1
|
Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 1992; 12:584-92. [PMID: 1618937 DOI: 10.1038/jcbfm.1992.82] [Citation(s) in RCA: 265] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous animal and human studies showed that photic stimulation (PS) increased cerebral blood flow and glucose uptake much more than oxygen consumption, suggesting selective activation of anaerobic glycolysis. In the present studies, image-guided 1H and 31P magnetic resonance spectroscopy (MRS) was used to monitor the changes in lactate and high-energy phosphate concentrations produced by PS of visual cortex in six normal volunteers. PS initially produced a significant rise (to 250% of control, p less than 0.01) in visual cortex lactate during the first 6.4 min of PS, followed by a significant decline (p = 0.01) as PS continued. The PCr/Pi ratios decreased significantly from control values during the first 12.8 min of PS (p less than 0.05), and the pH was slightly increased. The positive P100 deflection of the visual evoked potential recorded between 100 and 172 ms after the strobe was significantly decreased from control at 12.8 min of PS (p less than 0.05). The finding that PS caused decreased PCr/Pi is consistent with the view that increased brain activity stimulated ATPase, causing a rise in ADP that shifted the creatine kinase reaction in the direction of ATP synthesis. The rise in lactate together with an increase in pH suggest that intracellular alkalosis, caused by the shift of creatine kinase, selectively stimulated glycolysis.
Collapse
|
|
33 |
265 |
2
|
De Gregori M, Ciccone R, Magini P, Pramparo T, Gimelli S, Messa J, Novara F, Vetro A, Rossi E, Maraschio P, Bonaglia MC, Anichini C, Ferrero GB, Silengo M, Fazzi E, Zatterale A, Fischetto R, Previderé C, Belli S, Turci A, Calabrese G, Bernardi F, Meneghelli E, Riegel M, Rocchi M, Guerneri S, Lalatta F, Zelante L, Romano C, Fichera M, Mattina T, Arrigo G, Zollino M, Giglio S, Lonardo F, Bonfante A, Ferlini A, Cifuentes F, Van Esch H, Backx L, Schinzel A, Vermeesch JR, Zuffardi O. Cryptic deletions are a common finding in "balanced" reciprocal and complex chromosome rearrangements: a study of 59 patients. J Med Genet 2007; 44:750-62. [PMID: 17766364 PMCID: PMC2652810 DOI: 10.1136/jmg.2007.052787] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/09/2007] [Accepted: 08/13/2007] [Indexed: 11/04/2022]
Abstract
Using array comparative genome hybridisation (CGH) 41 de novo reciprocal translocations and 18 de novo complex chromosome rearrangements (CCRs) were screened. All cases had been interpreted as "balanced" by conventional cytogenetics. In all, 27 cases of reciprocal translocations were detected in patients with an abnormal phenotype, and after array CGH analysis, 11 were found to be unbalanced. Thus 40% (11 of 27) of patients with a "chromosomal phenotype" and an apparently balanced translocation were in fact unbalanced, and 18% (5 of 27) of the reciprocal translocations were instead complex rearrangements with >3 breakpoints. Fourteen fetuses with de novo, apparently balanced translocations, all but two with normal ultrasound findings, were also analysed and all were found to be normal using array CGH. Thirteen CCRs were detected in patients with abnormal phenotypes, two in women who had experienced repeated spontaneous abortions and three in fetuses. Sixteen patients were found to have unbalanced mutations, with up to 4 deletions. These results suggest that genome-wide array CGH may be advisable in all carriers of "balanced" CCRs. The parental origin of the deletions was investigated in 5 reciprocal translocations and 11 CCRs; all were found to be paternal. Using customized platforms in seven cases of CCRs, the deletion breakpoints were narrowed down to regions of a few hundred base pairs in length. No susceptibility motifs were associated with the imbalances. These results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis.
