1
|
Zaller DM, Osman G, Kanagawa O, Hood L. Prevention and treatment of murine experimental allergic encephalomyelitis with T cell receptor V beta-specific antibodies. J Exp Med 1990; 171:1943-55. [PMID: 1693655 PMCID: PMC2187969 DOI: 10.1084/jem.171.6.1943] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Experimental allergic encephalomyelitis (EAE) is a model system for T cell-mediated autoimmune disease. Symptoms of EAE are similar to those of multiple sclerosis (MS) in humans. EAE is induced in susceptible animal strains by immunization with myelin basic protein (MBP) and potent adjuvant. The major T cell response to MBP in B10.PL mice is directed towards an NH2-terminal epitope and involves T cells expressing either V beta 8.2 or V beta 13 gene segments. Animals treated with a TCR V beta 8-specific mAb have a reduced incidence of EAE. We report here that the in vivo administration of a combination of anti-V beta 8.2 and anti-V beta 13 mAbs results in a long-term elimination of T cells involved in the response to MBP. When given before MBP immunization, anti-TCR antibody treatment leads to nearly complete protection against EAE. Antibody treatment also results in a dramatic reversal of paralysis in diseased animals. Thus, treatment with a combination of V beta-specific antibodies is a very effective therapy for the prevention and treatment of EAE. It is hoped that the future characterization of TCR V gene usage in human autoimmune diseases may lead to similar strategies of immune intervention.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Autoimmune Diseases/immunology
- Cell Separation
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Flow Cytometry
- Lymph Nodes/cytology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred Strains
- Myelin Basic Protein/administration & dosage
- Myelin Basic Protein/immunology
- Paralysis/rehabilitation
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta
Collapse
|
research-article |
35 |
146 |
2
|
Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, Muthukrishnan S. Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:214-27. [PMID: 20144715 DOI: 10.1016/j.ibmb.2010.01.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/25/2010] [Accepted: 01/29/2010] [Indexed: 05/24/2023]
Abstract
This study is focused on the characterization and expression of genes in the red flour beetle, Tribolium castaneum, encoding proteins that possess one or more six-cysteine-containing chitin-binding domains related to the peritrophin A domain (ChtBD2). An exhaustive bioinformatics search of the genome of T. castaneum queried with ChtBD2 sequences yielded 13 previously characterized chitin metabolic enzymes and 29 additional proteins with signal peptides as well as one to 14 ChtBD2s. Using phylogenetic analyses, these additional 29 proteins were classified into three large families. The first family includes 11 proteins closely related to the peritrophins, each containing one to 14 ChtBD2s. These are midgut-specific and are expressed only during feeding stages. We propose the name "Peritrophic Matrix Proteins" (PMP) for this family. The second family contains eight proteins encoded by seven genes (one gene codes for 2 splice variants), which are closely related to gasp/obstructor-like proteins that contain 3 ChtBD2s each. The third family has ten proteins that are of diverse sizes and sequences with only one ChtBD2 each. The genes of the second and third families are expressed in non-midgut tissues throughout all stages of development. We propose the names "Cuticular Proteins Analogous to Peritophins 3" (CPAP3) for the second family that has three ChtBD2s and "Cuticular Proteins Analogous to Peritophins 1 (CPAP1) for the third family that has 1 ChtBD2. Even though proteins of both CPAP1 and CPAP3 families have the "peritrophin A" domain, they are expressed only in cuticle-forming tissues. We determined the exon-intron organization of the genes, encoding these 29 proteins as well as the domain organization of the encoded proteins with ChtBD2s. All 29 proteins have predicted cleavable signal peptides and ChtBD2s, suggesting that they interact with chitin in extracellular locations. Comparison of ChtBD2s-containing proteins in different insect species belonging to different orders suggests that ChtBD2s are ancient protein domains whose affinity for chitin in extracellular matrices has been exploited many times for a range of biological functions. The differences in the expression profiles of PMPs and CPAPs indicate that even though they share the peritrophin A motif for chitin binding, these three families of proteins have quite distinct biological functions.
Collapse
|
|
15 |
126 |
3
|
Abdel-Latif A, Osman G. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. PLANT METHODS 2017; 13:1. [PMID: 28053646 PMCID: PMC5209869 DOI: 10.1186/s13007-016-0152-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/29/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND The world's top three cereals, based on their monetary value, are rice, wheat, and corn. In cereal crops, DNA extraction is difficult owing to rigid non-cellulose components in the cell wall of leaves and high starch and protein content in grains. The advanced techniques in molecular biology require pure and quick extraction of DNA. The majority of existing DNA extraction methods rely on long incubation and multiple precipitations or commercially available kits to produce contaminant-free high molecular weight DNA. RESULTS In this study, we compared three different methods used for the isolation of high-quality genomic DNA from the grains of cereal crop, Zea mays, with minor modifications. The DNA from the grains of two maize hybrids, M10 and M321, was extracted using extraction methods DNeasy Qiagen Plant Mini Kit, CTAB-method (with/without 1% PVP) and modified Mericon extraction. Genes coding for 45S ribosomal RNA are organized in tandem arrays of up to several thousand copies and contain codes for 18S, 5.8S and 26S rRNA units separated by internal transcribed spacers ITS1 and ITS2. While the rRNA units are evolutionary conserved, ITS regions show high level of interspecific divergence and have been used frequently in genetic diversity and phylogenetic studies. In this study, the genomic DNA was then amplified with PCR using primers specific for ITS gene. PCR products were then visualized on agarose gel. CONCLUSION The modified Mericon extraction method was found to be the most efficient DNA extraction method, capable to provide high DNA yields with better quality, affordable cost and less time.
