1
|
Olives P, Sanchez L, Lesage G, Héran M, Rodriguez-Roda I, Blandin G. Impact of Integration of FO Membranes into a Granular Biomass AnMBR for Water Reuse. MEMBRANES 2023; 13:265. [PMID: 36984652 PMCID: PMC10053063 DOI: 10.3390/membranes13030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The granular sludge based anaerobic membrane bioreactor (G-AnMBR) has gained emphasis in the last decade by combining AnMBR advantages (high quality permeate and biogas production towards energy positive treatment) and benefits of granular biomass (boosted biological activity and reduced membrane fouling). With the aim to further reduce energy costs, produce higher quality effluent for water reuse applications and improve system efficiency, a forward osmosis (FO) system was integrated into a 17 L G-AnMBR pilot. Plate and frame microfiltration modules were step by step replaced by submerged FO ones, synthetic wastewater was used as feed (chemical oxygen demand (COD) content 500 mg/L), with hydraulic retention time of 10 h and operated at 25 °C. The system was fed with granular biomass and after the acclimation period, operated neither with gas sparging nor relaxation at around 5 L.m-2.h-1 permeation flux during at least 10 days for each tested configuration. Process stability, impact of salinity on biomass, the produced water quality and organic matter removal efficiency were assessed and compared for the system working with 100% microfiltration (MF), 70% MF/30% FO, 50% MF/50% FO and 10% MF/90% FO, respectively. Increasing the FO share in the reactor led to salinity increase and to enhanced fouling propensity probably due to salinity shock on the active biomass, releasing extracellular polymeric substances (EPS) in the mixed liquor. However, above 90% COD degradation was observed for all configurations with a remaining COD content below 50 mg/L and below the detection limit for MF and FO permeates, respectively. FO membranes also proved to be less prone to fouling in comparison with MF ones. Complete salt mass balance demonstrated that major salinity increase in the reactor was due to reverse salt passage from the draw solution but also that salts from the feed solution could migrate to the draw solution. While FO membranes allow for full rejection and very high permeate purity, operation of G-AnMBR with FO membranes only is not recommended since MF presence acts as a purge and allows for reactor salinity stabilization.
Collapse
|
2
|
García-Pacheco R, Galizia A, Toribio S, Gabarró J, Molina S, Landaburu-Aguirre J, Molina F, Blandin G, Monclús H, Rodríguez-Roda I, Comas J. Landfill Leachate Treatment by Using Second-Hand Reverse Osmosis Membranes: Long-Term Case Study in a Full-Scale Operating Facility. MEMBRANES 2022; 12:1170. [PMID: 36422162 PMCID: PMC9699200 DOI: 10.3390/membranes12111170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Landfill leachate (LFL) has a complex inorganic, organic and microbiological composition. Although pressure-driven membrane technology contributes to reaching the discharge limits, the need for frequent membrane replacement (typically every 1-3 years) is an economical and environmental limitation. The goal of this work is to evaluate the feasibility of using second-hand reverse osmosis (RO) membranes to treat LFL in an industrially relevant environment. End-of-life RO membranes discarded from a seawater desalination plant were first tested with brackish water and directly reused or regenerated to fit with requirements for LFL treatment. A laboratory scale test of second-hand membrane reuse was carried out using ultrafiltered LFL. Then, a long-term test in an LFL full-scale facility was performed, where half of the membranes of the facility were replaced. The industrial plant was operated for 27 months with second-hand membranes. The permeate water quality fit the required standards and the process showed a trend of lower energy requirement (up to 12 bar lower transmembrane pressure and up to 9% higher recovery than the average of the previous 4 years). Direct reuse and membrane regeneration were successfully proven to be an alternative management to landfill disposal, boosting membranes towards the circular economy.