Collapse
|
Comparative Study |
18 |
208 |
3
|
Musumeci SA, Bosco P, Calabrese G, Bakker C, De Sarro GB, Elia M, Ferri R, Oostra BA. Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 2000; 41:19-23. [PMID: 10643918 DOI: 10.1111/j.1528-1157.2000.tb01499.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate their susceptibility to audiogenic seizures, five groups of knockout mice with various forms of fragile X genetic involvement [hemizygous males (n = 46), and homozygous (n = 38) and heterozygous females (n = 45), and their normal male (n = 45) and female (n = 52) littermates] were studied. METHODS All mouse groups were tested at ages 17, 22, 35, and 45 days. Audiogenic seizure susceptibility was scored, and the analysis of variance was used for the evaluation of the effects of age and genetic condition on seizure severity score (SSS). RESULTS All groups of knockout fragile X mice exhibited SSSs significantly higher than those observed in their wild-type littermates; among knockout mice, hemizygous males and homozygous females showed the highest SSSs. Hemizygous males showed higher SSSs with increasing age, from 17 to 45 days; homozygous females showed a peak at age 22 days, followed by a decrease; finally, heterozygous females had their highest SSSs at age 17 days. CONCLUSIONS This study demonstrates that an increased susceptibility to audiogenic seizures is present in fragile X knockout mice at all the ages tested. These results support the validity of this animal model also for epilepsy and seizures in the human fragile X syndrome.
Collapse
|
|
25 |
199 |
4
|
Abstract
SIGNIFICANCE Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (EGSH) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. CRITICAL ISSUES In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H2O2), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. FUTURE DIRECTIONS We postulate that the application of genetically encoded sensors for glutathione in combination with novel H2O2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.
Collapse
|
Review |
8 |
127 |
5
|
Abstract
Proliferating cells require large amounts of ascorbic acid to reach cell division. The decrease in ascorbic acid caused by adding lycorine, an inhibitor of ascorbic acid biosynthesis, induces profound inhibition of cell division: the cell cycle is arrested in G1 and G2 phase, more than 90% of the cells being accumulated in G1 after some time. The effect of lycorine on mitotic index (MI) has been reversed by increasing experimentally the concentration of ascorbic acid in tissues. Ascorbic acid control on cell division is found to be specific, since isoascorbic acid is wholly ineffective. It is suggested that the principal role of ascorbic acid in the cell cycle may be related to its action in controlling the synthesis of hydroxyproline-containing proteins, which can be essential requirements for development of G1 and G2.
Collapse
|
|
41 |
104 |
6
|
Sappey-Marinier D, Calabrese G, Hetherington HP, Fisher SN, Deicken R, Van Dyke C, Fein G, Weiner MW. Proton magnetic resonance spectroscopy of human brain: applications to normal white matter, chronic infarction, and MRI white matter signal hyperintensities. Magn Reson Med 1992; 26:313-27. [PMID: 1513253 DOI: 10.1002/mrm.1910260211] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A modified ISIS method, for image-selected localized proton magnetic resonance spectroscopy (1H MRS), was used to determine the ratios and T2 relaxation times of proton metabolites in normal subjects and in patients with chronic infarction and MRI white matter signal hyperintensities (WMSH). First, in patients with cerebral infarctions, increased concentrations of lactate were found in the majority of patients, and N-acetyl aspartate (NAA) was reduced to a significantly greater extent than choline (Cho) or creatine (Cre). For TE = 270 ms, the raw ratios of Cho/NAA, Cre/NAA, and Lac/NAA were significantly (P less than 0.05) increased from 0.23 +/- 0.02 (mean +/- SE), 0.20 +/- 0.01, and 0.05 +/- 0.01, respectively in the normal group to 0.39 +/- 0.08, 0.37 +/- 0.05, and 0.48 +/- 0.15 in the stroke group. Also, the T2 relaxation time of creatine was significantly (P = 0.007) increased from 136 ms in normal white matter to 171 ms in cerebral infarcts. Second, in patients with WMSH, no significant change of the proton metabolite concentrations could be detected with the exception of the choline which was significantly (P = 0.003) altered. The Cho/NAA ratio, after T2 and excitation profile correction, increased from 0.47 +/- 0.02 in the normal group to 0.64 +/- 0.05 in the WMSH group. Third, in normal white matter, the concentration of N-acetyl aspartate, choline, and lactate was estimated to 11.5, 2.0, and 0.6 mM, respectively, by assuming a total creatine concentration of 10 mM.
