downregulation due to mutation or hypermethylation. We examined the mRNA expression profiles of the genes identified at 16q24.3 in normal breast, a normal breast epithelial cell line, and several breast cancer cell lines exhibiting 16q24.3 LOH. Three of the genes, CYBA, Hs.7970, and CBFA2T3, exhibited variability ten times higher than the baseline. The possible role of these genes as tumor suppressors is discussed.
Collapse
|
|
23 |
37 |
15
|
Su ZJ, Hahn CN, Goodall GJ, Reck NM, Leske AF, Davy A, Kremmidiotis G, Vadas MA, Gamble JR. A vascular cell-restricted RhoGAP, p73RhoGAP, is a key regulator of angiogenesis. Proc Natl Acad Sci U S A 2004; 101:12212-7. [PMID: 15302923 PMCID: PMC514459 DOI: 10.1073/pnas.0404631101] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Angiogenesis is a major therapeutic target. Ideal drug targets are genes expressed only in endothelial cells (ECs) or only during the angiogenic process. Here, we describe a gene, p73RhoGAP (p73), that has both of these properties. By using a PCR-based subtraction-hybridization approach to clone cDNAs from ECs undergoing capillary-tube formation, we identified a RhoGAP member, p73. p73 displays GTPase activity to Rho but not to Rac or Cdc42. Knockdown of p73 protein, achieved by adenovirus delivery of p73 antisense and by small interfering RNA into ECs, demonstrated the importance of this protein in EC function. Under such conditions, EC migration, proliferation, and capillary-tube formation were inhibited. Furthermore, angiogenesis in vivo was also inhibited by antisense p73. A mutant R82A alteration achieved a similar phenotype in vitro to the antisense, demonstrating the importance of the GTPase-activating protein activity to p73 function. Expression profiling of p73 shows that it is vascular cell-selective, being highly expressed in ECs and smooth-muscle cells but not in other cell types. Finally, we show that the mRNA of p73 is up-regulated in an angiogenic milieu with little or no regulation seen under nonangiogenic conditions. p73, a vascular cell-specific GTPase-activating protein, is an important modulator of angiogenesis and displays many of features that make it worthy of being a drug target.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
37 |
16
|
Kremmidiotis G, Gardner AE, Settasatian C, Savoia A, Sutherland GR, Callen DF. Molecular and functional analyses of the human and mouse genes encoding AFG3L1, a mitochondrial metalloprotease homologous to the human spastic paraplegia protein. Genomics 2001; 76:58-65. [PMID: 11549317 DOI: 10.1006/geno.2001.6560] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identification of SPG7 as the gene defective in a recessive form of spastic paraplegia has drawn attention to the yeast protein family of ATP-dependent zinc metalloproteases. The protein encoded by SPG7, paraplegin, shows high homology to members of this protein family. Recently, many mammalian ATP-dependent zinc metalloproteases have been identified and considered as possible candidates for defects in other forms of hereditary spastic paraplegia and possibly other neurodegenerative disorders. So far only a partial sequence has been available for one of those genes, ATPase family gene-3, yeast-like-1 (AFG3L1). We have carried out detailed molecular analysis of this gene and identified and characterized its mouse orthologue, Afg3l1. Our data indicate that AFG3L1 is transcribed into four mRNA isoforms that are not translated in humans. Afg3l1 encodes a protein with high homology to paraplegin and the other members of the ATP-dependent zinc metalloprotease family. Like the other ATP-dependent zinc metalloproteases, Afg3l1 localizes to the mitochondria.
