1
|
Li M, Wunder J, Bissoli G, Scarponi E, Gazzani S, Barbaro E, Saedler H, Varotto C. Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 2008. [DOI: 10.1111/j.1096-0031.2008.00207.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
|
17 |
77 |
2
|
Pellegrina CD, Padovani G, Mainente F, Zoccatelli G, Bissoli G, Mosconi S, Veneri G, Peruffo A, Andrighetto G, Rizzi C, Chignola R. Anti-tumour potential of a gallic acid-containing phenolic fraction from Oenothera biennis. Cancer Lett 2005; 226:17-25. [PMID: 16004929 DOI: 10.1016/j.canlet.2004.11.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/14/2004] [Accepted: 11/16/2004] [Indexed: 11/18/2022]
Abstract
A phenolic fraction purified form defatted seeds of Oenothera biennis promoted selective apoptosis of human and mouse bone marrow-derived cell lines following first-order kinetics through a caspase-dependent pathway. In non-leukemia tumour cell lines, such as human colon carcinoma CaCo(2) cells and mouse fibrosarcoma WEHI164 cells, this fraction inhibited (3)H-thymidine incorporation but not cell death or cell cycle arrest. Human peripheral blood mononuclear cells showed low sensitivity to treatment. Single bolus injection of the phenolic fraction could delay the growth of established myeloma tumours in syngeneic animals. HPLC and mass spectrometry analysis revealed that the fraction contains gallic acid. However, the biological activity of the fraction differs from the activity of this phenol and hence it should be attributed to other co-purified molecules which remain still unidentified.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
62 |
3
|
Planes MD, Niñoles R, Rubio L, Bissoli G, Bueso E, García-Sánchez MJ, Alejandro S, Gonzalez-Guzmán M, Hedrich R, Rodriguez PL, Fernández JA, Serrano R. A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane H+-ATPase and decreased cytosolic pH, K+, and anions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:813-25. [PMID: 25371509 PMCID: PMC4321545 DOI: 10.1093/jxb/eru442] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The stress hormone abscisic acid (ABA) induces expression of defence genes in many organs, modulates ion homeostasis and metabolism in guard cells, and inhibits germination and seedling growth. Concerning the latter effect, several mutants of Arabidopsis thaliana with improved capability for H(+) efflux (wat1-1D, overexpression of AKT1 and ost2-1D) are less sensitive to inhibition by ABA than the wild type. This suggested that ABA could inhibit H(+) efflux (H(+)-ATPase) and induce cytosolic acidification as a mechanism of growth inhibition. Measurements to test this hypothesis could not be done in germinating seeds and we used roots as the most convenient system. ABA inhibited the root plasma-membrane H(+)-ATPase measured in vitro (ATP hydrolysis by isolated vesicles) and in vivo (H(+) efflux from seedling roots). This inhibition involved the core ABA signalling elements: PYR/PYL/RCAR ABA receptors, ABA-inhibited protein phosphatases (HAB1), and ABA-activated protein kinases (SnRK2.2 and SnRK2.3). Electrophysiological measurements in root epidermal cells indicated that ABA, acting through the PYR/PYL/RCAR receptors, induced membrane hyperpolarization (due to K(+) efflux through the GORK channel) and cytosolic acidification. This acidification was not observed in the wat1-1D mutant. The mechanism of inhibition of the H(+)-ATPase by ABA and its effects on cytosolic pH and membrane potential in roots were different from those in guard cells. ABA did not affect the in vivo phosphorylation level of the known activating site (penultimate threonine) of H(+)-ATPase in roots, and SnRK2.2 phosphorylated in vitro the C-terminal regulatory domain of H(+)-ATPase while the guard-cell kinase SnRK2.6/OST1 did not.