Collapse
|
|
33 |
80 |
7
|
Elia M, Falco M, Ferri R, Spalletta A, Bottitta M, Calabrese G, Carotenuto M, Musumeci SA, Lo Giudice M, Fichera M. CDKL5 mutations in boys with severe encephalopathy and early-onset intractable epilepsy. Neurology 2008; 71:997-9. [PMID: 18809835 DOI: 10.1212/01.wnl.0000326592.37105.88] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To search for CDKL5 gene mutations in boys presenting with severe early-onset encephalopathy and intractable epilepsy, a clinical picture very similar to that already described in girls with CDKL5 mutations. METHODS Eight boys (age range 3-16 years, mean age 8.5 years, SD 4.38) with severe or profound mental retardation and early-onset intractable seizures were selected for CDKL5 gene mutation screening by denaturing high-performance liquid chromatography analysis. RESULTS We found three unrelated boys carrying three different missense mutations of the CDKL5 gene: c.872G>A (p.C291Y), c.863C>T (p.T288I), and c.533G>C (p.R178P). They presented early-onset, polymorphous, and drug-resistant seizures, mostly myoclonic and tonic or spasms. EEG showed epileptiform abnormalities which were multifocal during wakefulness, and pseudoperiodic bisynchronous during sleep. CONCLUSIONS This study describes three boys carrying CDKL5 missense mutations and their detailed clinical and EEG data, and indicates that CDKL5 gene mutations may represent a cause of severe or profound mental retardation and early-onset intractable seizures, also in boys. Screening for CDKL5 mutations is strongly recommended in individuals with these clinical features.
Collapse
|
Journal Article |
17 |
71 |
8
|
Deicken RF, Calabrese G, Merrin EL, Meyerhoff DJ, Dillon WP, Weiner MW, Fein G. 31phosphorus magnetic resonance spectroscopy of the frontal and parietal lobes in chronic schizophrenia. Biol Psychiatry 1994; 36:503-10. [PMID: 7827212 DOI: 10.1016/0006-3223(94)90613-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In vivo 31Phosphorus magnetic resonance spectroscopic imaging (31P MRSI) was performed on 20 chronic schizophrenic patients and 16 normal controls to determine if there were specific changes in high energy phosphorus and phospholipid metabolism in the frontal lobes of schizophrenic patients. Phosphorous metabolites were assessed in each of the left and right frontal as well as the left and right parietal lobes. Frontal lobe phosphorous metabolites were also correlated with severity of psychiatric symptomatology as assessed by the Brief Psychiatric Rating Scale (BPRS). Schizophrenics demonstrated higher phosphodiesters (PDE) and lower phosphocreatine (PCr) in both the left and right frontal regions compared to controls. There was also lower left frontal inorganic phosphate (Pi) in the schizophrenic group. No group differences were noted in the left or right parietal regions. In addition, right frontal PDE and right frontal PCr were highly correlated with the hostility-suspiciousness and anxiety-depression subscales of the BPRS. This study provides further support for altered frontal lobe phosphorous metabolism in schizophrenia.
Collapse
|
|
31 |
69 |
9
|
Mascini M, Mazzei F, Moscone D, Calabrese G, Benedetti MM. Lactate and pyruvate electrochemical biosensors for whole blood in extracorporeal experiments with an endocrine artificial pancreas. Clin Chem 1987. [DOI: 10.1093/clinchem/33.4.591] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Glucose, lactate, and pyruvate can be continuously measured in whole blood by using three extracorporeal electrochemical biosensors. We fixed two newly developed sensors, for lactate and pyruvate, in series with an endocrine artificial pancreas ("Betalike") without affecting its performance. These new sensors for use with whole blood should be able to clarify the fate of the intermediary metabolites of glucose in diabetic patients receiving infusions of drugs or insulin.