Collapse
|
|
24 |
36 |
17
|
Mitchison HM, Munroe PB, O'Rawe AM, Taschner PE, de Vos N, Kremmidiotis G, Lensink I, Munk AC, D'Arigo KL, Anderson JW, Lerner TJ, Moyzis RK, Callen DF, Breuning MH, Doggett NA, Gardiner RM, Mole SE. Genomic structure and complete nucleotide sequence of the Batten disease gene, CLN3. Genomics 1997; 40:346-50. [PMID: 9119403 DOI: 10.1006/geno.1996.4576] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We recently cloned a cDNA for CLN3, the gene for juvenile-onset neuronal ceroid lipofuscinosis or Batten disease. To resolve the genomic organization we used a cosmid clone containing CLN3 to sequence the entire gene in addition to 1.1 kb 5' of the start of the published CLN3 cDNA and 0.3 kb 3' to the polyadenylation site. CLN3 is organized into at least 15 exons spanning 15 kb and ranging from 47 to 356 bp. The 14 introns vary from 80 to 4227 bp, and all exon/intron junction sequences conform to the GT/AG rule. Numerous repetitive Alu elements are present within the introns and 5'- and 3'-untranslated regions. The 5' region of the CLN3 gene contains several potential transcription regulatory elements but no consensus TATA-1 box was identified. CLN3 is homologous to 27 deposited human ESTs, and sequence comparisons suggest alternative splicing of the gene and the existence of transcribed sequences upstream to the start of the published CLN3 cDNA.
Collapse
|
|
28 |
34 |
18
|
Pal S, Azad A, Bhatia S, Drabkin H, Costello B, Sarantopoulos J, Kanesvaran R, Lauer R, Starodub A, Hauke R, Sweeney CJ, Hahn NM, Sonpavde G, Richey S, Breen T, Kremmidiotis G, Leske A, Doolin E, Bibby DC, Simpson J, Iglesias J, Hutson T. A Phase I/II Trial of BNC105P with Everolimus in Metastatic Renal Cell Carcinoma. Clin Cancer Res 2015; 21:3420-7. [PMID: 25788492 PMCID: PMC4526387 DOI: 10.1158/1078-0432.ccr-14-3370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/08/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE BNC105P inhibits tubulin polymerization, and preclinical studies suggest possible synergy with everolimus. In this phase I/II study, efficacy and safety of the combination were explored in patients with metastatic renal cell carcinoma (mRCC). EXPERIMENTAL DESIGN A phase I study in patients with clear cell mRCC and any prior number of therapies was conducted using a classical 3 + 3 design to evaluate standard doses of everolimus with increasing doses of BNC105P. At the recommended phase II dose (RP2D), patients with clear cell mRCC and one to two prior therapies (including ≥ 1 VEGF-TKI) were randomized to BNC105P with everolimus (arm A) or everolimus alone (arm B). The primary endpoint of the study was 6-month progression-free survival (6MPFS). Secondary endpoints included response rate, PFS, overall survival, and exploratory biomarker analyses. RESULTS In the phase I study (N = 15), a dose of BNC105P at 16 mg/m(2) with everolimus at 10 mg daily was identified as the RP2D. In the phase II study, 139 patients were randomized, with 69 and 67 evaluable patients in arms A and B, respectively. 6MPFS was similar in the treatment arms (arm A: 33.82% vs. arm B: 30.30%, P = 0.66) and no difference in median PFS was observed (arm A: 4.7 mos vs. arm B: 4.1 mos; P = 0.49). Changes in matrix metalloproteinase-9, stem cell factor, sex hormone-binding globulin, and serum amyloid A protein were associated with clinical outcome with BNC105P. CONCLUSIONS Although the primary endpoint was not met in an unselected population, correlative studies suggest several biomarkers that warrant further prospective evaluation.