Collapse
|
3
|
Mendoza E, Buttiglieri G, Blandin G, Comas J. Exploring the limitations of forward osmosis for direct hydroponic fertigation: Impact of ion transfer and fertilizer composition on effective dilution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114339. [PMID: 34954684 DOI: 10.1016/j.jenvman.2021.114339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
There is a need for water reuse technologies and applications to minimize the imminent water crisis, caused by the world population growth, the reduction of freshwater resources and the increasing water pollution. Fertilizer-drawn forward osmosis (FDFO) is a promising process capable of simultaneously extracting fresh water from low-quality sources as feed water (e.g., wastewater or greywater), while diluting fertilizer solutions for direct fertigation, avoiding the demand for freshwater for irrigation. Achieving an adequate level of dilution for direct fertigation is a key element to be evaluated for the implementation of FDFO. This study assessed the performance of the forward osmosis process to dilute fertilizer solutions to be applied directly in hydroponic systems. Experiments were carried out under conditions close to osmotic equilibrium to evaluate the process performance up to the maximum dilution point. Tests were carried out with individual and blended fertilizers (i.e., (NH4)2HPO4 or DAP, and KNO3) used as draw solution (DS) and with deionized water or individual salts (NaCl, MgCl2, Na2SO4, MgSO4) in the feed solution (FS). Water fluxes and reverse salt fluxes indicated that both fertilizer DS composition and concentrations play a fundamental role in the process. Suitable nutrient concentrations to be directly applied without further dilution for N, P and K (119, 40, 264 mg.L-1 respectively) were obtained with deionized water as FS and blended DAP (0.025 M) and KNO3 (0.15 M) as DS. However, important fertilizer losses from DS to FS were observed, being the highest for NO3- (33-70% losses from DS to FS). The presence of salts in FS decreased the water fluxes and the DS dilution due to the osmotic equilibrium caused by a greater loss of nutrients from DS to FS (up to 100%), compared with tests using just deionized water as FS. This study points out the potential limitations of the FDFO process, due to the high solute fluxes and low water fluxes in conditions close to osmotic equilibrium.
Collapse
|
4
|
Blandin G, Ferrari F, Lesage G, Le-Clech P, Héran M, Martinez-Lladó X. Forward Osmosis as Concentration Process: Review of Opportunities and Challenges. MEMBRANES 2020; 10:membranes10100284. [PMID: 33066490 PMCID: PMC7602145 DOI: 10.3390/membranes10100284] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as "soft" concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, and therefore can be considered as a potential candidate for a broad range of concentration applications where current technologies still suffer from critical limitations. This review extensively compiles and critically assesses recent considerations of FO as a concentration process for applications, including food and beverages, organics value added compounds, water reuse and nutrients recovery, treatment of waste streams and brine management. Specific requirements for the concentration process regarding the evaluation of concentration factor, modules and design and process operation, draw selection and fouling aspects are also described. Encouraging potential is demonstrated to concentrate streams more than 20-fold with high rejection rate of most compounds and preservation of added value products. For applications dealing with highly concentrated or complex streams, FO still features lower propensity to fouling compared to other membranes technologies along with good versatility and robustness. However, further assessments on lab and pilot scales are expected to better define the achievable concentration factor, rejection and effective concentration of valuable compounds and to clearly demonstrate process limitations (such as fouling or clogging) when reaching high concentration rate. Another important consideration is the draw solution selection and its recovery that should be in line with application needs (i.e., food compatible draw for food and beverage applications, high osmotic pressure for brine management, etc.) and be economically competitive.
Collapse
|
5
|
Onyshchenko E, Blandin G, Comas J, Dvoretsky A. Influence of microalgae wastewater treatment culturing conditions on forward osmosis concentration process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1234-1245. [PMID: 30414024 DOI: 10.1007/s11356-018-3607-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Forward osmosis is envisioned as a technology for microalgae concentration but fouling propensity during dewatering is currently a limiting factor that requires better understanding. The purpose of this study is to define the impact of microalgae culturing conditions on the downstream forward osmosis (FO) separation process-water recovery and microalgae harvesting. Chlorella vulgaris was cultivated in an outdoor lab-scale reactor fed with synthetic wastewater mimicking primary settled municipal influent under changing environmental conditions (temperature, solar radiation, nutrient balance) with varying hydraulic retention time. High efficiency of nutrient removal was achieved under all tested conditions but microalgae autoflocculation and lower rate of pollutant removal were observed with batches where culturing temperature (6.5-21 °C), solar irradiation rate (181 W/m2), and nitrogen/phosphorous ratio (2.9) were below the optimal range. Regarding FO concentration, high initial water fluxes (in the range of 18.2 to 19.5 L·m2·h-1) and water extraction rate (60.1-83.9%) were observed in all subsequent FO concentration tests. Significant membrane fouling (microalgae deposition on surface) associated with poor biomass recovery from the FO cell was found to be dependent on exopolymeric substance accumulation, which was a response to non-optimal environmental culturing conditions.