Collapse
|
research-article |
10 |
51 |
4
|
Bissoli G, Niñoles R, Fresquet S, Palombieri S, Bueso E, Rubio L, García-Sánchez MJ, Fernández JA, Mulet JM, Serrano R. Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:704-716. [PMID: 22268595 DOI: 10.1111/j.1365-313x.2012.04921.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Intracellular pH must be kept close to neutrality to be compatible with cellular functions, but the mechanisms of pH homeostasis and the responses to intracellular acidification are mostly unknown. In the plant Arabidopsis thaliana, we found that intracellular acid stress generated by weak organic acids at normal external pH induces expression of several chaperone genes, including ROF2, which encodes a peptidyl-prolyl cis-trans isomerase of the FK506-binding protein class. Loss of function of ROF2, and especially double mutation of ROF2 and the closely related gene ROF1, results in acid sensitivity. Over-expression of ROF2 confers tolerance to intracellular acidification by increasing proton extrusion from cells. The activation of the plasma membrane proton pump (H(+) -ATPase) is indirect: over-expression of ROF2 activates K(+) uptake, causing depolarization of the plasma membrane, which activates the electrogenic H(+) pump. The depolarization of ROF2 over-expressing plants explains their tolerance to toxic cations such as lithium, norspermidine and hygromycin B, whose uptake is driven by the membrane potential. As ROF2 induction and intracellular acidification are common consequences of many stresses, this mechanism of pH homeostasis may be of general importance for stress tolerance.
Collapse
|
|
13 |
43 |
5
|
Renard J, Niñoles R, Martínez-Almonacid I, Gayubas B, Mateos-Fernández R, Bissoli G, Bueso E, Serrano R, Gadea J. Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics. PLANT, CELL & ENVIRONMENT 2020; 43:2523-2539. [PMID: 32519347 DOI: 10.1111/pce.13822] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 05/26/2023]
Abstract
Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome-wide analysis, using publicly available single-nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 and SPCH) and five negative ones (RBOHD, RBOHE, RBOHF, KNAT7 and SEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed-longevity in knock-out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P-450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing.
Collapse
|
|
5 |
41 |
6
|
Renard J, Martínez-Almonacid I, Sonntag A, Molina I, Moya-Cuevas J, Bissoli G, Muñoz-Bertomeu J, Faus I, Niñoles R, Shigeto J, Tsutsumi Y, Gadea J, Serrano R, Bueso E. PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. PLANT, CELL & ENVIRONMENT 2020; 43:315-326. [PMID: 31600827 DOI: 10.1111/pce.13656] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Permeability is a crucial trait that affects seed longevity and is regulated by different polymers including proanthocyanidins, suberin, cutin and lignin located in the seed coat. By testing mutants in suberin transport and biosynthesis, we demonstrate the importance of this biopolymer to cope with seed deterioration. Transcriptomic analysis of cog1-2D, a gain-of-function mutant with increased seed longevity, revealed the upregulation of several peroxidase genes. Reverse genetics analysing seed longevity uncovered redundancy within the seed coat peroxidase gene family; however, after controlled deterioration treatment, seeds from the prx2 prx25 double and prx2 prx25 prx71 triple mutant plants presented lower germination than wild-type plants. Transmission electron microscopy analysis of the seed coat of these mutants showed a thinner palisade layer, but no changes were observed in proanthocyanidin accumulation or in the cuticle layer. Spectrophotometric quantification of acetyl bromide-soluble lignin components indicated changes in the amount of total polyphenolics derived from suberin and/or lignin in the mutant seeds. Finally, the increased seed coat permeability to tetrazolium salts observed in the prx2 prx25 and prx2 prx25 prx71 mutant lines suggested that the lower permeability of the seed coats caused by altered polyphenolics is likely to be the main reason explaining their reduced seed longevity.
Collapse
|
|
5 |
26 |
7
|
Renard J, Martínez-Almonacid I, Queralta Castillo I, Sonntag A, Hashim A, Bissoli G, Campos L, Muñoz-Bertomeu J, Niñoles R, Roach T, Sánchez-León S, Ozuna CV, Gadea J, Lisón P, Kranner I, Barro F, Serrano R, Molina I, Bueso E. Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species. THE NEW PHYTOLOGIST 2021; 231:679-694. [PMID: 33864680 DOI: 10.1111/nph.17399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Cutin and suberin are lipid polyesters deposited in specific apoplastic compartments. Their fundamental roles in plant biology include controlling the movement of gases, water and solutes, and conferring pathogen resistance. Both cutin and suberin have been shown to be present in the Arabidopsis seed coat where they regulate seed dormancy and longevity. In this study, we use accelerated and natural ageing seed assays, glutathione redox potential measures, optical and transmission electron microscopy and gas chromatography-mass spectrometry to demonstrate that increasing the accumulation of lipid polyesters in the seed coat is the mechanism by which the AtHB25 transcription factor regulates seed permeability and longevity. Chromatin immunoprecipitation during seed maturation revealed that the lipid polyester biosynthetic gene long-chain acyl-CoA synthetase 2 (LACS2) is a direct AtHB25 binding target. Gene transfer of this transcription factor to wheat and tomato demonstrated the importance of apoplastic lipid polyesters for the maintenance of seed viability. Our work establishes AtHB25 as a trans-species regulator of seed longevity and has identified the deposition of apoplastic lipid barriers as a key parameter to improve seed longevity in multiple plant species.
