1
|
Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, Greenberg AH, Zhong G. Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 1998; 187:487-96. [PMID: 9463399 PMCID: PMC2212145 DOI: 10.1084/jem.187.4.487] [Citation(s) in RCA: 435] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report that chlamydiae, which are obligate intracellular bacterial pathogens, possess a novel antiapoptotic mechanism. Chlamydia-infected host cells are profoundly resistant to apoptosis induced by a wide spectrum of proapoptotic stimuli including the kinase inhibitor staurosporine, the DNA-damaging agent etoposide, and several immunological apoptosis-inducing molecules such as tumor necrosis factor-alpha, Fas antibody, and granzyme B/perforin. The antiapoptotic activity was dependent on chlamydial but not host protein synthesis. These observations suggest that chlamydia may encode factors that interrupt many different host cell apoptotic pathways. We found that activation of the downstream caspase 3 and cleavage of poly (ADP-ribose) polymerase were inhibited in chlamydia-infected cells. Mitochondrial cytochrome c release into the cytosol induced by proapoptotic factors was also prevented by chlamydial infection. These observations suggest that chlamydial proteins may interrupt diverse apoptotic pathways by blocking mitochondrial cytochrome c release, a central step proposed to convert the upstream private pathways into an effector apoptotic pathway for amplification of downstream caspases. Thus, we have identified a chlamydial antiapoptosis mechanism(s) that will help define chlamydial pathogenesis and may also provide information about the central mechanisms regulating host cell apoptosis.
Collapse
|
research-article |
27 |
435 |
2
|
Barbas CF, Heine A, Zhong G, Hoffmann T, Gramatikova S, Björnestedt R, List B, Anderson J, Stura EA, Wilson IA, Lerner RA. Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science 1997; 278:2085-92. [PMID: 9405338 DOI: 10.1126/science.278.5346.2085] [Citation(s) in RCA: 328] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Structural and mechanistic studies show that when the selection criteria of the immune system are changed, catalytic antibodies that have the efficiency of natural enzymes evolve, but the catalytic antibodies are much more accepting of a wide range of substrates. The catalytic antibodies were prepared by reactive immunization, a process whereby the selection criteria of the immune system are changed from simple binding to chemical reactivity. This process yielded aldolase catalytic antibodies that approximated the rate acceleration of the natural enzyme used in glycolysis. Unlike the natural enzyme, however, the antibody aldolases catalyzed a variety of aldol reactions and decarboxylations. The crystal structure of one of these antibodies identified the reactive lysine residue that was selected in the immunization process. This lysine is deeply buried in a hydrophobic pocket at the base of the binding site, thereby accounting for its perturbed pKa.
Collapse
|
|
28 |
328 |
3
|
Zhong G, Fan P, Ji H, Dong F, Huang Y. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 2001; 193:935-42. [PMID: 11304554 PMCID: PMC2193410 DOI: 10.1084/jem.193.8.935] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Accepted: 03/14/2001] [Indexed: 11/17/2022] Open
Abstract
Microbial pathogens have been selected for the capacity to evade or manipulate host responses in order to survive after infection. Chlamydia, an obligate intracellular pathogen and the causative agent for many human diseases, can escape T lymphocyte immune recognition by degrading host transcription factors required for major histocompatibility complex (MHC) antigen expression. We have now identified a chlamydial protease- or proteasome-like activity factor (CPAF) that is secreted into the host cell cytosol and that is both necessary and sufficient for the degradation of host transcription factors RFX5 and upstream stimulation factor 1 (USF-1). The CPAF gene is highly conserved among chlamydial strains, but has no significant overall homology with other known genes. Thus, CPAF represents a unique secreted protein produced by an obligate intracellular bacterial pathogen to interfere with effective host adaptive immunity.
Collapse
|
research-article |
24 |
293 |
4
|
Sessle BJ, Hu JW, Amano N, Zhong G. Convergence of cutaneous, tooth pulp, visceral, neck and muscle afferents onto nociceptive and non-nociceptive neurones in trigeminal subnucleus caudalis (medullary dorsal horn) and its implications for referred pain. Pain 1986; 27:219-235. [PMID: 3797017 DOI: 10.1016/0304-3959(86)90213-7] [Citation(s) in RCA: 238] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Because of the likely involvement of central convergence of afferent inputs in mechanisms underlying referred pain, the activity of single neurones was recorded in the cat's trigeminal (V) subnucleus caudalis (medullary dorsal horn) to test for the presence and extent of convergent inputs to the neurones. In chloralose-anaesthetized or decerebrate unanaesthetized cats, electrical stimuli were applied to afferents supplying facial skin, oral mucosa, canine and premolar tooth pulp, laryngeal mucosa, cervical skin and muscle, and jaw and tongue muscles, and tactile and noxious mechanical and thermal stimuli were applied to skin and mucosa. Considerable proportions of caudalis neurones which could be functionally classified on the basis of their cutaneous receptive field properties as low-threshold mechanoreceptive (LTM), wide-dynamic-range (WDR), or nociceptive-specific (NS) neurones, could be excited by electrical stimulation of several of these afferent inputs. Extensive convergence of afferent inputs, including inputs from skin or mucosal areas outside the neuronal oral-facial receptive field delineated by natural stimuli, was a particular feature of the units classified as cutaneous nociceptive neurones (i.e., WDR and NS). On the basis of antidromic activation, 15% of these WDR and NS neurones were shown to have a direct projection to the contralateral thalamus. The findings question the use of terminology and classifications of somatosensory neurones based only on the cutaneous receptive field properties of the neurones since distinctions between the different neuronal populations become less obvious when properties other than those related to cutaneous afferent inputs are taken into account. Moreover, the observations of extensive convergence of different types of afferents, which was especially apparent in cutaneous nociceptive neurones, also suggest a role for these neurones in mediating deep pain and in spread and referral of pain.