Collapse
|
Clinical Trial, Phase I |
10 |
29 |
19
|
Callen DF, Lane SA, Kozman H, Kremmidiotis G, Whitmore SA, Lowenstein M, Doggett NA, Kenmochi N, Page DC, Maglott DR. Integration of transcript and genetic maps of chromosome 16 at near-1-Mb resolution: demonstration of a "hot spot" for recombination at 16p12. Genomics 1995; 29:503-11. [PMID: 8666401 DOI: 10.1006/geno.1995.9005] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A single mapping resource, a mouse/human somatic cell panel with average distance between breakpoints of 1.2 Mb and a potential resolution of 1 Mb, has been utilized to integrate the genetic map and a transcript map of human chromosome 16. This map includes 141 genetic markers and 200 genes and transcripts. The localization of four genes (CHEL3, TK2, TRG1, and MMP9) reported to map to chromosome 16 could not be confirmed, and for three of these localizations to other human chromosomes are reported. A correlation between genetic and physical distance over a region estimated to be 23 Mb on the short arm of chromosome 16 identified an interval demonstrating a greatly increased rate of recombination where, in females, 1 cM is equivalent to a physical distance of 100 kb.
Collapse
|
|
30 |
26 |
20
|
Inglis DJ, Lavranos TC, Beaumont DM, Leske AF, Brown CK, Hall AJ, Kremmidiotis G. The vascular disrupting agent BNC105 potentiates the efficacy of VEGF and mTOR inhibitors in renal and breast cancer. Cancer Biol Ther 2015; 15:1552-60. [PMID: 25482941 DOI: 10.4161/15384047.2014.956605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BNC105 is a tubulin targeting compound that selectively disrupts vasculature within solid tumors. The severe tumor hypoxia and necrosis that ensues translates to short term tumor growth inhibition. We sought to identify the molecular and cellular events activated following BNC105 treatment that drives tumor recovery. We investigated tumor adaptation to BNC105-induced hypoxia in animal models of breast and renal cancer. HIF-1α and GLUT-1 were found to be strongly upregulated by BNC105 as was the VEGF signaling axis. Phosphorylation of mTOR, 4E-BP-1 and elF2α were upregulated, consistent with increased protein synthesis and increased expression of VEGF-A. We sought to investigate the potential therapeutic utility of combining BNC105 with agents targeting VEGF and mTOR signaling. Bevacizumab and pazopanib target the VEGF axis and have been approved for first line use in renal cancer. Everolimus targets mTOR and is currently approved in second line therapy of renal and particular breast cancers. We combined these agents with BNC105 to explore the effects on tumor vasculature, tumor growth inhibition and animal survival. Bevacizumab hindered tumor vascular recovery following BNC105 treatment leading to greater tumor growth inhibition in a breast cancer model. Consistent with this, addition of BNC105 to pazopanib treatment resulted in a significant increase in survival in an orthotopic renal cancer model. Combination treatment of BNC105 with everolimus also increased tumor growth inhibition. BNC105 is currently being evaluated in a randomized phase II clinical trial in combination with everolimus in renal cancer.
Collapse
Key Words
- 4EBP1, eukaryotic translation initiation factor 4E binding protein 1
- GLUT-1, glucose transporter 1
- H&E, hematoxylin and eosin.
- HIF1α, hypoxia-inducible factor 1-alpha
- IFNα, interferon α
- NSCLC, non-small-cell lung carcinoma
- PDGFR, platelet-derived growth factor receptor
- PERK, protein kinase-like endoplasmic reticulum kinase
- PFS, progression free survival
- TKI, tyrosine kinase inhibitor
- VDA, vascular disrupting agent
- VEGF
- VEGF, vascular endothelial growth factor
- breast
- eIF2a, eukaryotic translation initiation factor 2a
- hypoxia
- mTOR
- mTOR, mammalian target of rapamycin
- renal
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
20 |
21
|
