1
|
Theruvath J, Menard M, Smith BAH, Linde MH, Coles GL, Dalton GN, Wu W, Kiru L, Delaidelli A, Sotillo E, Silberstein JL, Geraghty AC, Banuelos A, Radosevich MT, Dhingra S, Heitzeneder S, Tousley A, Lattin J, Xu P, Huang J, Nasholm N, He A, Kuo TC, Sangalang ERB, Pons J, Barkal A, Brewer RE, Marjon KD, Vilches-Moure JG, Marshall PL, Fernandes R, Monje M, Cochran JR, Sorensen PH, Daldrup-Link HE, Weissman IL, Sage J, Majeti R, Bertozzi CR, Weiss WA, Mackall CL, Majzner RG. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat Med 2022; 28:333-344. [PMID: 35027753 PMCID: PMC9098186 DOI: 10.1038/s41591-021-01625-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The disialoganglioside GD2 is overexpressed on several solid tumors, and monoclonal antibodies targeting GD2 have substantially improved outcomes for children with high-risk neuroblastoma. However, approximately 40% of patients with neuroblastoma still relapse, and anti-GD2 has not mediated significant clinical activity in any other GD2+ malignancy. Macrophages are important mediators of anti-tumor immunity, but tumors resist macrophage phagocytosis through expression of the checkpoint molecule CD47, a so-called 'Don't eat me' signal. In this study, we establish potent synergy for the combination of anti-GD2 and anti-CD47 in syngeneic and xenograft mouse models of neuroblastoma, where the combination eradicates tumors, as well as osteosarcoma and small-cell lung cancer, where the combination significantly reduces tumor burden and extends survival. This synergy is driven by two GD2-specific factors that reorient the balance of macrophage activity. Ligation of GD2 on tumor cells (a) causes upregulation of surface calreticulin, a pro-phagocytic 'Eat me' signal that primes cells for removal and (b) interrupts the interaction of GD2 with its newly identified ligand, the inhibitory immunoreceptor Siglec-7. This work credentials the combination of anti-GD2 and anti-CD47 for clinical translation and suggests that CD47 blockade will be most efficacious in combination with monoclonal antibodies that alter additional pro- and anti-phagocytic signals within the tumor microenvironment.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
143 |
2
|
Jahchan NS, Lim JS, Bola B, Morris K, Seitz G, Tran KQ, Xu L, Trapani F, Morrow CJ, Cristea S, Coles GL, Yang D, Vaka D, Kareta MS, George J, Mazur PK, Nguyen T, Anderson WC, Dylla SJ, Blackhall F, Peifer M, Dive C, Sage J. Identification and Targeting of Long-Term Tumor-Propagating Cells in Small Cell Lung Cancer. Cell Rep 2016; 16:644-56. [PMID: 27373157 PMCID: PMC4956576 DOI: 10.1016/j.celrep.2016.06.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/19/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023] Open
Abstract
Small cell lung cancer (SCLC) is a neuroendocrine lung cancer characterized by fast growth, early dissemination, and rapid resistance to chemotherapy. We identified a population of long-term tumor-propagating cells (TPCs) in a mouse model of SCLC. This population, marked by high levels of EpCAM and CD24, is also prevalent in human primary SCLC tumors. Murine SCLC TPCs are numerous and highly proliferative but not intrinsically chemoresistant, indicating that not all clinical features of SCLC are linked to TPCs. SCLC TPCs possess a distinct transcriptional profile compared to non-TPCs, including elevated MYC activity. Genetic and pharmacological inhibition of MYC in SCLC cells to non-TPC levels inhibits long-term propagation but not short-term growth. These studies identify a highly tumorigenic population of SCLC cells in mouse models, cell lines, and patient tumors and a means to target them in this most fatal form of lung cancer.