Collapse
|
|
39 |
238 |
5
|
Hu H, Pierce GN, Zhong G. The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae. J Clin Invest 1999; 103:747-53. [PMID: 10074493 PMCID: PMC408120 DOI: 10.1172/jci4582] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Epidemiological investigations have linked Chlamydia pneumoniae infection to atherosclerosis. It is not clear, however, whether C. pneumoniae infection plays a causal role in the development of atherosclerosis. Mice with low-density lipoprotein receptor deficiency were induced to develop atherosclerotic lesions in aorta with a cholesterol-enriched diet that increased serum cholesterol by two- to threefold. Using this mouse model, we found that the chlamydial infection alone with either the C. pneumoniae AR39 or the C. trachomatis MoPn strain failed to induce any significant atherosclerotic lesions in aorta over a period of nine months. However, in the presence of a high-cholesterol diet, infection with the C. pneumoniae AR39 strain significantly exacerbated the hypercholesterolemia-induced atherosclerosis, demonstrating that a hypercholesterolemic condition is required for the C. pneumoniae to aggravate the development of atherosclerosis. Although both AR39 and MoPn antigens were detected in aorta of mice infected with the corresponding strains, only mice infected with the C. pneumoniae strain AR39 displayed enhanced atherosclerotic lesions, suggesting that the C. pneumoniae species may possess a unique atherogenic property. This study may provide a model for further understanding the mechanisms of C. pneumoniae atherogenesis and evaluating chlamydial intervention strategies for preventing the advancement of atherosclerotic lesions enhanced by C. pneumoniae infection.
Collapse
|
research-article |
26 |
181 |
6
|
Wang Z, Weber JL, Zhong G, Tanksley SD. Survey of plant short tandem DNA repeats. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 88:1-6. [PMID: 24185874 DOI: 10.1007/bf00222386] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/1993] [Accepted: 07/26/1993] [Indexed: 06/02/2023]
Abstract
Length variations in simple sequence tandem repeats are being given increased attention in plant genetics. Some short tandem repeats (STRs) from a few plant species, mainly those at the dinucleotide level, have been demonstrated to show polymorphisms and Mendelian inheritance. In the study reported here a search for all of the possible STRs ranging from mononucleotide up to tetranucleotide repeats was carried out on EMBL and GenBank DNA sequence databases of 3026 kb nuclear DNA and 1268 kb organelle DNA in 54 and 28 plant species (plus algae), respectively. An extreme rareness of STRs (4 STRs in 1268 kb DNA) was detected in organelle compared with nuclear DNA sequences. In nuclear DNA sequences, (AT)n sequences were the most abundant followed by (A)n · (T)n, (AG)n · (CT)n, (AAT)n · (ATT)n, (AAC)n · (GTT), (AGC)n · (GCT)n, (AAG)n · (CTT)n, (AATT)n · (TTAA)n, (AAAT)n · (ATTT)n and (AC)n · (GT)n sequences. A total of 130 STRs were found, including 49 (AT)n sequences in 31 species, giving an average of 1 STR every 23.3 kb and 1 (AT)n STR every 62 kb. An abundance comparable to that for the dinucleotide repeat was observed for the tri- and tetranucleotide repeats together. On average, there was 1 STR every 64.6 kb DNA in monocotyledons versus 1 every 21.2 kb DNA in dicotyledons. The fraction of STRs that contained G-C basepairs increased as the G+C contents went up from dicotyledons, monocotyledons to algae. While STRs of mono-, di- and tetranucleotide repeats were all located in non coding regions, 57% of the trinucleotide STRs containing G-C basepairs resided in coding regions.