Hahn CN, Su ZJ, Drogemuller CJ, Tsykin A, Waterman SR, Brautigan PJ, Yu S, Kremmidiotis G, Gardner A, Solomon PJ, Goodall GJ, Vadas MA, Gamble JR. Expression profiling reveals functionally important genes and coordinately regulated signaling pathway genes during in vitro angiogenesis. Physiol Genomics 2005; 22:57-69. [PMID: 15840639 DOI: 10.1152/physiolgenomics.00278.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Angiogenesis is a complex multicellular process requiring the orchestration of many events including migration, alignment, proliferation, lumen formation, remodeling, and maturation. Such complexity indicates that not only individual genes but also entire signaling pathways will be crucial in angiogenesis. To define an angiogenic blueprint of regulated genes, we utilized our well-characterized three-dimensional collagen gel model of in vitro angiogenesis, in which the majority of cells synchronously progress through defined morphological stages culminating in the formation of capillary tubes. We developed a comprehensive three-tiered approach using microarray analysis, which allowed us to identify genes known to be involved in angiogenesis and genes hitherto unlinked to angiogenesis as well as novel genes and has proven especially useful for genes where the magnitude of change is small. Of interest is the ability to recognize complete signaling pathways that are regulated and genes clustering into ontological groups implicating the functional importance of particular processes. We have shown that consecutive members of the mitogen-activated protein kinase and leukemia inhibitory factor signaling pathways are altered at the mRNA level during in vitro angiogenesis. Thus, at least for the mitogen-activated protein kinase pathway, mRNA changes as well as the phosphorylation changes of these gene products may be important in the control of blood vessel morphogenesis. Furthermore, in this study, we demonstrated the power of virtual Northern blot analysis, as an alternative to quantitative RT-PCR, for measuring the magnitudes of differential gene expression.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
16 |
22
|
Mitchison HM, Taschner PE, Kremmidiotis G, Callen DF, Doggett NA, Lerner TJ, Janes RB, Wallace BA, Munroe PB, O'Rawe AM, Gardiner RM, Mole SE. Structure of the CLN3 gene and predicted structure, location and function of CLN3 protein. Neuropediatrics 1997; 28:12-4. [PMID: 9151311 DOI: 10.1055/s-2007-973656] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The genomic sequence of the human CLN3 gene, which is defective in juvenile onset neuronal ceroid lipofuscinosis (Batten disease) is being delineated using a variety of methods. A Saccharomyces cerevisiae gene, YHC3 (for Yeast Homologue to human CLN3), which is highly similar to the human disease gene, has been identified by computer-aided homology searching. Topology predictions indicate the CLN3 protein contains six transmembrane segments. Most similarity between the human and yeast proteins lies either in the transmembrane segments or along one face of the predicted protein structure.
Collapse
|
|
28 |
15 |
23
|
Bais AJ, Gardner AE, McKenzie OLD, Callen DF, Sutherland GR, Kremmidiotis G. Aberrant CBFA2T3B gene promoter methylation in breast tumors. Mol Cancer 2004; 3:22. [PMID: 15301688 PMCID: PMC516017 DOI: 10.1186/1476-4598-3-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 08/10/2004] [Indexed: 12/31/2022] Open
Abstract
Background The CBFA2T3 locus located on the human chromosome region 16q24.3 is frequently deleted in breast tumors. CBFA2T3 gene expression levels are aberrant in breast tumor cell lines and the CBFA2T3B isoform is a potential tumor suppressor gene. In the absence of identified mutations to further support a role for this gene in tumorigenesis, we explored whether the CBFA2T3B promoter region is aberrantly methylated and whether this correlates with expression. Results Aberrant hypo and hypermethylation of the CBFA2T3B promoter was detected in breast tumor cell lines and primary breast tumor samples relative to methylation index interquartile ranges in normal breast counterpart and normal whole blood samples. A statistically significant inverse correlation between aberrant CBFA2T3B promoter methylation and gene expression was established. Conclusion CBFA2T3B is a potential breast tumor suppressor gene affected by aberrant promoter methylation and gene expression. The methylation levels were quantitated using a second-round real-time methylation-specific PCR assay. The detection of both hypo and hypermethylation is a technicality regarding the methylation methodology.