Collapse
|
|
9 |
64 |
3
|
Coles GL, Cristea S, Webber JT, Levin RS, Moss SM, He A, Sangodkar J, Hwang YC, Arand J, Drainas AP, Mooney NA, Demeter J, Spradlin JN, Mauch B, Le V, Shue YT, Ko JH, Lee MC, Kong C, Nomura DK, Ohlmeyer M, Swaney DL, Krogan NJ, Jackson PK, Narla G, Gordan JD, Shokat KM, Sage J. Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells. Cancer Cell 2020; 38:129-143.e7. [PMID: 32531271 PMCID: PMC7363571 DOI: 10.1016/j.ccell.2020.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/18/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
Abstract
Using unbiased kinase profiling, we identified protein kinase A (PKA) as an active kinase in small cell lung cancer (SCLC). Inhibition of PKA activity genetically, or pharmacologically by activation of the PP2A phosphatase, suppresses SCLC expansion in culture and in vivo. Conversely, GNAS (G-protein α subunit), a PKA activator that is genetically activated in a small subset of human SCLC, promotes SCLC development. Phosphoproteomic analyses identified many PKA substrates and mechanisms of action. In particular, PKA activity is required for the propagation of SCLC stem cells in transplantation studies. Broad proteomic analysis of recalcitrant cancers has the potential to uncover targetable signaling networks, such as the GNAS/PKA/PP2A axis in SCLC.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
58 |
4
|
Cristea S, Coles GL, Hornburg D, Gershkovitz M, Arand J, Cao S, Sen T, Williamson SC, Kim JW, Drainas AP, He A, Cam LL, Byers LA, Snyder MP, Contrepois K, Sage J. The MEK5-ERK5 Kinase Axis Controls Lipid Metabolism in Small-Cell Lung Cancer. Cancer Res 2020; 80:1293-1303. [PMID: 31969375 PMCID: PMC7073279 DOI: 10.1158/0008-5472.can-19-1027] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
Abstract
Small-cell lung cancer (SCLC) is an aggressive form of lung cancer with dismal survival rates. While kinases often play key roles driving tumorigenesis, there are strikingly few kinases known to promote the development of SCLC. Here, we investigated the contribution of the MAPK module MEK5-ERK5 to SCLC growth. MEK5 and ERK5 were required for optimal survival and expansion of SCLC cell lines in vitro and in vivo. Transcriptomics analyses identified a role for the MEK5-ERK5 axis in the metabolism of SCLC cells, including lipid metabolism. In-depth lipidomics analyses showed that loss of MEK5/ERK5 perturbs several lipid metabolism pathways, including the mevalonate pathway that controls cholesterol synthesis. Notably, depletion of MEK5/ERK5 sensitized SCLC cells to pharmacologic inhibition of the mevalonate pathway by statins. These data identify a new MEK5-ERK5-lipid metabolism axis that promotes the growth of SCLC. SIGNIFICANCE: This study is the first to investigate MEK5 and ERK5 in SCLC, linking the activity of these two kinases to the control of cell survival and lipid metabolism.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
46 |
5
|
Sengupta D, Zeng L, Li Y, Hausmann S, Ghosh D, Yuan G, Nguyen TN, Lyu R, Caporicci M, Morales Benitez A, Coles GL, Kharchenko V, Czaban I, Azhibek D, Fischle W, Jaremko M, Wistuba II, Sage J, Jaremko Ł, Li W, Mazur PK, Gozani O. NSD2 dimethylation at H3K36 promotes lung adenocarcinoma pathogenesis. Mol Cell 2021; 81:4481-4492.e9. [PMID: 34555356 PMCID: PMC8571016 DOI: 10.1016/j.molcel.2021.08.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
The etiological role of NSD2 enzymatic activity in solid tumors is unclear. Here we show that NSD2, via H3K36me2 catalysis, cooperates with oncogenic KRAS signaling to drive lung adenocarcinoma (LUAD) pathogenesis. In vivo expression of NSD2E1099K, a hyperactive variant detected in individuals with LUAD, rapidly accelerates malignant tumor progression while decreasing survival in KRAS-driven LUAD mouse models. Pathologic H3K36me2 generation by NSD2 amplifies transcriptional output of KRAS and several complementary oncogenic gene expression programs. We establish a versatile in vivo CRISPRi-based system to test gene functions in LUAD and find that NSD2 loss strongly attenuates tumor progression. NSD2 knockdown also blocks neoplastic growth of PDXs (patient-dervived xenografts) from primary LUAD. Finally, a treatment regimen combining NSD2 depletion with MEK1/2 inhibition causes nearly complete regression of LUAD tumors. Our work identifies NSD2 as a bona fide LUAD therapeutic target and suggests a pivotal epigenetic role of the NSD2-H3K36me2 axis in sustaining oncogenic signaling.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
46 |
6
|
Shue YT, Drainas AP, Li NY, Pearsall SM, Morgan D, Sinnott-Armstrong N, Hipkins SQ, Coles GL, Lim JS, Oro AE, Simpson KL, Dive C, Sage J. A conserved YAP/Notch/REST network controls the neuroendocrine cell fate in the lungs. Nat Commun 2022; 13:2690. [PMID: 35577801 PMCID: PMC9110333 DOI: 10.1038/s41467-022-30416-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
The Notch pathway is a conserved cell-cell communication pathway that controls cell fate decisions. Here we sought to determine how Notch pathway activation inhibits the neuroendocrine cell fate in the lungs, an archetypal process for cell fate decisions orchestrated by Notch signaling that has remained poorly understood at the molecular level. Using intratumoral heterogeneity in small-cell lung cancer as a tractable model system, we uncovered a role for the transcriptional regulators REST and YAP as promoters of the neuroendocrine to non-neuroendocrine transition. We further identified the specific neuroendocrine gene programs repressed by REST downstream of Notch in this process. Importantly, we validated the importance of REST and YAP in neuroendocrine to non-neuroendocrine cell fate switches in both developmental and tissue repair processes in the lungs. Altogether, these experiments identify conserved roles for REST and YAP in Notch-driven inhibition of the neuroendocrine cell fate in embryonic lungs, adult lungs, and lung cancer.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