Collapse
|
|
31 |
159 |
7
|
Zhong G, Fan T, Liu L. Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. J Exp Med 1999; 189:1931-8. [PMID: 10377188 PMCID: PMC2192973 DOI: 10.1084/jem.189.12.1931] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We report that chlamydiae, which are obligate intracellular bacterial pathogens, can inhibit interferon (IFN)-gamma-inducible major histocompatibility complex (MHC) class II expression. However, the IFN-gamma-induced IFN regulatory factor-1 (IRF-1) and intercellular adhesion molecule 1 (ICAM-1) expression is not affected, suggesting that chlamydia may selectively target the IFN-gamma signaling pathways required for MHC class II expression. Chlamydial inhibition of MHC class II expression is correlated with degradation of upstream stimulatory factor (USF)-1, a constitutively and ubiquitously expressed transcription factor required for IFN-gamma induction of class II transactivator (CIITA) but not of IRF-1 and ICAM-1. CIITA is an obligate mediator of IFN-gamma-inducible MHC class II expression. Thus, diminished CIITA expression as a result of USF-1 degradation may account for the suppression of the IFN-gamma-inducible MHC class II in chlamydia-infected cells. These results reveal a novel immune evasion strategy used by the intracellular bacterial pathogen chlamydia that improves our understanding of the molecular basis of pathogenesis.
Collapse
|
research-article |
26 |
158 |
8
|
Zhong G, Liu L, Fan T, Fan P, Ji H. Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon gamma-inducible major histocompatibility complex class I expression in chlamydia-infected cells. J Exp Med 2000; 191:1525-34. [PMID: 10790427 PMCID: PMC2213440 DOI: 10.1084/jem.191.9.1525] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We have previously shown that the obligate intracellular pathogen chlamydia can suppress interferon (IFN)-gamma-inducible major histocompatibility complex (MHC) class II expression in infected cells by degrading upstream stimulation factor (USF)-1. We now report that chlamydia can also inhibit both constitutive and IFN-gamma-inducible MHC class I expression in the infected cells. The inhibition of MHC class I molecule expression correlates well with degradation of RFX5, an essential downstream transcription factor required for both the constitutive and IFN-gamma-inducible MHC class I expression. We further demonstrate that a lactacystin-sensitive proteasome-like activity identified in chlamydia-infected cell cytosolic fraction can degrade both USF-1 and RFX5. This proteasome-like activity is dependent on chlamydial but not host protein synthesis. Host preexisting proteasomes may not be required for the unique proteasome-like activity. These observations suggest that chlamydia-secreted factors may directly participate in the proteasome-like activity. Efforts to identify the chlamydial factors are underway. These findings provide novel information on the molecular mechanisms of chlamydial evasion of host immune recognition.
Collapse
|
research-article |
25 |
148 |
9
|
Zhong G, Reis e Sousa C, Germain RN. Production, specificity, and functionality of monoclonal antibodies to specific peptide-major histocompatibility complex class II complexes formed by processing of exogenous protein. Proc Natl Acad Sci U S A 1997; 94:13856-61. [PMID: 9391117 PMCID: PMC28397 DOI: 10.1073/pnas.94.25.13856] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/1997] [Accepted: 09/17/1997] [Indexed: 02/05/2023] Open
Abstract
Several unanswered questions in T cell immunobiology relating to intracellular processing or in vivo antigen presentation could be approached if convenient, specific, and sensitive reagents were available for detecting the peptide-major histocompatibility complex (MHC) class I or class II ligands recognized by alphabeta T cell receptors. For this reason, we have developed a method using homogeneously loaded peptide-MHC class II complexes to generate and select specific mAb reactive with these structures using hen egg lysozyme (HEL) and I-Ak as a model system. mAbs specific for either HEL-(46-61)-Ak or HEL-(116-129)-Ak have been isolated. They cross-react with a small subset of I-Ak molecules loaded with self peptides but can nonetheless be used for flow cytometry, immunoprecipitation, Western blotting, and intracellular immunofluorescence to detect specific HEL peptide-MHC class II complexes formed by either peptide exposure or natural processing of native HEL. An example of the utility of these reagents is provided herein by using one of the anti-HEL-(46-61)-Ak specific mAbs to visualize intracellular compartments where I-Ak is loaded with HEL-derived peptides early after antigen administration. Other uses, especially for in vivo tracking of specific ligand-bearing antigen-presenting cells, are discussed.
Collapse
|
research-article |
28 |
126 |
10
|
Zhong G, Romagnoli P, Germain RN. Related leucine-based cytoplasmic targeting signals in invariant chain and major histocompatibility complex class II molecules control endocytic presentation of distinct determinants in a single protein. J Exp Med 1997; 185:429-38. [PMID: 9053443 PMCID: PMC2196034 DOI: 10.1084/jem.185.3.429] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Leucine-based signals in the cytoplasmic tail of invariant chain (Ii) control targeting of newly synthesized major histocompatibility complex class II molecules to the endocytic pathway for acquisition of antigenic peptides. Some protein determinants, however, do not require Ii for effective class II presentation, although endocytic processing is still necessary. Here we demonstrate that a dileucine-based signal in the cytoplasmic tail of the class II beta chain is critical for this Ii-independent presentation. Elimination or mutation of this signal reduces the rate of re-entry of mature surface class II molecules into the endocytic pathway. Antigen presentation controlled by this signal does not require newly synthesized class II molecules and appears to involve determinants requiring only limited proteolysis for exposure, whereas the opposite is true for li-dependent determinants. This demonstrates that related leucine-based trafficking signals in li and class II control the functional presentation of protein determinants with distinct processing requirements, suggesting that the peptide binding sites of newly synthesized versus mature class II molecules are made available for antigen binding in distinct endocytic compartments under the control of these homologous cytoplasmic signals. This permits capture of protein fragments produced optimally under distinct conditions of pH and proteolytic activity.