Collapse
|
research-article |
8 |
120 |
4
|
Ayorinde FO, Osman G, Shepard RL, Powers FT. Synthesis of azelaic acid and suberic acid fromVernonia galamensis
oil. J AM OIL CHEM SOC 1988. [DOI: 10.1007/bf02542380] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
37 |
43 |
5
|
Greenberg R, Osman GH, O'Keefe EH, Antonaccio MJ. The effects of captopril (SQ 14,225) on bradykinin-induced bronchoconstriction in the anesthetized guinea pig. Eur J Pharmacol 1979; 57:287-94. [PMID: 385332 DOI: 10.1016/0014-2999(79)90491-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effect of captopril (SQ 14,225) a potent inhibitor of angiotensin converting enzyme (ACE: kininase II) on the bronchoconstrictor response to bradykinin was studied in the anesthetized guinea pig. The i.v. administration of captopril caused a profound long lasting hypotension without affecting pulmonary resistance or dynamic compliance. Similarly, the i.v. administration of bradykinin caused small increases in pulmonary resistance and decreases in dynamic compliance which were not altered by the administration of captopril. However, after beta-receptor blockade with propranolol, bradykinin-induced changes in resistance and compliance were enhanced; additional captopril administration further potentiated the bradykinin effects. The prostaglandin synthetase inhibitor indomethacin antagonized the bradykinin-induced bronchoconstriction in beta-blocked animals and its potentiation by captopril. In the isolated perfused guinea pig lung, bradykinin caused a dose dependent release of a prostaglandin-like substance which was significantly increased by captopril and antagonized by indomethacin. These results suggest that bradykinin causes a prostaglandin-mediated bronchoconstriction. Captopril, a potent inhibitor of ACE, prevents the degradation of bradykinin thus potentiating the bradykinin-induced bronchoconstriction, an effect observed in intact animals only in the absence of pulmonary beta-receptor activation.
Collapse
|
|
46 |
31 |
6
|
Harb OA, Elfeky MA, El Shafaay BS, Taha HF, Osman G, Harera IS, Gertallah LM, Abdelmonem DM, Embaby A. SPOP, ZEB-1 and E-cadherin expression in clear cell renal cell carcinoma (cc-RCC): Clinicopathological and prognostic significance. ACTA ACUST UNITED AC 2018; 25:335-345. [PMID: 29801752 DOI: 10.1016/j.pathophys.2018.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Clear cell renal cell carcinoma (cc-RCC), is a serious cancer regarding; its fatality, liability for metastases and chemoresistance, so identification of recent therapeutic targets to improve the patients prognosis is needed. SPOP is a BTB/POZ domain containing speckle-type POZ protein, has been identified as an E3 ubiquitin ligase component. ZEB1 is an essential epithelial mesenchymal transition (EMT) activator; E-cadherin is a cell adhesion protein that had been detected in normal epithelial cells membrane. AIM Was to assess the tissue protein markers SPOP, ZEB1 & E-cadherin expressions in benign areas of neoplastic kidney specimens and in cc-RCC patients, then correlating their expression levels with patients clinicopathological and prognostic data. METHODS We evaluated SPOP, ZEB-1 & E-cadherin expression using immunohistochemistry in samples from 50 cc-RCC and 20 benign areas of neoplastic kidney specimens, then we followed our patients for 5 years and finally we have analyzed correlations between the levels of markers expressions with patients clinicopathological and prognostic criteria in cc-RCC. RESULTS Positive expression of SPOP & ZEB1 in addition to negative E- cadherin expression was detected in cc-RCC more than benign areas of neoplastic kidney specimens (p = 0.004 and p < 0.001 respectively). In cc-RCC Positive expression of SPOP, ZEB1 and negative E- cadherin expression was associated with higher grade (p = 0.006, 0.007 & <0.001 respectively), advanced AJCC stage (p = 0.013, 0.023 & <0.001 respectively), presence of L.N metastases (p = 0.002 = 0.010 and <0.001 respectively), distant metastases (p = 0.001, 0.003 & 0.035 respectively), poor PFS and OS rates (p < 0.001 and p = 0.013 respectively). CONCLUSION Positive expression of SPOP& ZEB1 in addition to negative E- cadherin are associated with poor prognosis in cc-RCC patients.