Collapse
|
|
38 |
66 |
10
|
Stuppia L, Mastroprimiano G, Calabrese G, Peila R, Tenaglia R, Palka G. Microdeletions in interval 6 of the Y chromosome detected by STS-PCR in 6 of 33 patients with idiopathic oligo- or azoospermia. CYTOGENETICS AND CELL GENETICS 1996; 72:155-8. [PMID: 8978761 DOI: 10.1159/000134174] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been proposed that interval 6 of the human Y chromosome contains the gene or genes that control spermatogenesis (AZF, azoospermia factor). We have studied this region in 33 patients with oligo- or azoospermia, using PCR amplification of the YRRM1 (RBM1) gene and of 13 sequence-tagged sites (STSs), all mapping within interval 6. Six of the 33 patients showed no amplification of specific STSs, whereas there was no failure of amplification in normal male controls. We deduce that these six patients had microdeletions in interval 6 of the Y chromosome that correlated with the oligo- or azoospermia of these individuals. On biopsy of the testis, two of these patients showed a low number of germ cells, and four showed arrest with spermatides. We conclude that PCR amplification of Y-specific regions is a powerful and very sensitive tool for screening infertile men.
Collapse
|
|
29 |
65 |
11
|
Pizzuti A, Novelli G, Ratti A, Amati F, Mari A, Calabrese G, Nicolis S, Silani V, Marino B, Scarlato G, Ottolenghi S, Dallapiccola B. UFD1L, a developmentally expressed ubiquitination gene, is deleted in CATCH 22 syndrome. Hum Mol Genet 1997; 6:259-65. [PMID: 9063746 DOI: 10.1093/hmg/6.2.259] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The CATCH 22 acronym outlines the main clinical features of 22q11.2 deletions (cardiac defects, abnormal facies, thymic hypoplasia, cleft palate and hypocalcemia), usually found in DiGeorge (DGS) and velo-cardio-facial (VCFS) syndromes. Hemizygosity of this region may also be the cause of over 100 different clinical signs. The CATCH 22 locus maps within a 1.5 Mb region, which encompasses several genes. However, no single defect in 22q11.2 hemizygous patients can be ascribed to any gene so far isolated from the critical region of deletion. We have identified a gene in the CATCH 22 critical region, whose functional features and tissue-specific expression suggest a distinct role in embryogenesis. This gene, UFD1L, encodes the human homolog of the yeast ubiquitin fusion degradation 1 protein (UFD1p), involved in the degradation of ubiquitin fusion proteins. Cloning and characterization of the murine homolog (Ufd1l) showed it to be expressed during embryogenesis in the eyes and in the linear ear primordia. These data suggest that the proteolytic pathway that recognizes ubiquitin fusion proteins for degradation is conserved in vertebrates and that the UFD1L gene hemizygosity is the cause of some of the CATCH 22-associated developmental defects.