Collapse
|
research-article |
28 |
113 |
11
|
Zhong G, Reis e Sousa C, Germain RN. Antigen-unspecific B cells and lymphoid dendritic cells both show extensive surface expression of processed antigen-major histocompatibility complex class II complexes after soluble protein exposure in vivo or in vitro. J Exp Med 1997; 186:673-82. [PMID: 9271583 PMCID: PMC2199022 DOI: 10.1084/jem.186.5.673] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Intravenous (i.v.) injection of high amounts of soluble proteins often results in the induction of antigen-specific tolerance or deviation to helper rather than inflammatory T cell immunity. It has been proposed that this outcome may be due to antigen presentation to T cells by a large cohort of poorly costimulatory or IL-12-deficient resting B cells lacking specific immunoglobulin receptors for the protein. However, previous studies using T cell activation in vitro to assess antigen display have failed to support this idea, showing evidence of specific peptide-major histocompatibility complex (MHC) class II ligand only on purified dendritic cells (DC) or antigen-specific B cells isolated from protein injected mice. Here we reexamine this question using a recently derived monoclonal antibody specific for the T cell receptor (TCR) ligand formed by the association of the 46-61 determinant of hen egg lysozyme (HEL) and the mouse MHC class II molecule I-Ak. In striking contrast to conclusions drawn from indirect T cell activation studies, this direct method of TCR ligand analysis shows that i.v. administration of HEL protein results in nearly all B cells in lymphoid tissues having substantial levels of HEL 46-61-Ak complexes on their surface. DC readily isolated from spleen also display this TCR ligand on their surface. Although the absolute number of displayed ligands is greater on such DC, the relative specific ligand expression compared to total MHC class II levels is similar or greater on B cells. These results demonstrate that in the absence of activating stimuli, both lymphoid DC and antigen-unspecific B cells present to a similar extent class II-associated peptides derived from soluble proteins in extracellular fluid. The numerical advantage of the TCR ligand-bearing B cells may permit them to interact first or more often with naive antigen-specific T cells, contributing to the induction of high-dose T cell tolerance or immune deviation.
Collapse
|
research-article |
28 |
106 |
12
|
Castellino F, Zhong G, Germain RN. Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture. Hum Immunol 1997; 54:159-69. [PMID: 9297534 DOI: 10.1016/s0198-8859(97)00078-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Major histocompatibility complex class II molecules are heterodimeric integral membrane proteins whose primary function is the presentation of antigenic peptides derived from proteins entering the endocytic pathway to CD4+ T lymphocytes. To accomplish this physiologic function, class II molecules must assemble in the secretory pathway without undergoing irreversible ligand association at that site, traffic efficiently to the endocytic pathway, and productively interact with protein ligands in these organelles before their ultimate expression on the plasma membrane. Here we review our work describing how invariant chain promoters the assembly and transport process, the complex itinerary of class II-invariant chain complexes through the endocytic pathway, the role of large protein fragments as substrates for class II binding, and the existence of a second pathway for antigen capture by mature class II molecules that complements that involving newly synthesized dimers. We integrate these observations into a coherent model for the operation of a class II-dependent antigen processing and presentation system able to capture diverse antigenic determinants present in proteins of varying structure.
Collapse
|
Review |
28 |
104 |
13
|
Zhong G, Lerner RA, Barbas III. Broadening the Aldolase Catalytic Antibody Repertoire by Combining Reactive Immunization and Transition State Theory: New Enantio- and Diastereoselectivities. Angew Chem Int Ed Engl 1999; 38:3738-3741. [PMID: 10649343 DOI: 10.1002/(sici)1521-3773(19991216)38:24<3738::aid-anie3738>3.0.co;2-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nine efficient aldolase antibodies were generated by using hapten 1. This hapten unites reactive immunization and the transition state analogue approach in a single molecule. Characterization of two of these antibodies reveals that they are highly proficient (up to 1000-fold better than any other antibody catalyst) and enantioselective catalysts for aldol and retro-aldol reactions and exhibit enantio- and diastereoselectivities opposite to that of antibody 38C2.