Collapse
|
Journal Article |
21 |
11 |
24
|
Kremmidiotis G, Ridings J, Hicks M, Beckman IG, Bryson G, Collins R, Zola H. Heterogeneity of CD44 expression among human B-cell subpopulations. TISSUE ANTIGENS 1998; 51:232-41. [PMID: 9550323 DOI: 10.1111/j.1399-0039.1998.tb03097.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CD44 is a widely distributed cell surface glycoprotein that participates in a number of cellular adhesion and signal transduction processes. Germinal center B cells express very low levels of CD44, whereas their precursors and differentiation products express much higher levels. In immunofluorescence studies comparing 20 antibodies classified as being against the hematopoietic isoform of CD44, one antibody, A1G3, was unreactive with germinal center B cells, whereas the other antibodies showed low intensity but definite reactivity. Western blotting and sequential immunoprecipitation studies of lysates from density-separated lymphocyte fractions showed two bands that were differentially expressed and reacted differently with A1G3 compared with the other CD44 antibodies. These results suggest that germinal center B cells and non-germinal center B cells express different forms of CD44. Of 21 malignant B-cell populations examined, 5 showed reactivity with a "standard" CD44 reagent and significantly reduced reactivity with A1G3, while one sample showed the opposite pattern and the remainder were positive for both reagents. Of 10 cell lines studied, 5 were differentially stained by A1G3 and a standard CD44 antibody. PCR amplification of reverse transcribed mRNA from sorted human tonsil B-cell subpopulations and Southern blotting showed that B cells express a number of splice isoforms of CD44. These results demonstrate that B cells express multiple forms of CD44; both splice insert isoforms and variants distinguished by A1G3; the form of CD44 expressed depends on B-cell differentiation state.
Collapse
|
|
27 |
6 |
25
|
Desai J, Wong S, Chong G, Bibby D, Leske A, Kremmidiotis G, Rosen M, Rischin D. Phase I, pharmacokinetic, and pharmacodynamic evaluation of BNC105P, a novel anticancer agent that is both a vascular disrupting agent (VDA) and an inhibitor of cancer cell proliferation. J Clin Oncol 2009. [DOI: 10.1200/jco.2009.27.15_suppl.e14512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
e14512 Background: BNC105P is a novel anticancer agent that inhibits tubulin polymerization and acts as a VDA. BNC105P is a phosphorylated parent compound which rapidly becomes the active agent BNC105. BNC105 exhibits 100-fold specificity for activated endothelial cells compared to quiescent endothelial cells. Methods: BNC105P (2.1 to 18.9 mg/m2) was given IV over 10 min on day 1 and 8 every 21 days to patients (pts) with advanced solid tumors (ECOG 0–2) and adequate organ function. The objectives were to determine safety, tolerability, MTD and pharmacokinetics (PK). A pharmacodynamic response was evaluated using DCE-MRI with two baseline and two post dose assessments (3–6, 24 h). DLTs were determined during the first 21 days. Results: 9 pts (7 M; 2 F), median age 60 years have been enrolled with one pt each at 2.1 and 4.2 mg/m2. At 8.4 mg/m2, one pt experienced Grade 2 (Gr 2) mucositis and a switch to a ‘3+3’ design occurred. No DLTs have been observed in 3 pts at 12.6 mg/m2 and 1 pt at 18.9 mg/m2. Notable toxicity includes one episode of Gr 1 febrile episode possibly related to infusion, two episodes of Gr 1 fatigue and one Gr 1 rash. PK data of BNC105 indicates a linear increase in plasma AUC levels (Table) and plasma half life of < 0.5 h. Best observed responses were SD in 2/9 pts including one pt with mesothelioma (progression at entry) with SD up to week 22 (8.4 mg/m2). At doses ≥ 8.4 mg/m2, DCE-MRI images indicate changes in tumor perfusion post-dose. Two pts at 12.6 mg/m2 had a decrease in Ktrans values of 6 and 15 % compared to baseline. Conclusions: Pharmacodynamically active doses have been achieved with plasma drug levels correlating with active preclinical plasma exposure. To date, no excess toxicity has been observed at doses up to 18.9 mg/m2. [Table: see text] [Table: see text]
Collapse
|
|
16 |
3 |