Collapse
|
6
|
Ferrari F, Pijuan M, Rodriguez-Roda I, Blandin G. Exploring Submerged Forward Osmosis for Water Recovery and Pre-Concentration of Wastewater Before Anaerobic Digestion: A Pilot Scale Study. MEMBRANES 2019; 9:E97. [PMID: 31387333 PMCID: PMC6722522 DOI: 10.3390/membranes9080097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022]
Abstract
Applying forward osmosis directly on raw municipal wastewater is of high interest for the simultaneous production of a high quality permeate for water reuse and pre-concentrating wastewater for anaerobic digestion. This pilot scale study investigates, for the first time, the feasibility of concentrating real raw municipal wastewater using a submerged plate and frame forward osmosis module (0.34 m2) to reach 70% water recovery. Membrane performance, fouling behavior, and effective concentration of wastewater compounds were examined. Two different draw solutions (NaCl and MgCl2), operating either with constant draw concentration or in batch with draw dilution over time, were evaluated. Impact of gas sparging on fouling and external concentration polarization was also assessed. Water fluxes up to 15 L m-2 h-1 were obtained with clean water and 35 g NaCl/L as feed and draw solution, respectively. When using real wastewater, submerged forward osmosis proved to be resilient to clogging, demonstrating its suitability for application on municipal or other complex wastewater; operating with 11.7 g NaCl/L constant draw solution, water and reverse salt fluxes up to 5.1 ± 1.0 L m-2 h-1 and 4.8 ± 2.6 g m-2 h-1 were observed, respectively. Positively, total and soluble chemical oxygen demand concentration factors of 2.47 ± 0.15 and 1.86 ± 0.08, respectively, were achieved, making wastewater more suitable for anaerobic treatment.
Collapse
|
7
|
Blandin G, Rosselló B, Monsalvo VM, Batlle-Vilanova P, Viñas JM, Rogalla F, Comas J. Volatile fatty acids concentration in real wastewater by forward osmosis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Blandin G, Rodriguez-Roda I, Comas J. Submerged Osmotic Processes: Design and Operation to Mitigate Mass Transfer Limitations. MEMBRANES 2018; 8:membranes8030072. [PMID: 30200413 PMCID: PMC6161285 DOI: 10.3390/membranes8030072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Submerged forward osmosis (FO) is of high interest for bioreactors, such as osmotic membrane bioreactor, microalgae photobioreactor, food or bioproduct concentration where pumping through pressurized modules is a limitation due to viscosity or breakage of fragile components. However, so far, most FO efforts have been put towards cross flow configurations. This study provides, for the first time, insights on mass transfer limitations in the operation of submerged osmotic systems and offer recommendations for optimized design and operation. It is demonstrated that operation of the submerged plate and frame FO module requires draw circulation in the vacuum mode (vacuum assisted osmosis) that is in favor of the permeation flux. However, high pressure drops and dead zones occurring in classical U-shape FO draw channel strongly disadvantage this design; straight channel design proves to be more effective. External concentration polarization (ECP) is also a crucial element in the submerged FO process since mixing of the feed solution is not as optimized as in the cross flow module unless applying intense stirring. Among the mitigation techniques tested, air scouring proves to be more efficient than feed solution circulation. However, ECP mitigation methodology has to be adapted to application specificities with regards to combined/synergetic effects with fouling mitigation.
Collapse
|
9
|
Blandin G, Myat DT, Verliefde AR, Le-Clech P. Pressure assisted osmosis using nanofiltration membranes (PAO-NF): Towards higher efficiency osmotic processes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.03.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Teusner A, Blandin G, Le-Clech P. Augmenting water supply by combined desalination/water recycling methods: an economic assessment. ENVIRONMENTAL TECHNOLOGY 2017; 38:257-265. [PMID: 27189010 DOI: 10.1080/09593330.2016.1189972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
Dry coastal communities increasingly need to consider non-traditional methods of augmenting their water supply. This study presents a preliminary economic comparison of three alternatives for increasing the water supply by 50% for a hypothetical baseline coastal scenario: increasing desalination (Scenario A), direct potable water reuse (DPWR) (Scenario B), and a novel retrofitted configuration of a hybrid forward osmosis-reverse osmosis (FO-RO) plant (Scenario C). The latter used the dilution of the seawater feed to increase the recovery and overall output water of the original RO step. To account for the time value of money, levelised cost (LC) was used as the primary economic metric. The hybrid FO-RO configuration had a comparable LC to DPWR (0.59 vs. 0.61 $ m-3) and was 12% cheaper than desalination (0.67 $ m-3). Furthermore, hybrid FO-RO was 7% more energy efficient than conventional desalination due to reduced intake and pretreatment flows. Sensitivity analyses demonstrated that incremental reductions in LC were possible for increased FO membrane flux, including in pressure-assisted osmosis scenarios with applied pressure ranging from 2 to 6 bar. These findings validate the examination of hybrid FO-RO configurations that deviate from the energy-reduction paradigms typically studied.