Collapse
|
|
26 |
98 |
14
|
Zhong G, Long H, Ma S, Shunhan Y, Li J, Yao J. miRNA-335-5p relieves chondrocyte inflammation by activating autophagy in osteoarthritis. Life Sci 2019; 226:164-172. [PMID: 30970265 DOI: 10.1016/j.lfs.2019.03.071] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 01/03/2023]
Abstract
AIMS Osteoarthritis (OA) is a chronic and degenerative joint disease prevalent in the elderly, which is characterized by hypertrophy and reactive hyperplasia of articular cartilage. Autophagy has been reported to inhibit inflammation and reduce chondrocyte apoptosis in OA. As the microRNA (miRNA)-335-5p has been linked to both inflammation and autophagy, this study aimed to investigate its potential role in regulating autophagy during the pathogenesis of OA. MAIN METHODS Quantitative real-time PCR (qRT-PCR) was used to detect miRNA-335-5p expression in normal and OA human chondrocytes. Following transfection of human OA chondrocytes with double-stranded miRNA-335-5p mimic/inhibitor, qRT-PCR, western blotting, and immunofluorescence were used to determine expression levels of the inflammatory mediators IL-1β, IL-6, and TNF-α, and the autophagic markers Beclin-1, autophagy-related protein 5 (ATG5), and ATG7. The autophagy inhibitor 3-methyladenine (3-MA) was used to link the anti-inflammatory effects of miRNA-335-5p to autophagy. KEY FINDINGS The expression of miRNA-335-5p was significantly lower in OA chondrocytes than in normal chondrocytes. Transfection of human OA chondrocytes with the miRNA-335-5p mimic led to a remarkable increase in viability, a significant increase in autophagy-related factors, and a reduction in inflammatory mediators. Importantly, treatment of miRNA-335-5p-overexpressing OA chondrocytes with the autophagy inhibitor 3-MA restored the expression of inflammatory mediators. SIGNIFICANCE We conclude that miRNA-335-5p can significantly alleviate inflammation in human OA chondrocytes by activating autophagy. Therefore, miRNA-335-5p has potential for future use in the clinical diagnosis and treatment of OA.
Collapse
|
Journal Article |
6 |
91 |
15
|
Zhong G, Yang X, Jiang X, Kumar A, Long H, Xie J, Zheng L, Zhao J. Dopamine-melanin nanoparticles scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy. NANOSCALE 2019; 11:11605-11616. [PMID: 31173033 PMCID: PMC6776464 DOI: 10.1039/c9nr03060c] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Anti-oxidative agents hold great potential in osteoarthritis (OA) therapy. However, most radical scavengers have poor biocompatibility and potential cytotoxicity, which limit their applications. Herein we explore dopamine melanin (DM) nanoparticles as a novel scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS). DM nanoparticles show low cytotoxicity and a strong ability to sequester a broad range of ROS and RNS, including superoxides, hydroxyl radicals, and peroxynitrite. This translates to excellent anti-inflammatory and chondro-protective effects by inhibiting intracellular ROS and RNS and promoting antioxidant enzyme activities. With an average diameter of 112.5 nm, DM nanoparticles can be intra-articularly (i.a.) injected into an affected joint and retained at the injection site. When tested in vivo in rodent OA models, DM nanoparticles showed diminished inflammatory cytokine release and reduced proteoglycan loss, which in turn slowed down cartilage degradation. Mechanistic studies suggest that DM nanoparticles also enhance autophagy that benefits OA control. In summary, our study suggests DM nanoparticles as a safe and promising therapeutic for OA.
Collapse
|
research-article |
6 |
82 |
16
|
Zhong G, Castellino F, Romagnoli P, Germain RN. Evidence that binding site occupancy is necessary and sufficient for effective major histocompatibility complex (MHC) class II transport through the secretory pathway redefines the primary function of class II-associated invariant chain peptides (CLIP). J Exp Med 1996; 184:2061-6. [PMID: 8920896 PMCID: PMC2192887 DOI: 10.1084/jem.184.5.2061] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Invariant chain (Ii) associates with newly synthesized class II molecules in the endoplasmic reticulum (ER), an interaction that has been shown to interfere with peptide binding to class II molecules. The class II-associated invariant chain peptide (CLIP) region (residues 81-104) of Ii is believed to mediate this inhibition by engaging the binding domain of class II like an antigenic peptide. Together, these findings have given rise to a model in which CLIP association with the class II groove acts to prevent inappropriate presentation of peptides imported into the ER for association with major histocompatibility complex class I molecules. However, the properties of class II molecules synthesized by cells lacking coexpressed Ii are at least superficially inconsistent with this paradigm in that they do not show clear evidence of peptide acquisition. At the same time, we have previously shown the shortest form of Ii still containing CLIP to play an essential role in regulation of early class II molecule assembly and transport in the secretory pathway. Using covalent peptide technology, we now show that occupancy of the class II binding site in the ER regulates class II trafficking to the Golgi complex, an event that is the locus of the major defect in cells of Ii-deficient mice. These data argue that CLIP occupies the class II binding site, not to prevent interaction with short peptides meant for class I, but rather to maintain the structural integrity of class II molecules that are labile without engaged binding regions, and that would also associate with intact proteins in the ER if left unoccupied. By these means, CLIP occupancy of the class II binding site promotes effective export of useful class II molecules for endocytic peptide acquisition.