Collapse
|
Journal Article |
7 |
26 |
7
|
Atia MAM, Abdeldaym EA, Abdelsattar M, Ibrahim DSS, Saleh I, Elwahab MA, Osman GH, Arif IA, Abdelaziz ME. Piriformospora indica promotes cucumber tolerance against Root-knot nematode by modulating photosynthesis and innate responsive genes. Saudi J Biol Sci 2019; 27:279-287. [PMID: 31889848 PMCID: PMC6933207 DOI: 10.1016/j.sjbs.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 02/09/2023] Open
Abstract
Root Knot Nematode (RKN, Meloidogyne incognita) is one of the greatest damaging soil pathogens causes severe yield losses in cucumber and many other economic crops. Here, we evaluated the potential antagonistic effect of the root mutualistic fungus Piriformospora indica against RKN and their impact on vegetative growth, yield, photosynthesis, endogenous salicylic acid (SA) and its responsive genes. Our results showed that P. indica dramatically decreased the damage on shoot and root architecture of cucumber plants, which consequently enhanced yield of infested plants. Likewise, P. indica colonization clearly improved the chlorophyll content and delimited the negative impact of RNK on photosynthesis. Moreover, P. indica colonization exhibited a significant reduction of different vital nematological parameters such as soil larva density, amount of eggs/eggmass, eggmasses, females and amount of galls at cucumber roots. Additionally, the results showed that SA level was significantly increased generally in the roots of all treatments especially in plants infested with RKN alone as compared to control. This suggests that P. indica promoting SA levels in host cucumber plant roots to antagonize the RKN and alleviate severity damages occurred in its roots. This higher levels of SA in cucumber roots was consistent with the higher expressional levels of SA pathway genes PR1 and PR3. Furthermore, P. indica colonization reduces PR1, PR3 and increased NPR1 in roots of RKN infested cucumber plants when compared to non-colonized plants. Interestingly, our in vitro results showed that direct application of P. indica suspension against the J2s exhibited a significant increase in mortality ratio. Our results collectively suggest that P. indica promoting morphological, physiological and SA levels that might together play a major important role to alleviate the adverse impact of RKN in cucumber.
Collapse
|
Journal Article |
6 |
22 |
8
|
Abstract
Timolol, a beta-adrenoceptor blocking agent with little or no cardiodepressant activity, was studied in acute myocardial ischemia in cats. Timolol, at a dose of 25 mug/kg, blocked 75 to 80% of the cardiac response to isoproterenol. This dose also significantly reduced heart rate in cats subjected to acute myocardial ischemia by ligation of the left coronary artery. Timolol significantly prevented the spread of ischemic damage in the myocardium as assessed by (a) curtailing the increase in plasma creatine phosphokinase (CPK) activity, (b) preventing the loss of CPK from the ischemic portion of the myocardium, and (c) restoring the elevated S-T segment of the electrocardiogram toward normal. Timolol did not significantly retard the increase in fragility of lysosomes in ischemic myocardial tissue. The mechanism of the protective effect to timolol on the ischemic myocardium appears to be via reducing myocardial oxygen demand by decreasing heart rate.
Collapse
|
|
48 |
21 |
9
|
El-Menofy W, Osman G, Assaeedi A, Salama M. A novel recombinant baculovirus overexpressing a Bacillus thuringiensis Cry1Ab toxin enhances insecticidal activity. Biol Proced Online 2014; 16:7. [PMID: 24735532 PMCID: PMC4001361 DOI: 10.1186/1480-9222-16-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/29/2014] [Indexed: 11/10/2022] Open
Abstract
Baculoviruses have been genetically modified to express foreign genes under powerful promoters in order to accelerate their speed of killing. In this study a truncated form of cry1Ab gene derived from Bacillus thuringinsis (Bt) subsp. aegypti isolate Bt7 was engineered into the genome of the baculovirus Autographa californica multiple nuclearpolyhedrosis wild type virus, in place of the polyhedrin gene by using homologous recombination in Spodoptera frugiperda (Sf) cells between a transfer vector carrying the Bt gene and the wild type virus linearized DNA. Recombinant wild type virus containing the cry1Ab gene was detected as blue occlusion-negative plaques in monolayers of Sf cells grown in the presence of X-Gal. In Sf cells infected with plaque-purified recombinant virus, the cry1Ab gene was expressed to yield a protein of approximately 82-kDa, as determined by immunoblot analysis. The toxicity of the recombinant virus expressing the insecticidal crystal protein (ICP) was compared to that of the wild-type virus. Infected-cell extract was toxic to cotton leaf worm Spodoptera littoralis second instar larvae and the estimated LC50 was 1.7 μg/ml for the recombinant virus compared with that of wild-type virus which was 10 μg/ml.