Collapse
|
11
|
Blandin G, Comas J, Rodriguez-Roda I. Potential and Challenges of Osmotic Membrane Bioreactor (OMBR) for (Potable) Water Reuse: A Pilot Scale Study. LECTURE NOTES IN CIVIL ENGINEERING 2017. [DOI: 10.1007/978-3-319-58421-8_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Blandin G, Verliefde AR, Le-Clech P. Pressure enhanced fouling and adapted anti-fouling strategy in pressure assisted osmosis (PAO). J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Blandin G, Marchand S, Charton K, Daniele N, Gicquel E, Stockholm D, Bartoli M, Richard I. G.O.3 A human skeletal muscle interactome centered on proteins involved in muscular dystrophies. Neuromuscul Disord 2012. [DOI: 10.1016/j.nmd.2012.06.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Huron Y, Salmon T, Crine M, Blandin G, Léonard A. Effect of liming on the convective drying of urban residual sludges. ASIA-PAC J CHEM ENG 2010. [DOI: 10.1002/apj.421] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Sarparanta J, Vihola A, Marchand S, Blandin G, Hackman P, Ehler E, Richard I, Udd B. G.P.14.04 Interactions of myospryn with M-band titin and calpain 3. Neuromuscul Disord 2008. [DOI: 10.1016/j.nmd.2008.06.318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Barry JD, Marcello L, Morrison LJ, Read AF, Lythgoe K, Jones N, Carrington M, Blandin G, Böhme U, Caler E, Hertz-Fowler C, Renauld H, El-Sayed N, Berriman M. What the genome sequence is revealing about trypanosome antigenic variation. Biochem Soc Trans 2006; 33:986-9. [PMID: 16246028 DOI: 10.1042/bst20050986] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
African trypanosomes evade humoral immunity through antigenic variation, whereby they switch expression of the gene encoding their VSG (variant surface glycoprotein) coat. Switching proceeds by duplication of silent VSG genes into a transcriptionally active locus. The genome project has revealed that most of the silent archive consists of hundreds of subtelomeric VSG tandem arrays, and that most of these are not functional genes. Precedent suggests that they can contribute combinatorially to the formation of expressed, functional genes through segmental gene conversion. These findings from the genome project have major implications for evolution of the VSG archive and for transmission of the parasite in the field.
Collapse
|
17
|
Blandin G. [A physician in Nantes during the reign of terror: Guillaume Laennec]. HISTOIRE DES SCIENCES MEDICALES 2001; 27:105-10. [PMID: 11634223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
18
|
Rozas J, Gullaud M, Blandin G, Aguadé M. DNA variation at the rp49 gene region of Drosophila simulans: evolutionary inferences from an unusual haplotype structure. Genetics 2001; 158:1147-55. [PMID: 11454763 PMCID: PMC1461709 DOI: 10.1093/genetics/158.3.1147] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An approximately 1.3-kb region including the rp49 gene plus its 5' and 3' flanking regions was sequenced in 24 lines of Drosophila simulans (10 from Spain and 14 from Mozambique). Fifty-four nucleotide and 8 length polymorphisms were detected. All nucleotide polymorphisms were silent: 52 in noncoding regions and 2 at synonymous sites in the coding region. Estimated silent nucleotide diversity was similar in both populations (pi = 0.016, for the total sample). Nucleotide variation revealed an unusual haplotype structure showing a subset of 11 sequences with a single polymorphism. This haplotype was present at intermediate frequencies in both the European and the African samples. The presence of such a major haplotype in a highly recombining region is incompatible with the neutral equilibrium model. This haplotype structure in both a derived and a putatively ancestral population can be most parsimoniously explained by positive selection. As the rate of recombination in the rp49 region is high, the target of selection should be close to or within the region studied.