Collapse
|
research-article |
29 |
72 |
17
|
Lu H, Zhong G. Interleukin-12 production is required for chlamydial antigen-pulsed dendritic cells to induce protection against live Chlamydia trachomatis infection. Infect Immun 1999; 67:1763-9. [PMID: 10085016 PMCID: PMC96526 DOI: 10.1128/iai.67.4.1763-1769.1999] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization with dendritic cells pulsed ex vivo with antigens has been successfully used to elicit primary antigen-specific immune responses. We report that mouse bone marrow-derived dendritic cells pulsed with inactivated chlamydial organisms induced strong protection against live chlamydial infection in a mouse lung infection model. Either the dendritic cells or chlamydial organisms alone or macrophages similarly pulsed with chlamydial organisms failed to induce any significant protection. These observations suggest that dendritic cells can efficiently process and present chlamydial antigens to naive T cells in vivo. Mice immunized with the chlamydia-pulsed dendritic cells preferentially developed a Th1 cell-dominant response while mice immunized with the other immunogens did not, suggesting a correlation between a Th1 cell-dominant response and protection against chlamydial infection. We further found that dendritic cells produced a large amount of interleukin 12 (IL-12) upon ex vivo pulsing with inactivated chlamydial organisms, which may allow the dendritic cells to direct a Th1 cell-dominant response. Dendritic cells from mice deficient in the IL-12 p40 gene failed to produce IL-12 after a similar ex vivo pulse with chlamydial organisms, and more importantly, immunization with these dendritic cells failed to induce a Th1 cell-dominant response and did not induce strong protection against chlamydial infection. Thus, the ability of dendritic cells to efficiently process and present chlamydial antigens and to produce IL-12 upon chlamydial-organism stimulation are both required for the induction of protection against chlamydial infection. This information may be useful for the further design of effective chlamydial vaccines.
Collapse
|
research-article |
26 |
70 |
18
|
Duan X, Zhong G, Cen S, Huang F, Xiang Z. Plating versus intramedullary pin or conservative treatment for midshaft fracture of clavicle: a meta-analysis of randomized controlled trials. J Shoulder Elbow Surg 2011; 20:1008-15. [PMID: 21481613 DOI: 10.1016/j.jse.2011.01.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/23/2010] [Accepted: 01/01/2011] [Indexed: 02/01/2023]
Abstract
HYPOTHESIS Clavicular fractures account for 2% to 2.6% of all fractures. Plating has been considered the gold standard for treating midshaft clavicular fracture. Intramedullary pinning and conservative treatments have also been commonly used. We hypothesized that intramedullary pinning and conservative treatments have the same treatment results compared with plating. METHODS To evaluate the effect of plating vs intramedullary pinning or conservative treatment for midshaft clavicular fracture, the Cochrane Central Register of Controlled Trials (CENTRAL; Wiley Online Library, October 2010), PubMed (1950 to October 2010), and EMBASE (1980 to October 2010) were searched. Randomized and quasi-randomized controlled clinical studies evaluating plating vs intramedullary pinning or plating vs conservative treatment for midshaft clavicular fracture in adults were collected. After independent study selection by 2 authors, data were collected and extracted independently. The methodologic quality of the studies was assessed. Pooling of data was undertaken. RESULTS Four studies involving 305 clavicular fractures were included. There were no significant differences between plating and intramedullary pinning with regard to outcome for Oxford Shoulder Score, Constant Shoulder Score, nonunion, infection, fixation failure, and hardware removal. More symptomatic hardware events occurred with plating compared with intramedullary pinning. Reduced nonunion, malunion, and neurologic symptoms, as well as more satisfaction with ultimate appearance, were associated with plating than with conservative treatment. DISCUSSION This meta-analysis supports the treatment effects reported previously with plating for midshaft clavicular fractures. The outcome of this meta-analysis contradicted the findings reported previously with conservative treatment for midshaft clavicular fractures. CONCLUSION The available evidence suggests that there are no differences in treatment effects between plating and intramedullary pinning, but plating is associated with more side effects. Plating is associated with improved treatment effects when compared with conservative treatment.