Collapse
|
Journal Article |
11 |
21 |
10
|
Bahieldin A, Atef A, Edris S, Gadalla NO, Ramadan AM, Hassan SM, Al Attas SG, Al-Kordy MA, Al-Hajar ASM, Sabir JSM, Nasr ME, Osman GH, El-Domyati FM. Multifunctional activities of ERF109 as affected by salt stress in Arabidopsis. Sci Rep 2018; 8:6403. [PMID: 29686365 PMCID: PMC5913302 DOI: 10.1038/s41598-018-24452-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
Transcriptomic analysis was conducted in leaves of Arabidopsis T-DNA insertion ERF109-knocked out (KO) mutant or plants overexpressing (OE) the gene to detect its role in driving expression of programmed cell death- (PCD-) or growth-related genes under high salt (200 mM NaCl) stress. The analysis yielded ~22–24 million reads, of which 90% mapped to the Arabidopsis reference nuclear genome. Hierarchical cluster analysis of gene expression and principal component analysis (PCA) successfully separated transcriptomes of the two stress time points. Analysis indicated the occurrence of 65 clusters of gene expression with transcripts of four clusters differed at the genotype (e.g., WT (wild type), KOERF109 or OEERF109) level. Regulated transcripts involved DIAP1-like gene encoding a death-associated inhibitor of reactive oxygen species (ROS). Other ERF109-regulated transcripts belong to gene families encoding ROS scavenging enzymes and a large number of genes participating in three consecutive pathways, e.g., phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan metabolism and plant hormone signal transduction. We investigated the possibility that ERF109 acts as a “master switch” mediator of a cascade of consecutive events across these three pathways initially by driving expression of ASA1 and YUC2 genes and possibly driving GST, IGPS and LAX2 genes. Action of downstream auxin-regulator, auxin-responsive as well as auxin carrier genes promotes plant cell growth under adverse conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
20 |
11
|
Kassem HA, Osman G. Maternal transmission of Wolbachia in Phlebotomus papatasi (Scopoli). ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2007; 101:435-40. [PMID: 17550649 DOI: 10.1179/136485913x13789813917544] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Attempts have been made to transfer Wolbachia from infected to uninfected, laboratory-reared Phlebotomus papatasi, through mating, and to determine whether the incompatibility phenotype could be expressed through crosses between infected and uninfected flies. In order to test for the intraspecific transmission of Wolbachia in crosses between infected females and uninfected males, or those between uninfected females and infected males, a PCR based on Wolbachia -specific wsp primers was used to test the progeny of each cross and, subsequently, 50 individual flies from the F(3) generation. All the individual flies tested from the F(1) progeny of the crosses between infected males and uninfected females were found to be uninfected. In the crosses involving infected females and uninfected males, however, Wolbachia were found in the progeny of five matings out of the 23 that produced viable eggs. In the F(3), Wolbachia were not detected in any of the individuals resulting from the cross between uninfected females and infected males but they were detected in 52% (26) of the 50 tested individuals resulting from the cross between infected females and uninfected males. No evidence of cytoplasmic incompatibility (CI) was observed in any of the crosses. The absence of CI expression and relatively low frequencies of maternal transmission could hamper the potential use of Wolbachia in a transgenic strategy for the control of leishmaniases.
Collapse
|
Journal Article |
18 |
16 |
12
|
Salem R, El-Kholy AA, Omar OA, Abu El-Naga MN, Ibrahim M, Osman G. Construction, Expression and Evaluation of Recombinant VP2 Protein for serotype-independent Detection of FMDV Seropositive Animals in Egypt. Sci Rep 2019; 9:10135. [PMID: 31300744 PMCID: PMC6626030 DOI: 10.1038/s41598-019-46596-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is one of the most devastating viral pathogens of cloven-hoofed animals. The detection of antibodies (Ab) against FMDV structural proteins (SP) using virus neutralization test (VNT) and liquid-phase blocking ELISA (LPBE) is the standard procedure in use for monitoring seroconversion in animals post vaccination, the prevalence of infection-surveillance, proving clinical cases and seronegative status of FMDV-free/naïve-animals prior transportation. However, due to variations within SP of FMDV serotypes, each serotype-specific Ab should be detected separately which is laborious and time-consuming. Accordingly, it is crucial to develop a sensitive, rapid, and accurate test capable of detecting FMDV-specific Ab, regardless its serotype. This study describes the heterologous expression of VP2 protein in E. coli, and its evaluation as a capture antigen in a simple indirect ELISA for serotype-independent detection of anti-FMDV Ab. Sequence analysis revealed that the VP2-coding sequence is considerably conserved among FMDV serotypes. The recombinant VP2 (rVP2), a 22 kDa polypeptide, was purified to near homogeneity by affinity chromatography under native conditions. Immunoreactivity of the rVP2 was confirmed by using a panel of positive sera including sera from animals vaccinated with the local trivalent vaccine and guinea pig FMDV antiserum, which is routinely used as tracing/detecting Ab in LPBE testing. The results obtained from the VP2-based ELISA were comparable to those determined by VNT and LPBE standard diagnostic assays. Specificity and sensitivity of rVP2 in capturing anti-FMDV Ab were 98.3% and 100%, respectively. The developed VP2-ELISA is proved reliable and time-efficient assay for detection of FMDV seropositive animals, regardless the FMDV serotype that can be implemented in a combination with VNT and/or LPBE for rapid diagnosis of an ongoing FMDV infection.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
14 |
13
|
Alabiad MA, Harb OA, Hefzi N, Ahmed RZ, Osman G, Shalaby AM, Alnemr AAA, Saraya YS. Prognostic and clinicopathological significance of TMEFF2, SMOC-2, and SOX17 expression in endometrial carcinoma. Exp Mol Pathol 2021; 122:104670. [PMID: 34339705 DOI: 10.1016/j.yexmp.2021.104670] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022]
Abstract
Background there is a need for novel biomarkers and targeting therapies for predicting Endometrial carcinoma (EC) progression and recurrence. TMEFF2 is a gene that was found to play a role in EMT. SMOC-2 is expressed in embryogenesis and it was identified as a recent stem cell-related gene that has a role in cancer progression. SRY-box 17 (SOX17) is a member of the SRY-related HMG-box (SOX) family of transcription factors. Dysregulation or downregulation of SOX17 expression was found in many cancer tissues. AIM In the present study, we aimed to assess the tissue protein expressions of TMEFF2, SMOC-2, and SOX17 in EC using immunohistochemistry to evaluate their clinicopathological values and prognostic roles in EC patients. PATIENTS AND METHODS This is prospective cohort study included 120 patients with EC. Sections from 120 paraffin blocks were retrieved and stained with TMEFF2, SMOC-2, and SOX17 using immunohistochemistry, the expression of markers in all tissue samples was assessed, analyzed and correlation of pathological parameters with the levels of expression was done. All patients were followed up till death or till the last known alive data for about 50 months (range from 25 to 60). RESULTS TMEFF2, SMOC-2 expression was correlated with the presence of lymph node metastases (p = 0.023), distant metastasis (p = 0.039) recurrence of the tumor after successful therapy, overall survival, and disease-free survival (p < 0.001). SOX17 positive expression was positively correlated with low grade (p = 0.019), absence of lymph node metastasis (p = 0.001), absence of distant metastasis (p = 0.013), low stage (p = 0.03), and its negative expression was positively correlated with recurrence of the tumor after successful therapy, overall survival and disease-free survival (p = 0.001). In conclusion, we demonstrated that both TMEFF2 and SMOC-2 were highly expressed in EC and were associated with a shortened survival rate, dismal outcome, and poor prognosis in EC patients. While SOX17 expression was related to a favorable outcome and its down-regulation was associated with dismal EC patient's survival.