Collapse
|
|
28 |
64 |
12
|
Pawlowski SW, Calabrese G, Kolling GL, Platts-Mills J, Freire R, AlcantaraWarren C, Liu B, Sartor RB, Guerrant RL. Murine model of Clostridium difficile infection with aged gnotobiotic C57BL/6 mice and a BI/NAP1 strain. J Infect Dis 2010; 202:1708-12. [PMID: 20977342 DOI: 10.1086/657086] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The increased incidence and severity of Clostridium difficile infection (CDI) in older adults (age, ≥65 years) corresponds with the emergence of the BI/NAP1 strain, making elucidation of the host immune response extremely important. We therefore infected germ-free C57BL/6 mice aged 7-14 months with a BI/NAP1 strain and monitored the mice for response. Infected mice were moribund 48-72 h after infection and developed gross and histological cecitis and colitis and elevated concentrations of keratinocyte chemoattractant, interleukin 1β, monocyte chemotactic protein 1, and granulocyte colony-stimulating factor and decreased levels of interferon γ, interleukin 12 p40, interleukin 12 p70, and interleukin 10 compared with controls. We conclude that aged, germ-free C57BL/6 mice are susceptible to fulminant CDI from a BI/NAP1 strain and represent a novel model to further elucidate the host immune response to acute CDI.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
56 |
13
|
Kojer K, Peleh V, Calabrese G, Herrmann JM, Riemer J. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol Biol Cell 2014; 26:195-204. [PMID: 25392302 PMCID: PMC4294668 DOI: 10.1091/mbc.e14-10-1422] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Proteins of the mitochondrial intermembrane space are oxidatively folded by the incorporation of structural disulfide bonds. Efficient protein oxidation in this highly reducing compartment is possible only because glutaredoxins, which could translate the glutathione redox potential into that of protein thiols, are present at limiting levels. The mitochondrial intermembrane space (IMS) harbors an oxidizing machinery that drives import and folding of small cysteine-containing proteins without targeting signals. The main component of this pathway is the oxidoreductase Mia40, which introduces disulfides into its substrates. We recently showed that the IMS glutathione pool is maintained as reducing as that of the cytosol. It thus remained unclear how equilibration of protein disulfides with the IMS glutathione pool is prevented in order to allow oxidation-driven protein import. Here we demonstrate the presence of glutaredoxins in the IMS and show that limiting amounts of these glutaredoxins provide a kinetic barrier to prevent the thermodynamically feasible reduction of Mia40 substrates by the IMS glutathione pool. Moreover, they allow Mia40 to exist in a predominantly oxidized state. Consequently, overexpression of glutaredoxin 2 in the IMS results in a more reduced Mia40 redox state and a delay in oxidative folding and mitochondrial import of different Mia40 substrates. Our findings thus indicate that carefully balanced glutaredoxin amounts in the IMS ensure efficient oxidative folding in the reducing environment of this compartment.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
56 |
14
|
Calabrese G, Crescenzi C, Morizio E, Palka G, Guerra E, Alberti S. Assignment of TACSTD1 (alias TROP1, M4S1) to human chromosome 2p21 and refinement of mapping of TACSTD2 (alias TROP2, M1S1) to human chromosome 1p32 by in situ hybridization. CYTOGENETICS AND CELL GENETICS 2001; 92:164-5. [PMID: 11306819 DOI: 10.1159/000056891] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
|
24 |
53 |
15
|
Calabrese G, Peker E, Amponsah PS, Hoehne MN, Riemer T, Mai M, Bienert GP, Deponte M, Morgan B, Riemer J. Hyperoxidation of mitochondrial peroxiredoxin limits H 2 O 2 -induced cell death in yeast. EMBO J 2019; 38:e101552. [PMID: 31389622 PMCID: PMC6745495 DOI: 10.15252/embj.2019101552] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/20/2022] Open
Abstract
Hydrogen peroxide (H2 O2 ) plays important roles in cellular signaling, yet nonetheless is toxic at higher concentrations. Surprisingly, the mechanism(s) of cellular H2 O2 toxicity remain poorly understood. Here, we reveal an important role for mitochondrial 1-Cys peroxiredoxin from budding yeast, Prx1, in regulating H2 O2 -induced cell death. We show that Prx1 efficiently transfers oxidative equivalents from H2 O2 to the mitochondrial glutathione pool. Deletion of PRX1 abrogates glutathione oxidation and leads to a cytosolic adaptive response involving upregulation of the catalase, Ctt1. Both of these effects contribute to improved cell viability following an acute H2 O2 challenge. By replacing PRX1 with natural and engineered peroxiredoxin variants, we could predictably induce widely differing matrix glutathione responses to H2 O2 . Therefore, we demonstrated a key role for matrix glutathione oxidation in driving H2 O2 -induced cell death. Finally, we reveal that hyperoxidation of Prx1 serves as a switch-off mechanism to limit oxidation of matrix glutathione at high H2 O2 concentrations. This enables yeast cells to strike a fine balance between H2 O2 removal and limitation of matrix glutathione oxidation.