Collapse
|
Comparative Study |
14 |
69 |
19
|
Fornstedt T, Zhong G, Bensetiti Z, Guiochon G. Experimental and theoretical study of the adsorption behavior and mass transfer kinetics of propranolol enantiomers on cellulase protein as the selector. Anal Chem 1996; 68:2370-8. [PMID: 8686929 DOI: 10.1021/ac960088s] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The thermodynamics and mass transfer kinetics of the retention of the R and S enantiomers of propranolol were investigated on a system comprising an acetic acid buffer solution as the mobile phase and the protein cellobiohydrolase I immobilized on silica as the stationary phase. The bi-Langmuir isotherm model fitted best to each set of single-component isotherm data. The monolayer capacity of the nonchiral type of adsorption sites was 22.9 mM. For the chiral type of sites, it was 0.24 mM for the R enantiomer and 0.64 mM for the S enantiomer. Peak tailing was observed, even at very low concentrations allowing operation of the low-capacity chiral sites under linear conditions. This tailing can be explained on the basis of heterogeneous mass transfer kinetics. At higher concentrations, which are often used in analytical applications, the isotherms on the chiral sites no longer have a linear behavior, and peak tailing is consequently more pronounced. Under those conditions, peak tailing originates from the combined effect of heterogeneous thermodynamics and heterogeneous mass transfer kinetics. These complex phenomena are explained and modeled using the transport-dispersive model with a solid film linear driving force model modified to account for heterogeneous mass transfer kinetics. The rate coefficient of the mass transfer kinetics was found to be concentration dependent.
Collapse
|
|
29 |
69 |
20
|
Kobor MS, Simon LD, Omichinski J, Zhong G, Archambault J, Greenblatt J. A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:7438-49. [PMID: 11003641 PMCID: PMC86297 DOI: 10.1128/mcb.20.20.7438-7449.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription by RNA polymerase II is accompanied by cyclic phosphorylation and dephosphorylation of the carboxy-terminal heptapeptide repeat domain (CTD) of its largest subunit. We have used deletion and point mutations in Fcp1p, a TFIIF-interacting CTD phosphatase, to show that the integrity of its BRCT domain, like that of its catalytic domain, is important for cell viability, mRNA synthesis, and CTD dephosphorylation in vivo. Although regions of Fcp1p carboxy terminal to its BRCT domain and at its amino terminus were not essential for viability, deletion of either of these regions affected the phosphorylation state of the CTD. Two portions of this carboxy-terminal region of Fcp1p bound directly to the first cyclin-like repeat in the core domain of the general transcription factor TFIIB, as well as to the RAP74 subunit of TFIIF. These regulatory interactions with Fcp1p involved closely related amino acid sequence motifs in TFIIB and RAP74. Mutating the Fcp1p-binding motif KEFGK in the RAP74 (Tfg1p) subunit of TFIIF to EEFGE led to both synthetic phenotypes in certain fcp1 tfg1 double mutants and a reduced ability of Fcp1p to activate transcription when it is artificially tethered to a promoter. These results suggest strongly that this KEFGK motif in RAP74 mediates its interaction with Fcp1p in vivo.
Collapse
|
research-article |
25 |
62 |
21
|
Yi Y, Zhong G, Brunham RC. Continuous B-cell epitopes in Chlamydia trachomatis heat shock protein 60. Infect Immun 1993; 61:1117-20. [PMID: 7679373 PMCID: PMC302847 DOI: 10.1128/iai.61.3.1117-1120.1993] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
B-cell peptide epitopes in chlamydial heat shock protein 60 (hsp60) were elucidated with antisera from 13 rabbits immunized with Chlamydia trachomatis serovars B, C, and L2 and antisera from eight women with C. trachomatis-associated ectopic pregnancies. Thirteen major epitopes were identified with the human sera, 10 of which were also observed with rabbit antisera. Seven of the 13 epitopes recognized by human antisera exhibited cross-reactive antibody binding to homologous peptide sequences in human hsp60. Self-reactive B-cell immunity to hsp60 may contribute to chlamydial disease pathogenesis.
Collapse
|
research-article |
32 |
54 |
22
|
Zhong G, Long H, Zhou T, Liu Y, Zhao J, Han J, Yang X, Yu Y, Chen F, Shi S. Blood-brain barrier Permeable nanoparticles for Alzheimer's disease treatment by selective mitophagy of microglia. Biomaterials 2022; 288:121690. [PMID: 35965114 DOI: 10.1016/j.biomaterials.2022.121690] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Current treatments for Alzheimer's disease (AD) that focus on inhibition of Aβ aggregation failed to show effectiveness in people who already had Alzheimer's symptoms. Strategies that synergistically exert neuroprotection and alleviation of oxidative stress could be a promising approach to correct the pathological brain microenvironment. Based on the key roles of microglia in modulation of AD microenvironment, we describe here the development of Prussian blue/polyamidoamine (PAMAM) dendrimer/Angiopep-2 (PPA) nanoparticles that can regulate the mitophagy of microglia as a potential AD treatment. PPA nanoparticles exhibit superior blood-brain barrier (BBB) permeability and exert synergistic effects of ROS scavenging and restoration of mitochondrial function of microglia. PPA nanoparticles effectively reduce neurotoxic Aβ aggregate and rescue the cognitive functions in APP/PS1 model mice. Together, our data suggest that these multifunctional dendrimer nanoparticles exhibit efficient neuroprotection and microglia modulation and can be exploited as a promising approach for the treatment of AD.