Collapse
|
Journal Article |
4 |
14 |
14
|
Abouseadaa HH, Atia MAM, Younis IY, Issa MY, Ashour HA, Saleh I, Osman GH, Arif IA, Mohsen E. Gene-targeted molecular phylogeny, phytochemical profiling, and antioxidant activity of nine species belonging to family Cactaceae. Saudi J Biol Sci 2020; 27:1649-1658. [PMID: 32489307 PMCID: PMC7253903 DOI: 10.1016/j.sjbs.2020.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
Cactaceae plant family comprises over 130 genera and 2000 species of succulent flowering plants. The genera Mammillaria and Notocactus (Parodia), which have medicinal and nutritional applications as well as aesthetic appeal, are considered to be among the major genera of the family. Several species of both genera show morphological and chemical similarities and diversities according to environmental conditions and genotypes. Here, we assessed the genetic relationships of nine species belonging to two major genera Mammillaria and Notocactus under the family Cactaceae, using two modern gene-targeting marker techniques, the Start Codon Targeted (SCoT) Polymorphism and the Conserved DNA-Derived Polymorphism (CDDP). Besides, we screened the various phytochemicals and evaluated the antioxidant activities of the nine species of cacti. Five out of the 10 SCoT and eight CDDP primers used to screen genetic variations within the nine species yielded species-specific reproducible bands. The entire 156 loci were detected, of which 107 were polymorphic, 26 were monomorphic, and 23 were unique loci. The nine species were categorized into two groups based on the dendrogram and similarity matrix. Phytochemical profiling revealed that sterols, triterpenes, flavonoids, and tannins were found in all the tested species. Additionally, two Notocactus species (N. shlosserii and N. roseoluteus) and one Mammillaria species (M. spinosissima) revealed a considerable antioxidant activity. Our results demonstrated that gene-targeting marker techniques were highly powerful tools for the classification and characterization of the nine investigated species, despite displaying high similarities at both morphological and phytochemical levels.
Collapse
|
Journal Article |
5 |
14 |
15
|
Eissa HF, Hassanien SE, Ramadan AM, El-Shamy MM, Saleh OM, Shokry AM, Abdelsattar M, Morsy YB, El-Maghraby MA, Alameldin HF, Hassan SM, Osman GH, Mahfouz HT, Gad El-Karim GA, Madkour MA, Bahieldin A. Developing transgenic wheat to encounter rusts and powdery mildew by overexpressing barley chi26 gene for fungal resistance. PLANT METHODS 2017; 13:41. [PMID: 28539970 PMCID: PMC5441082 DOI: 10.1186/s13007-017-0191-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 05/15/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND The main aim of this study was to improve fungal resistance in bread wheat via transgenesis. Transgenic wheat plants harboring barley chitinase (chi26) gene, driven by maize ubi promoter, were obtained using biolistic bombardment, whereas the herbicide resistance gene, bar, driven by the CaMV 35S promoter was used as a selectable marker. RESULTS Molecular analysis confirmed the integration, copy number, and the level of expression of the chi26 gene in four independent transgenic events. Chitinase enzyme activity was detected using a standard enzymatic assay. The expression levels of chi26 gene in the different transgenic lines, compared to their respective controls, were determined using qRT-PCR. The transgene was silenced in some transgenic families across generations. Gene silencing in the present study seemed to be random and irreversible. The homozygous transgenic plants of T4, T5, T6, T8, and T9 generations were tested in the field for five growing seasons to evaluate their resistance against rusts and powdery mildew. The results indicated high chitinase activity at T0 and high transgene expression levels in few transgenic families. This resulted in high resistance against wheat rusts and powdery mildew under field conditions. It was indicated by proximate and chemical analyses that one of the transgenic families and the non-transgenic line were substantially equivalent. CONCLUSION Transgenic wheat with barley chi26 was found to be resistant even after five generations under artificial fungal infection conditions. One transgenic line was proved to be substantially equivalent as compared to the non-transgenic control.