Collapse
|
research-article |
6 |
53 |
16
|
Hoehne MN, Jacobs LJHC, Lapacz KJ, Calabrese G, Murschall LM, Marker T, Kaul H, Trifunovic A, Morgan B, Fricker M, Belousov VV, Riemer J. Spatial and temporal control of mitochondrial H 2 O 2 release in intact human cells. EMBO J 2022; 41:e109169. [PMID: 35146782 PMCID: PMC8982624 DOI: 10.15252/embj.2021109169] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Hydrogen peroxide (H2 O2 ) has key signaling roles at physiological levels, while causing molecular damage at elevated concentrations. H2 O2 production by mitochondria is implicated in regulating processes inside and outside these organelles. However, it remains unclear whether and how mitochondria in intact cells release H2 O2 . Here, we employed a genetically encoded high-affinity H2 O2 sensor, HyPer7, in mammalian tissue culture cells to investigate different modes of mitochondrial H2 O2 release. We found substantial heterogeneity of HyPer7 dynamics between individual cells. We further observed mitochondria-released H2 O2 directly at the surface of the organelle and in the bulk cytosol, but not in the nucleus or at the plasma membrane, pointing to steep gradients emanating from mitochondria. Gradient formation is controlled by cytosolic peroxiredoxins, which act redundantly and with a substantial reserve capacity. Dynamic adaptation of cytosolic thioredoxin reductase levels during metabolic changes results in improved H2 O2 handling and explains previously observed differences between cell types. Our data suggest that H2 O2 -mediated signaling is initiated only in close proximity to mitochondria and under specific metabolic conditions.
Collapse
|
research-article |
3 |
52 |
17
|
Calabrese G, Deicken RF, Fein G, Merrin EL, Schoenfeld F, Weiner MW. 31Phosphorus magnetic resonance spectroscopy of the temporal lobes in schizophrenia. Biol Psychiatry 1992; 32:26-32. [PMID: 1391294 DOI: 10.1016/0006-3223(92)90139-q] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Eleven schizophrenic patients and nine normal controls were studied using in vivo 31Phosphorous magnetic resonance spectroscopy (31P MRS) to test the hypothesis of metabolic asymmetry in the temporal lobes in schizophrenia. The controls did not demonstrate any asymmetry of phosphorous metabolite ratios, percentage of phosphorous metabolites, or pH. In the schizophrenics, however, phosphocreatine/beta-adenosine triphosphate (PCr/beta-ATP) and phosphocreatine/inorganic phosphate (PCr/Pi) effects appeared to primarily reflect higher ratios on the right side, while the percentage of beta-ATP appeared to primarily reflect higher relative concentrations in the left temporal lobe. Moreover, significant negative correlations were noted between total Brief Psychiatric Rating Scale scores and PCr/beta-ATP in both the right and left temporal lobes. These results support the hypothesis of an asymmetric distribution of 31P metabolites in the temporal lobe of schizophrenic patients, and also show an association between temporal lobe phosphorous metabolism and the severity of psychiatric symptomatology.
Collapse
|
|
33 |
51 |
18
|
Stuppia L, Gatta V, Scarciolla O, Colosimo A, Guanciali-Franchi P, Calabrese G, Palka G. The methylenetethrahydrofolate reductase (MTHFR) C677T polymorphism and male infertility in Italy. J Endocrinol Invest 2003; 26:620-2. [PMID: 14594111 DOI: 10.1007/bf03347018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The 677T allele of the MTHFR gene has been suggested to represent a factor of risk for male infertility. In order to confirm this association, we investigated the presence of the 677T allele in 93 Italian infertile patients, selected after the exclusion of other possible genetic causes of infertility, and in 105 Italian fertile controls. The homozygous 677TT genotype was present in 20.4% of patients and 27.6% of controls. These results do not support an association between the MTHFR 677T allele and male infertility in Italy.