Collapse
|
|
3 |
51 |
23
|
Zhong G, Brunham RC. Antibody responses to the chlamydial heat shock proteins hsp60 and hsp70 are H-2 linked. Infect Immun 1992; 60:3143-9. [PMID: 1639484 PMCID: PMC257294 DOI: 10.1128/iai.60.8.3143-3149.1992] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The effects of both H-2 and non-H-2 genes on antibody responses to two Chlamydia trachomatis heat shock proteins (hsp60 and hsp70) were investigated. These chlamydial proteins are homologs of Escherichia coli GroEL (hsp60) and DnaK (hsp70) and are highly sequence conserved between bacterial and mammalian sources. Antibody responses among 17 different strains of mice immunized with C. trachomatis serovar B and serovar C elementary bodies were evaluated by immunoblot, radioimmunoprecipitation and enzyme-linked immunosorbent assay. Antibody responses to the two proteins displayed host genetic restriction. Of six distinctive H-2 haplotypes, only H-2d generated high antibody responses to hsp70. Five of the six H-2 haplotypes, i.e., H-2a, H-2d, H-2k, H-2q, and H-2s, produced high antibody responses to hsp60. Only the H-2b-bearing strain had low antibody responses to hsp60. By using congenic and H-2 recombinant strains, the genes responsible for regulating antibody responses to hsp70 and hsp60 were mapped to the K-IA region of the H-2 locus. In F1 hybrid crosses between high and low responders, high responses to hsp60 and hsp70 were dominant traits. Other genes outside the H-2 locus also influenced antibody responses to hsp60 and hsp70, since inbred strains of identical H-2 but different background genes displayed variable antibody responses to the proteins. The genetic control of murine immune responses to C. trachomatis hsp60, a putative chlamydial immunopathologic antigen, suggests that a similar genetic mechanism may also exist in humans, and this observation may help to explain the observed variability in the spectrum of chlamydial diseases seen in humans.
Collapse
|
research-article |
33 |
49 |
24
|
Wolf K, Fischer E, Mead D, Zhong G, Peeling R, Whitmire B, Caldwell HD. Chlamydia pneumoniae major outer membrane protein is a surface-exposed antigen that elicits antibodies primarily directed against conformation-dependent determinants. Infect Immun 2001; 69:3082-91. [PMID: 11292727 PMCID: PMC98263 DOI: 10.1128/iai.69.5.3082-3091.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major outer membrane protein (MOMP) of Chlamydia trachomatis serovariants is known to be an immunodominant surface antigen. Moreover, it is known that the C. trachomatis MOMP elicits antibodies that recognize both linear and conformational antigenic determinants. In contrast, it has been reported that the MOMP of Chlamydia pneumoniae is not surface exposed and is immunorecessive. We hypothesized that the discrepancies between C. trachomatis and C. pneumoniae MOMP exposure on intact chlamydiae and immunogenic properties might be because the focus of the host's immune response is directed to conformational epitopes of the C. pneumoniae MOMP. We therefore conducted studies aimed at defining the surface exposure of MOMP and the conformational dominance of MOMP antibodies. We present here a description of C. pneumoniae species-specific monoclonal antibody (MAb), GZD1E8, which recognizes a conformational epitope on the surface of C. pneumoniae. This MAb is potent in the neutralization of C. pneumoniae infectivity in vitro. Another previously described C. pneumoniae species-specific monoclonal antibody, RR-402, displayed very similar characteristics. However, the antigenic determinant recognized by RR-402 has yet to be identified. We show by immunoprecipitation of C. pneumoniae with GZD1E8 and RR-402 MAbs and by mass spectrometry analysis of immunoprecipitated proteins that both antibodies GZD1E8 and RR-402 recognize the MOMP of C. pneumoniae and that this protein is localized on the surface of the organism. We also show that human sera from C. pneumoniae-positive donors consistently recognize the MOMP by immunoprecipitation, indicating that the MOMP of C. pneumoniae is an immunogenic protein. These findings have potential implications for both C. pneumoniae vaccine and diagnostic assay development.
Collapse
|
research-article |
24 |
49 |
25
|
Fu WL, Xiang Z, Huang FG, Gu ZP, Yu XX, Cen SQ, Zhong G, Duan X, Liu M. Coculture of Peripheral Blood-Derived Mesenchymal Stem Cells and Endothelial Progenitor Cells on Strontium-Doped Calcium Polyphosphate Scaffolds to Generate Vascularized Engineered Bone. Tissue Eng Part A 2015; 21:948-59. [PMID: 25298026 DOI: 10.1089/ten.tea.2014.0267] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
|
10 |
46 |