Collapse
|
research-article |
8 |
13 |
16
|
Elarabi NI, Abdelhadi AA, Ahmed RH, Saleh I, Arif IA, Osman G, Ahmed DS. Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues. Saudi J Biol Sci 2020; 27:2207-2214. [PMID: 32884402 PMCID: PMC7451736 DOI: 10.1016/j.sjbs.2020.06.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/02/2022] Open
Abstract
Glyphosate is a commonly used organophosphate herbicide that has an adverse impact on humans, mammals and soil microbial ecosystems. The redundant utilize of glyphosate to control weed growth cause the pollution of the soil environment by this chemical. The discharge of glyphosate in the agricultural drainage can also cause serious environmental damage and water pollution problems. Therefore, it is important to develop methods for enhancing glyphosate degradation in the soil through bioremediation. In this study, thirty bacterial isolates were selected from an agro-industrial zone located in Sadat City of Monufia Governorate, Egypt. The isolates were able to grow in LB medium supplemented with 7.2 mg/ml glyphosate. Ten isolates only had the ability to grow in a medium containing different concentrations of glyphosate (50, 100, 150, 200 and 250 mg/ml). The FACU3 bacterial isolate showed the highest CFU in the different concentrations of glyphosate. The FACU3 isolate was Gram-positive, spore-forming and rod-shape bacteria. Based on API 50 CHB/E medium kit, biochemical properties and 16S rRNA gene sequencing, the FACU3 isolate was identified as Bacillus aryabhattai. Different bioinformatics tools, including multiple sequence alignment (MSA), basic local alignment search tool (BLAST) and primer alignment, were used to design specific primers for goxB gene amplification and isolation. The goxB gene encodes FAD-dependent glyphosate oxidase enzyme that responsible for biodegradation process. The selected primers were successfully used to amplify the goxB gene from Bacillus aryabhattai FACU3. The results indicated that the Bacillus aryabhattai FACU3 can be utilized in glyphosate-contaminated environments for bioremediation. According to our knowledge, this is the first time to isolate of FAD-dependent glyphosate oxidase (goxB) gene from Bacillus aryabhattai.
Collapse
|
research-article |
5 |
12 |
17
|
Osman GH, Soltane R, Saleh I, Abulreesh HH, Gazi KS, Arif IA, Ramadan AM, Alameldin HF, Osman YA, Idriss M. Isolation, characterization, cloning and bioinformatics analysis of a novel receptor from black cut worm ( Agrotis ipsilon) of Bacillus thuringiensis vip 3Aa toxins. Saudi J Biol Sci 2019; 26:1078-1083. [PMID: 31303843 PMCID: PMC6601361 DOI: 10.1016/j.sjbs.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/03/2018] [Accepted: 06/12/2018] [Indexed: 12/03/2022] Open
Abstract
Black cutworm (BCW) is an economically important lepidopteran insect. The control of this insect by a Bt toxin and the understanding of the interaction between the Bt toxin and its receptor molecule were the objectives of this research work. A gene coding for a Vip3A receptor molecule was identified, characterized, and cloned, from the brush border membrane vesicles (BBMV) of the BCW. The nucleotide sequence analysis of the cloned putative Vip3A-receptor gene revealed that the gene was 1.3-kb long and exhibited no homology with any gene in the gene bank. We succeeded in identifying and characterizing most of the Vip3A-receptor gene sequence; and the nucleotide sequence analysis of the cloned putative Vip3A-receptor gene (accession no. KX858809) revealed about 92% of the expected sequence was recovered, which exhibited no homology with any gene in the GenBank.
Collapse
|
research-article |
6 |
11 |
18
|
Hood L, Kumar V, Osman G, Beall SS, Gomez C, Funkhouser W, Kono DH, Nickerson D, Zaller DM, Urban JL. Autoimmune disease and T-cell immunologic recognition. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1989; 54 Pt 2:859-74. [PMID: 2484250 DOI: 10.1101/sqb.1989.054.01.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
Comparative Study |
36 |
10 |
19
|
Abouseadaa HH, Osman GH, Ramadan AM, Hassanein SE, Abdelsattar MT, Morsy YB, Alameldin HF, El-Ghareeb DK, Nour-Eldin HA, Salem R, Gad AA, Elkhodary SE, Shehata MM, Mahfouz HM, Eissa HF, Bahieldin A. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects. BMC PLANT BIOLOGY 2015; 15:183. [PMID: 26194497 PMCID: PMC4508906 DOI: 10.1186/s12870-015-0570-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/07/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. RESULTS A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. CONCLUSION Transgenic wheat plants had improved resistance to Sitophilus granarius.
Collapse
|
research-article |
10 |
10 |
20
|
Osman G, Assaeedi A, Osman Y, El-Ghareeb D, Alreedy R. Purification and characterization of Bacillus thuringiensis vegetative insecticidal toxin protein(s). Lett Appl Microbiol 2013; 57:310-6. [PMID: 23815791 DOI: 10.1111/lam.12115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
UNLABELLED Bacillus thuringiensis subsp. aegypti C18 is an Egyptian isolate, obtained from dead pink bollworm larvae. Insecticidal active proteins against different insect were purified from BtaC18 strain during vegetative states. Both the bacterial pellet and cell-free supernatant obtained during vegetative growth had insecticidal activity against black cutworm (BCW). Bioassays revealed that the pellet after 48 h of growth is more potent and toxic against BCW. The toxin in the pellet was active at very high temperatures but lost toxicity after boiling or autoclaving. Proteins extracted from the BtaC18 pellet were further purified by ammonium sulfate precipitation, and the 40% fraction was then subjected to fast protein liquid chromatography (FPLC). Seven major protein peaks were detected after FPLC (Pi- a, b, c, d, e, f and g). Pic protein fraction was active against BCW with an estimated LC50 = 26 ng cm(-2) , Pid protein killed 50% of European corn borer (ECB) at 46 ng cm(-2) , and Pif showed insecticidal activity against western corn root worm (WCRW) with estimated LC50 was 94 ng cm(-2) . Based on the significant and high toxicity of Pic against BCW and Pif against WCRW, the 88- and 44-kDa proteins were further characterized by N-terminal amino acid sequencing. SIGNIFICANCE AND IMPACT OF THE STUDY Insecticidal activity of Bacillus thuringiensis subsp. aegypti was determined, and its vegetative insecticidal protein was subjected to FPLC for protein purification. This work contributes to improve understanding the different toxins secreted during vegetative growth of Bt. Moreover, the N-terminal amino acid sequences of 88-kDa protein was only 92% identical to that of vip3A, and for 44 kDa was 92% identical with Cry35a, suggesting that we might have identified a new genes. Finally, we have proven these proteins to be novel insecticidal agents that may complement the use of known insecticidal proteins derived from Bacillus.