Collapse
|
19
|
Tekaia F, Blandin G, Malpertuy A, Llorente B, Durrens P, Toffano-Nioche C, Ozier-Kalogeropoulos O, Bon E, Gaillardin C, Aigle M, Bolotin-Fukuhara M, Casarégola S, de Montigny J, Lépingle A, Neuvéglise C, Potier S, Souciet J, Wésolowski-Louvel M, Dujon B. Genomic exploration of the hemiascomycetous yeasts: 3. Methods and strategies used for sequence analysis and annotation. FEBS Lett 2000; 487:17-30. [PMID: 11152878 DOI: 10.1016/s0014-5793(00)02274-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The primary analysis of the sequences for our Hemiascomycete random sequence tag (RST) project was performed using a combination of classical methods for sequence comparison and contig assembly, and of specifically written scripts and computer visualization routines. Comparisons were performed first against DNA and protein sequences from Saccharomyces cerevisiae, then against protein sequences from other completely sequenced organisms and, finally, against protein sequences from all other organisms. Blast alignments were individually inspected to help recognize genes within our random genomic sequences despite the fact that only parts of them were available. For each yeast species, validated alignments were used to infer the proper genetic code, to determine codon usage preferences and to calculate their degree of sequence divergence with S. cerevisiae. The quality of each genomic library was monitored from contig analysis of the DNA sequences. Annotated sequences were submitted to the EMBL database, and the general annotation tables produced served as a basis for our comparative description of the evolution, redundancy and function of the Hemiascomycete genomes described in other articles of this issue.
Collapse
|
20
|
Malpertuy A, Llorente B, Blandin G, Artiguenave F, Wincker P, Dujon B. Genomic exploration of the hemiascomycetous yeasts: 10. Kluyveromyces thermotolerans. FEBS Lett 2000; 487:61-5. [PMID: 11152885 DOI: 10.1016/s0014-5793(00)02281-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A genomic exploration of Kluyveromyces thermotolerans was performed by random sequence tag (RST) analysis. We sequenced 2653 RSTs corresponding to inserts sequenced from both ends. We performed a systematic comparison with a complete set of proteins from Saccharomyces cerevisiae, other completely sequenced genomes and SwissProt. We identified six mitochondrial genes and 1358-1496 nuclear genes by comparison with S. cerevisiae. In addition, 25 genes were identified by comparison with other organisms. This corresponds to about 24% of the estimated gene content of this organism. A lower level of conservation is observed with orthologues to genes of S. cerevisiae previously classified as orphans. Gene order was found to be conserved between S. cerevisiae and K. thermotolerans in 56.5% of studied cases.
Collapse
|
21
|
Llorente B, Malpertuy A, Neuvéglise C, de Montigny J, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, Casaregola S, Durrens P, Gaillardin C, Lépingle A, Ozier-Kalogéropoulos O, Potier S, Saurin W, Tekaia F, Toffano-Nioche C, Wésolowski-Louvel M, Wincker P, Weissenbach J, Souciet J, Dujon B. Genomic exploration of the hemiascomycetous yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae. FEBS Lett 2000; 487:101-12. [PMID: 11152893 DOI: 10.1016/s0014-5793(00)02289-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have analyzed the evolution of chromosome maps of Hemiascomycetes by comparing gene order and orientation of the 13 yeast species partially sequenced in this program with the genome map of Saccharomyces cerevisiae. From the analysis of nearly 8000 situations in which two distinct genes having homologs in S. cerevisiae could be identified on the sequenced inserts of another yeast species, we have quantified the loss of synteny, the frequency of single gene deletion and the occurrence of gene inversion. Traces of ancestral duplications in the genome of S. cerevisiae could be identified from the comparison with the other species that do not entirely coincide with those identified from the comparison of S. cerevisiae with itself. From such duplications and from the correlation observed between gene inversion and loss of synteny, a model is proposed for the molecular evolution of Hemiascomycetes. This model, which can possibly be extended to other eukaryotes, is based on the reiteration of events of duplication of chromosome segments, creating transient merodiploids that are subsequently resolved by single gene deletion events.
Collapse
|
22
|
Malpertuy A, Tekaia F, Casarégola S, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, de Montigny J, Durrens P, Gaillardin C, Lépingle A, Llorente B, Neuvéglise C, Ozier-Kalogeropoulos O, Potier S, Saurin W, Toffano-Nioche C, Wésolowski-Louvel M, Wincker P, Weissenbach J, Souciet J, Dujon B. Genomic exploration of the hemiascomycetous yeasts: 19. Ascomycetes-specific genes. FEBS Lett 2000; 487:113-21. [PMID: 11152894 DOI: 10.1016/s0014-5793(00)02290-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Comparisons of the 6213 predicted Saccharomyces cerevisiae open reading frame (ORF) products with sequences from organisms of other biological phyla differentiate genes commonly conserved in evolution from 'maverick' genes which have no homologue in phyla other than the Ascomycetes. We show that a majority of the 'maverick' genes have homologues among other yeast species and thus define a set of 1892 genes that, from sequence comparisons, appear 'Ascomycetes-specific'. We estimate, retrospectively, that the S. cerevisiae genome contains 5651 actual protein-coding genes, 50 of which were identified for the first time in this work, and that the present public databases contain 612 predicted ORFs that are not real genes. Interestingly, the sequences of the 'Ascomycetes-specific' genes tend to diverge more rapidly in evolution than that of other genes. Half of the 'Ascomycetes-specific' genes are functionally characterized in S. cerevisiae, and a few functional categories are over-represented in them.