Collapse
|
|
22 |
51 |
19
|
Lo Vasco VR, Calabrese G, Manzoli L, Palka G, Spadano A, Morizio E, Guanciali-Franchi P, Fantasia D, Cocco L. Inositide-specific phospholipase c β1 gene deletion in the progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 2004; 18:1122-6. [PMID: 15085153 DOI: 10.1038/sj.leu.2403368] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myelodysplastic syndrome (MDS) is an adult hematological disease that evolves into acute myeloid leukemia (AML) in about 30% of the cases. The availability of a highly specific probe moved us to perform in patients affected with MDS/AML, associated with normal karyotype, painting and fluorescence in situ hybridization (FISH) analysis aimed to check the inositide-specific phospholipase C (PI-PLC) beta1 gene, a player in the control of some checkpoints of the cell cycle. Here we present a preliminary observation in which FISH analysis disclosed in a small group of MDS/AML patients with normal karyotype the monoallelic deletion of the PI-PLCbeta1 gene. On the contrary, PI-PLC beta4, another gene coding for a signaling molecule, located on 20p12.3 at a distance as far as less than 1Mb from PI-PLCbeta1, is unaffected in MDS patients with the deletion of PI-PLC beta1 gene, hinting at an interstitial deletion. The MDS patients, bearing the deletion, rapidly evolved to AML. The data suggest the possible involvement of PI-PLCbeta1 in the progression of the disease and pave the way for a larger investigation aimed at identifying a possible high-risk group among MDS patients with a normal karyotype.
Collapse
|
|
21 |
50 |
20
|
Stuppia L, Gatta V, Calabrese G, Guanciali Franchi P, Morizio E, Bombieri C, Mingarelli R, Sforza V, Frajese G, Tenaglia R, Palka G. A quarter of men with idiopathic oligo-azoospermia display chromosomal abnormalities and microdeletions of different types in interval 6 of Yq11. Hum Genet 1998; 102:566-70. [PMID: 9654206 DOI: 10.1007/s004390050741] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytogenetic investigations and molecular analysis of the Y chromosome by the polymerase chain reaction amplification of sequence-tagged sites (STS-PCR) technique were performed in 126 patients affected by idiopathic oligo-azoospermia following accurate selection of cases. Seventeen patients evidenced an abnormal karyotype. Fourteen patients with a normal karyotype had microdeletions of the Y chromosome within interval 6. In azoospermic patients microdeletions were scattered along different subintervals, while in oligozoospermic patients they were clustered in subinterval 6E. The size of the deletion was not apparently related to the severity of the disease. These results suggest that cytogenetic analysis and the STS-PCR technique can detect a genetic cause of infertility in about one-quarter of patients with idiopathic oligo-azoospermia.
Collapse
|
|
27 |
49 |
21
|
Pizzuti A, Amati F, Calabrese G, Mari A, Colosimo A, Silani V, Giardino L, Ratti A, Penso D, Calzà L, Palka G, Scarlato G, Novelli G, Dallapiccola B. cDNA characterization and chromosomal mapping of two human homologues of the Drosophila dishevelled polarity gene. Hum Mol Genet 1996; 5:953-8. [PMID: 8817329 DOI: 10.1093/hmg/5.7.953] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Drosophila dishevelled gene (dsh) encodes a secreted glycoprotein, which regulates cell proliferation, acting as a transducer molecule for developmental processes, including segmentation and neuroblast specification. We have isolated and characterized cDNA clones from two different human dsh-homologous genes, designated as DVL-1 and DVL-3. DVL-1 and DVL-3 putative protein products show 64% amino acid identity. The DVL-1 product is 50% identical to dsh and 92% to a murine dsh homologue (Dvl-1). Both human DVL genes are widely expressed in fetal and adult tissues, including brain, lung, kidney, skeletal muscle and heart. DVL-1 locus maps to chromosome 1p36 and DVL-3 to chromosome 3q27. DVL-1 locus on chromosome 1 corresponds to the murine syntenic region where Dvl-1 is located. DVL-1 and DVL-3 are members of a human dsh-like gene family, which is probably involved in human development. Although the precise role of these genes in embryogenesis is only conjectural at present, the structural and evolutionary characteristics suggest that mutations at their loci may be involved in neural and heart developmental defects.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adult