Collapse
|
Journal Article |
12 |
9 |
21
|
El-Gaied L, Mahmoud A, Salem R, Elmenofy W, Saleh I, Abulreesh HH, Arif IA, Osman G. Characterization, cloning, expression and bioassay of vip3 gene isolated from an Egyptian Bacillus thuringiensis against whiteflies. Saudi J Biol Sci 2020; 27:1363-1367. [PMID: 32346346 PMCID: PMC7182773 DOI: 10.1016/j.sjbs.2019.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/24/2019] [Accepted: 12/08/2019] [Indexed: 12/28/2022] Open
Abstract
Throughout the vegetative life of Bacillus thuringiensis, vegetative insecticidal proteins (Vip) are produced and secreted. In the present study, the vip3 gene isolated from Bacillus thuringiensis, an Egyptian isolate, was successfully amplified (2.4 kbp) and expressed using bacterial expression system. The molecular mass of the expressed protein was verified using SDS-PAGE and western blot analysis. Whiteflies were also screened for susceptibility to the expressed Vip3 protein (LC50). In addition, ST50 was determined to assess the kill speed of the expressed Vip3 protein against whiteflies compared to the whole vegetative proteins. The results showed that the potency of whole B. thuringiensis vegetative proteins against whiteflies was slightly higher than the expressed Vip3 protein with 4.7-fold based on LC50 value. However, the ST50 parameter showed no significant difference between both the B. thuringiensis vegetative proteins and the expressed Vip3 alone. The results showed that the vip3 gene was successfully expressed in an active form which showed high susceptibility to whiteflies based on the virulence parameters LC50 and ST50. To our knowledge, this study showed for the first time the high toxicity of the expressed Vip3 proteins of B. thuringiensis toward whiteflies as a hopeful and promising bio-control agent.
Collapse
|
research-article |
5 |
9 |
22
|
El-Garhy HAS, Elsisi AA, Mohamed SA, Morsy OM, Osman G, Abdel-Rahman FA. Transcriptomic changes in green bean pods against grey mould and white rot diseases via field application of chemical elicitor nanoparticles. IET Nanobiotechnol 2021; 14:574-583. [PMID: 33010132 DOI: 10.1049/iet-nbt.2020.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The authors tested the efficacy of two salt nanoparticles (NPs), namely, copper dioxide (CuO) and tri-calcium phosphate [Ca3(PO4)2] to induce resistance in green bean pods against grey mould and white rot diseases caused by Botrytis cinerea and Sclerotinia sclerotiorum, respectively. High amounts of phytoalexins, kievitone, coumestrol, phaseollidin, 6-ά-hydroxyphaseollin, and phaseollin, were detected in naturally infected and artificially inoculated green bean pods in response to the tested NPs. Green bean plants treated in the field with CuO and Ca3(PO4)2 NPs had the highest mRNA quantity of all the studied defence genes, receptor-like kinase (PvRK20), pathogenesis-related protein (PR1), 1,3-β-D-glucanase (pvgluc), polygalacturonase inhibitor protein (PvGIP), and alpha-dioxygenase (a-DOX) than that of the control group. CuO NPs followed by Ca3(PO4)2 NPs at 0.15 mg ml-1 were the most potent in increasing the transcriptomic levels of pk20, DOX, PR1, PvGIP, and pvgluc. Field applications of both chemical elicitor NPs exhibited a non-genotoxic effect on the Paulista green bean DNA using eight ISSR primers. The field application of the studied NPs could effectively extend the shelf life of green bean pods by up to 21 days at 7 ± 1°C during marketing and export due to its potent effect against grey mould and white rot diseases.