Collapse
|
23
|
Gaillardin C, Duchateau-Nguyen G, Tekaia F, Llorente B, Casaregola S, Toffano-Nioche C, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, de Montigny J, Dujon B, Durrens P, Lépingle A, Malpertuy A, Neuvéglise C, Ozier-Kalogéropoulos O, Potier S, Saurin W, Termier M, Wésolowski-Louvel M, Wincker P, Souciet J, Weissenbach J. Genomic exploration of the hemiascomycetous yeasts: 21. Comparative functional classification of genes. FEBS Lett 2000; 487:134-49. [PMID: 11152896 DOI: 10.1016/s0014-5793(00)02292-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We explored the biological diversity of hemiascomycetous yeasts using a set of 22000 newly identified genes in 13 species through BLASTX searches. Genes without clear homologue in Saccharomyces cerevisiae appeared to be conserved in several species, suggesting that they were recently lost by S. cerevisiae. They often identified well-known species-specific traits. Cases of gene acquisition through horizontal transfer appeared to occur very rarely if at all. All identified genes were ascribed to functional classes. Functional classes were differently represented among species. Species classification by functional clustering roughly paralleled rDNA phylogeny. Unequal distribution of rapidly evolving, ascomycete-specific, genes among species and functions was shown to contribute strongly to this clustering. A few cases of gene family amplification were documented, but no general correlation could be observed between functional differentiation of yeast species and variations of gene family sizes. Yeast biological diversity seems thus to result from limited species-specific gene losses or duplications, and for a large part from rapid evolution of genes and regulatory factors dedicated to specific functions.
Collapse
|
24
|
Llorente B, Durrens P, Malpertuy A, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, Casaregola S, Dujon B, de Montigny J, Lépingle A, Neuvéglise C, Ozier-Kalogeropoulos O, Potier S, Saurin W, Tekaia F, Toffano-Nioche C, Wésolowski-Louvel M, Wincker P, Weissenbach J, Souciet J, Gaillardin C. Genomic exploration of the hemiascomycetous yeasts: 20. Evolution of gene redundancy compared to Saccharomyces cerevisiae. FEBS Lett 2000; 487:122-33. [PMID: 11152895 DOI: 10.1016/s0014-5793(00)02291-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have evaluated the degree of gene redundancy in the nuclear genomes of 13 hemiascomycetous yeast species. Saccharomyces cerevisiae singletons and gene families appear generally conserved in these species as singletons and families of similar size, respectively. Variations of the number of homologues with respect to that expected affect from 7 to less than 24% of each genome. Since S. cerevisiae homologues represent the majority of the genes identified in the genomes studied, the overall degree of gene redundancy seems conserved across all species. This is best explained by a dynamic equilibrium resulting from numerous events of gene duplication and deletion rather than by a massive duplication event occurring in some lineages and not in others.
Collapse
|
25
|
Llorente B, Malpertuy A, Blandin G, Artiguenave F, Wincker P, Dujon B. Genomic exploration of the hemiascomycetous yeasts: 12. Kluyveromyces marxianus var. marxianus. FEBS Lett 2000; 487:71-5. [PMID: 11152887 DOI: 10.1016/s0014-5793(00)02283-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As part of the comparative genomics project 'GENOLEVURES', we studied the Kluyveromyces marxianus var. marxianus strain CBS712 using a partial random sequencing strategy. With a 0.2 x genome equivalent coverage, we identified ca. 1300 novel genes encoding proteins, some containing spliceosomal introns with consensus splice sites identical to those of Saccharomyces cerevisiae, 28 tRNA genes, the whole rDNA repeat, and retrotransposons of the Ty1/2 family of S. cerevisiae with diverged Long Terminal Repeats. Functional classification of the K. marxianus genes, as well as the analysis of the paralogous gene families revealed few differences with respect to S. cerevisiae. Only 42 K. marxianus identified genes are without detectable homolog in the baker's yeast. However, we identified several genetic rearrangements between these two yeast species.
Collapse
|