Collapse
|
|
4 |
10 |
8
|
Renard J, Bissoli G, Planes MD, Gadea J, Naranjo MÁ, Serrano R, Ingram G, Bueso E. Endosperm Persistence in Arabidopsis Results in Seed Coat Fractures and Loss of Seed Longevity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2726. [PMID: 37514340 PMCID: PMC10383618 DOI: 10.3390/plants12142726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Seeds are specialized plant organs that carry, nurture, and protect plant offspring. Developmental coordination between the three genetically distinct seed tissues (the embryo, endosperm, and seed coat) is crucial for seed viability. In this study, we explore the relationship between the TFs AtHB25 and ICE1. Previous results identified ICE1 as a target gene of AtHB25. In seeds, a lack of ICE1 (ice1-2) suppresses the enhanced seed longevity and impermeability of the overexpressing mutant athb25-1D, but surprisingly, seed coat lipid polyester deposition is not affected, as shown by the double-mutant athb25-1D ice1-2 seeds. zou-4, another mutant lacking the transcriptional program for proper endosperm maturation and for which the endosperm persists, also presents a high sensitivity to seed aging. Analysis of gso1, gso2, and tws1-4 mutants revealed that a loss of embryo cuticle integrity does not underlie the seed-aging sensitivity of ice1-2 and zou-4. However, scanning electron microscopy revealed the presence of multiple fractures in the seed coats of the ice1 and zou mutants. Thus, this study highlights the importance of both seed coat composition and integrity in ensuring longevity and demonstrates that these parameters depend on multiple factors.
Collapse
|
|
2 |
2 |
9
|
Giubbini R, Metra M, Guerra P, La Canna G, Bissoli G, Arosio G, Niccoli L, Visioli O, Bestagno M. Diagnostic accuracy of rest-exercise first pass ventriculography with a fast single crystal gamma camera in detecting coronary artery disease. Study of a group of male subjects without previous myocardial infarction. EUROPEAN JOURNAL OF NUCLEAR MEDICINE 1987; 13:213-20. [PMID: 3311765 DOI: 10.1007/bf00252595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rest and exercise radionuclide ventriculograms were performed in 61 non infarcted, male, patients who underwent cardiac catheterization for chest pain and in 16 normal control subjects. Studies were performed using the first pass method with a fast single crystal gamma camera, which allowed a count rate of 140 +/- 19 Kcounts/sec to be reached during left ventricular filling; the count integral on left ventricular area was 10.8 +/- 1.6 Kcounts and the maximum count/pixel 155 +/- 16. We analyzed sensitivity, specificity, positive and negative predictive value of global ejection fraction (EF) and of the regional wall motion in identifying ventricular function abnormalities due to obstructive coronary artery disease. The regional wall motion was evaluated with four functional images: regional ejection fraction (REF), amplitude (A) and phase (PH) from Fourier analysis and systolic transit times (TT). Sensitivity was near 90% for EF, REF, A and TT, while PH was less sensitive (80%); all functional images were more specific (nearly 90%) than EF (80%). Both sensitivity and specificity were lower for the exercise EKG (59% and 63%, respectively) in this patient group. Significant differences between single vessel and multiple vessel disease were also observed either for the EF increase/decrease (-1.34 +/- 7.4 and -7.82 +/- 9.96; P less than 0.05) or for the number of segments which developed wall motion abnormalities during exercise (1.22 +/- 0.73 and 2.15 +/- 1.04; P less than 0.02). In conclusion, with our method, a fast single crystal gamma camera is suitable for obtaining optimal first pass radionuclide ventriculograms with a count density sufficient either for global or regional left ventricular function evaluation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
38 |
2 |
10
|
La Canna G, Giubbini R, Bissoli G, Guerra UP, Caobelli A, Zanini R, Niccoli L, Arosio G. [Evaluation of the interventricular septum in left bundle branch block using basal echocardiography (M-mode) and myocardial stress scintigraphy (thallium-201)]. GIORNALE ITALIANO DI CARDIOLOGIA 1985; 15:135-41. [PMID: 4007361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In thirty-six consecutive subjects, with left bundle branch block (LBBB) of the interventricular septum (IS), septal perfusion and/or viability was verified by M-mode echocardiography and by stress redistribution 201 TI-scintigraphy. After the early systolic "dip", a characteristic pattern of interventricular septum in left bundle branch block, we observed: a) an anterior paradoxical movement (A-type) during the ejection phase in 5 subjects; b) hypokinetic posterior movement (B-type) in 10 subjects and c) a normal motion (C-type) in 21 subjects. All the subjects with an A-type paradoxical anterior motion of the interventricular septum, showed a persistent defect of T1 uptake both during exercise and after redistribution. Of 31 patients with posterior interventricular septum motion (B and C types), 21 showed normal septal TI uptake and 10 reversible, exercise-induced perfusion defect, with complete redistribution on scintigrams at rest. In conclusion the analysis of our data demonstrates that in patients with left bundle branch block 1) the motion of the interventricular septum is not merely due to the anomalous electrical activation, but to other different factors, such as the anatomical and functional changes underlying the conduction pathology, 2) an A-type motion by M-mode echocardiography is highly predictive of interventricular septum damage.