- Amino Acid Sequence
- Animals
- Chromosome Mapping
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 3/genetics
- Cloning, Molecular
- DNA, Complementary/genetics
- Dishevelled Proteins
- Drosophila/genetics
- Drosophila Proteins
- Gene Expression Regulation, Developmental
- Humans
- Molecular Sequence Data
- Organ Specificity
- Phosphoproteins
- Proteins/genetics
- RNA, Messenger/analysis
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
|
|
29 |
49 |
22
|
Scaiano JC, Barra M, Krzywinski M, Sinta R, Calabrese G. Laser flash photolysis determination of absolute rate constants for reactions of bromine atoms in solution. J Am Chem Soc 2002. [DOI: 10.1021/ja00071a048] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
48 |
23
|
Arrigoni O, Arrigoni-Liso R, Calabrese G. Ascorbic acid requirement for biosynthesis of hydroxyproline-containing proteins in plants. FEBS Lett 1977; 82:135-8. [PMID: 913567 DOI: 10.1016/0014-5793(77)80903-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
48 |
47 |
24
|
Falini A, Calabrese G, Origgi D, Lipari S, Triulzi F, Losa M, Scotti G. Proton magnetic resonance spectroscopy and intracranial tumours: clinical perspectives. J Neurol 1996; 243:706-14. [PMID: 8923303 DOI: 10.1007/bf00873976] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) was applied to characterize intracranial tumours of different hystological types. Seventy patients with intracranial neoplasms were studied before receiving surgery, radiotherapy or chemotherapy. All tumours were characterized by reduced or absent N-acetylasparate and increased signal from choline-containing compounds. Distinctive patterns were observed only for primitive brain neoplasms; high-grade gliomas were differentiated from low-grade ones by higher levels of choline-containing compounds. The metabolic aspects of metastatic lesions were similar to high-grade gliomas. These results, together with the limitations of 1H-MRS and future applications are reviewed.
Collapse
|
Comparative Study |
29 |
46 |
25
|
Meyerhoff DJ, MacKay S, Sappey-Marinier D, Deicken R, Calabrese G, Dillon WP, Weiner MW, Fein G. Effects of chronic alcohol abuse and HIV infection on brain phosphorus metabolites. Alcohol Clin Exp Res 1995; 19:685-92. [PMID: 7573794 DOI: 10.1111/j.1530-0277.1995.tb01568.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We examined the effects of human immunodeficiency virus (HIV) infection and chronic alcohol consumption on cerebral phosphorus metabolites to determine if chronic alcohol abuse is a risk factor for the progression of neurological effects of HIV infection. We studied 15 HIV- alcoholics, 8 HIV- light/nondrinkers, 32 HIV+ alcoholics, and 41 HIV+ light/nondrinking men, with both HIV+ groups having similar CD4 lymphocyte counts. We used localized 31-phosphorus magnetic resonance spectroscopy after magnetic resonance imaging to examine two brain volumes in superior white matter and subcortical gray matter. Chronic alcohol consumption was associated with reduced white matter concentrations of phosphodiester (PDE) and phosphocreatine (PCr). Also in the white matter, acquired immune deficiency syndrome (AIDS) and AIDS-related complex (ARC) were associated with reduced concentrations of PDE and PCr, compared with both HIV- and clinically asymptomatic HIV+ subjects. Because no alcohol-by-HIV interactions were detected, the effects of HIV infection and alcohol abuse were cumulative. This is reflected in a successive decrease of white matter PDE and PCr concentrations in the order HIV- light/nondrinkers/HIV- alcoholics/HIV+ light/nondrinkers/HIV+ alcoholics. Subcortical gray matter PDE concentrations were lower in ARC/AIDS alcoholics than in HIV- light/nondrinking individuals. These findings suggest altered brain phospholipid metabolites and energy metabolites with alcohol abuse and HIV infection. They demonstrate that the adverse metabolic effects of HIV on the brain are augmented by chronic alcohol abuse.
Collapse
|
|
30 |
45 |