Collapse
|
Journal Article |
4 |
8 |
23
|
Kassem HA, Hassan AN, Abdel-Hamid I, Osman G, El Khalab EM, Madkour MA. Wolbachia infection and the expression of cytoplasmic incompatibility in sandflies (Diptera: Psychodidae) from Egypt. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2003; 97:639-44. [PMID: 14511562 DOI: 10.1179/000349803225001391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A PCR-based method was used to screen four laboratory colonies of sandflies for Wolbachia infection. The colonies - one of Phlebotomus langeroni, one of P. bergeroti and two of P. papatasi - were all derived from sandflies collected in Egypt. Only one of the colonies, derived from P. papatasi collected in Sinai, was found infected. The sequence of the PCR product for this colony was identical to that previously reported for the Wolbachia in P. papatasi from Israel. The induction with tetracycline of cytoplasmic incompatibility (CI) in flies from the P. papatasi (Sinai) colony was then investigated, through reciprocal crosses between treated and untreated P. papatasi siblings. Partial CI expression was attained in the crosses involving antibiotic-treated (i.e. uninfected) females, whether the males used were infected with Wolbachia or had also been cleared of Wolbachia by antibiotic treatment. Most (75%) of the eggs oviposited by uninfected females that had been crossed with infected males, and most (58%) of those laid by uninfected females that had been crossed with uninfected males, failed to hatch. These results provide the first published evidence showing that Wolbachia infection in sandflies is advantageous to the insects. The failure to detect Wolbachia in one of the colonies derived from Egyptian P. papatasi or in the colonies derived from Egyptian P. bergeroti and P. langeroni may indicate that the inter- and intra-specific spread of Wolbachia is discontinuous, even within one country.
Collapse
|
Journal Article |
22 |
8 |
24
|
El-Garhy HAS, Abdel-Rahman FA, Shams AS, Osman GH, Moustafa MMA. Comparative Analyses of Four Chemicals Used to Control Black Mold Disease in Tomato and Its Effects on Defense Signaling Pathways, Productivity and Quality Traits. PLANTS (BASEL, SWITZERLAND) 2020; 9:E808. [PMID: 32605169 PMCID: PMC7412205 DOI: 10.3390/plants9070808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The field application of safe chemical inducers plays a vital role in the stimulation of systematic acquired resistance (SAR) of plants. In this study, the efficacy use of three and six field applications with chitosan, lithovit, and K-thiosulfate at 4 gL-1 and salicylic acid at 1.5 gL-1 in improving tomato productivity, quality, and modifying the defense signaling pathways to the Alternaria alternata infection was investigated. Salicylic acid was the most effective in vitro where it completely inhibited the growth of Alternaria alternata. The highest yield quantity was recorded with six applications with Chitosan followed by Salicylic acid; also, they were the most effective treatments in controlling the Alternaria alternata infection in tomato fruits. The maximum increase in chitinase and catalase activity of tomato fruits was observed at five days after inoculation, following treatment with six sprays of salicylic acid followed by chitosan. The transcript levels of seven defense-related genes: ethylene-responsive transcription factor 3 (RAP), xyloglucan endotransglucosylase 2 (XET-2), catalytic hydrolase -2 (ACS-2), proteinase inhibitor II (PINII), phenylalanine ammonia-lyase 5 (PAL5), lipoxygenase D (LOXD), and pathogenesis-related protein 1 (PR1) were upregulated in response to all treatments. The highest expression levels of the seven studied genes were recorded in response to six foliar applications with chitosan. Chitosan followed by salicylic acid was the most effective among the tested elicitors in controlling the black mold rot in tomato fruits. In conclusion, pre-harvest chitosan and salicylic acid in vivo application with six sprays could be recommended as effective safe alternatives to fungicides against black mold disease in tomato fruits.
Collapse
|
research-article |
5 |
7 |
25
|
Al Kashgry NAT, Abulreesh HH, El-Sheikh IA, Almaroai YA, Salem R, Mohamed I, Waly FR, Osman G, Mohamed MSM. Utilization of a recombinant defensin from Maize (Zea mays L.) as a potential antimicrobial peptide. AMB Express 2020; 10:208. [PMID: 33237335 PMCID: PMC7688885 DOI: 10.1186/s13568-020-01146-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/15/2020] [Indexed: 12/19/2022] Open
Abstract
The search for effective and bioactive antimicrobial molecules to encounter the medical need for new antibiotics is an encouraging area of research. Plant defensins are small cationic, cysteine-rich peptides with a stabilized tertiary structure by disulfide-bridges and characterized by a wide range of biological functions. The heterologous expression of Egyptian maize defensin (MzDef) in Escherichia coli and subsequent purification by glutathione affinity chromatography yielded 2 mg/L of recombinant defensin peptide. The glutathione-S-transferase (GST)-tagged MzDef of approximately 30 kDa in size (26 KDa GST + ~ 4 KDa MzDef peptide) was immunodetected with anti-GST antibodies. The GST-tag was successfully cleaved from the MzDef peptide by thrombin, and the removal was validated by the Tris-Tricine gel electrophoresis. The MzDef induced strong growth inhibition of Rhizoctonia solani, Fusarium verticillioides, and Aspergillus niger by 94.23%, 93.34%, and 86.25%, respectively, whereas relatively weak growth inhibitory activity of 35.42% against Fusarium solani was recorded. Moreover, strong antibacterial activities were demonstrated against E. coli and Bacillus cereus and the moderate activities against Salmonella enterica and Staphylococcus aureus at all tested concentrations (0.1, 0.2, 0.4, 0.8, 1.6, and 3.2 µM). Furthermore, the in vitro MTT assay exhibited promising anticancer activity against all tested cell lines (hepatocellular carcinoma, mammary gland breast cancer, and colorectal carcinoma colon cancer) with IC50 values ranging from 14.85 to 29.85 µg/mL. These results suggest that the recombinant peptide MzDef may serve as a potential alternative antimicrobial and anticancer agent to be used in medicinal application.
Collapse
|
research-article |
5 |
7 |