Collapse
|
Clinical Trial |
40 |
|
11
|
Bosello O, Ostuzzi R, Armellini F, Bissoli G, Pelloso M. [Carbohydrate metabolism in gross obesity]. Minerva Med 1978; 69:3825-9. [PMID: 733065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Results obtained in an investigation of two groups of obese and grossly obese subjects are presented. Poorer carbohydrate tolerance was noted in the latter. Blood insulin patterns after oral glucose loading, however, were less easy to interpret. Overall, the values were much the same in the two groups. Nevertheless, analysis of the curves showed that the grossly obese displayed a later peak.
Collapse
|
English Abstract |
47 |
|
12
|
Oneglia C, Benedini G, Bissoli G, Ciampalini G, Di Girolamo A, La Canna G. [Isometric contraction time of the left ventricle at rest and after the hand-grip test in holosystolic mitral prolapse]. Minerva Cardioangiol 1983; 31:329-36. [PMID: 6633883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
Comparative Study |
42 |
|
13
|
Zanini R, Giunti G, Bissoli G, La Canna G, Cicogna R, Arosio G. [Systolic time intervals in thyroid pathology]. Minerva Cardioangiol 1985; 33:431-6. [PMID: 4080178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
English Abstract |
40 |
|
14
|
Bissoli G, Bono M, Martínez-Almonacid I, Moreno-Peris E, Renard J, Espinosa A, Naranjo MÁ, Yenush L, Fita A, Serrano R, Rodríguez-Burruezo A, Bueso E. Seed coat lignification level is crucial in Capsicum spp seed longevity. PHYSIOLOGIA PLANTARUM 2022; 174:e13600. [PMID: 34796959 DOI: 10.1111/ppl.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Capsicum (pepper) is known for its poor seed germination, particularly seed longevity is usually much shorter than other Solanaceae. However, the molecular mechanisms involved are mostly unknown in these species. The present study examines the differences in seed longevity among Capsicum species and varietal types. Feral or less domesticated species, such as Capsicum chinense and particularly Capsicum frutescens, showed higher germination rates than the more domesticated Capsicum annuum after accelerated seed aging treatments. In addition, variability was detected in the expression of genes involved in the response to seed deterioration. The differences observed in ASPG1 expression led us to study the seed protein profile in dry and germinating seeds. Seed storage protein mobilization during germination was faster in seed aging-resistant genotypes. Similarly, the transcriptional change observed for the orthologous gene of the trans-species regulator AtHB25 prompted us to study the structure and molecular components of the seed coat in peppers. All the Capsicum pepper accessions analyzed presented very lignified testa and we observed a positive correlation between the amount of lignin and seed viability. Our results provide essential information to explain the poor germination observed in pepper seeds and provide an experimental framework for future improvements in this important character.
Collapse
|
|
3 |
|
15
|
Bosello O, Armellini F, Ostuzzi R, Bissoli G, Scuro LA. [Behavior of adipose tissue cellularity in gross obesity]. Minerva Med 1978; 69:3831-3. [PMID: 733066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adipose tissue cellularity was studied in relation to the degree of obesity. It was found that mild obesity is essentially linked to a simple increase in adipocyte size, whereas gross obesity involves considerable hyperplasia of adipose tissue with at least twice the normal number of adipocytes. Prognostic and therapeutic conclusions are drawn from these personal data.
Collapse
|
English Abstract |
47 |
|