40 |
7
|
Paris ND, Coles GL, Ackerman KG. Wt1 and β-catenin cooperatively regulate diaphragm development in the mouse. Dev Biol 2015; 407:40-56. [PMID: 26278035 DOI: 10.1016/j.ydbio.2015.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/19/2023]
Abstract
The developing diaphragm consists of various differentiating cell types, many of which are not well characterized during organogenesis. One important but incompletely understood tissue, the diaphragmatic mesothelium, is distinctively present from early stages of development. Congenital Diaphragmatic Hernia (CDH) occurs in humans when diaphragm tissue is lost during development, resulting in high morbidity and mortality postnatally. We utilized a Wilms Tumor 1 (Wt1) mutant mouse model to investigate the involvement of the mesothelium in normal diaphragm signaling and development. Additionally, we developed and characterized a Wt1(CreERT2)-driven β-catenin loss-of-function model of CDH after finding that canonical Wnt signaling and β-catenin are reduced in Wt1 mutant mesothelium. Mice with β-catenin loss or constitutive activation induced in the Wt1 lineage are only affected when tamoxifen injection occurs between E10.5 and E11.5, revealing a critical time-frame for Wt1/ β-catenin activity. Conditional β-catenin loss phenocopies the Wt1 mutant diaphragm defect, while constitutive activation of β-catenin on the Wt1 mutant background is sufficient to close the diaphragm defect. Proliferation and apoptosis are affected, but primarily these genetic manipulations appear to lead to a change in normal diaphragm differentiation. Our data suggest a fundamental role for mesothelial signaling in proper formation of the diaphragm.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
31 |
8
|
Coles GL, Ackerman KG. Kif7 is required for the patterning and differentiation of the diaphragm in a model of syndromic congenital diaphragmatic hernia. Proc Natl Acad Sci U S A 2013; 110:E1898-905. [PMID: 23650387 PMCID: PMC3666741 DOI: 10.1073/pnas.1222797110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect that results in a high degree of neonatal morbidity and mortality, but its pathological mechanisms are largely unknown. Therefore, we performed a forward genetic screen in mice to identify unique genes, models, and mechanisms of abnormal diaphragm development. We identified a mutant allele of kinesin family member 7 (Kif7), the disorganized diaphragm (dd). Embryos homozygous for the dd allele possess communicating diaphragmatic hernias, central tendon patterning defects, and increased cell proliferation with diaphragmatic tissue hyperplasia. Because the patterning of the central tendon is undescribed, we analyzed the expression of genes regulating tendonogenesis in dd/dd mutant embryos, and we determined that retinoic acid (RA) signaling was misregulautted. To further investigate the role of Kif7 and RA signaling in the development of the embryonic diaphragm, we established primary mesenchymal cultures of WT embryonic day 13.5 diaphragmatic cells. We determined that RA signaling is necessary for the expression of tendon markers as well as the expression of other CDH-associated genes. Knockdown of Kif7, and retinoic acid receptors alpha (Rara), beta (Rarb), and gamma (Rarg) indicated that RA signaling is dependent on these genes to promote tendonogenesis within the embryonic diaphragm. Taken together, our results provide evidence for a model in which inhibition of RA receptor signaling promotes CDH pathogenesis through a complex gene network.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
30 |
9
|
Kalifa L, Quintana DF, Schiraldi LK, Phadnis N, Coles GL, Sia RA, Sia EA. Mitochondrial genome maintenance: roles for nuclear nonhomologous end-joining proteins in Saccharomyces cerevisiae. Genetics 2012; 190:951-64. [PMID: 22214610 PMCID: PMC3296257 DOI: 10.1534/genetics.111.138214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/31/2011] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial DNA (mtDNA) deletions are associated with sporadic and inherited diseases and age-associated neurodegenerative disorders. Approximately 85% of mtDNA deletions identified in humans are flanked by short directly repeated sequences; however, mechanisms by which these deletions arise are unknown. A limitation in deciphering these mechanisms is the essential nature of the mitochondrial genome in most living cells. One exception is budding yeast, which are facultative anaerobes and one of the few organisms for which directed mtDNA manipulation is possible. Using this model system, we have developed a system to simultaneously monitor spontaneous direct-repeat-mediated deletions (DRMDs) in the nuclear and mitochondrial genomes. In addition, the mitochondrial DRMD reporter contains a unique KpnI restriction endonuclease recognition site that is not present in otherwise wild-type (WT) mtDNA. We have expressed KpnI fused to a mitochondrial localization signal to induce a specific mitochondrial double-strand break (mtDSB). Here we report that loss of the MRX (Mre11p, Rad50p, Xrs2p) and Ku70/80 (Ku70p, Ku80p) complexes significantly impacts the rate of spontaneous deletion events in mtDNA, and these proteins contribute to the repair of induced mtDSBs. Furthermore, our data support homologous recombination (HR) as the predominant pathway by which mtDNA deletions arise in yeast, and suggest that the MRX and Ku70/80 complexes are partially redundant in mitochondria.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
26 |
10
|
Daniells C, Maheshwar M, Lazarou L, Davies F, Coles G, Ravine D. Novel and recurrent mutations in the PKD1 (polycystic kidney disease) gene. Hum Genet 1998; 102:216-20. [PMID: 9521593 DOI: 10.1007/s004390050681] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A search has been conducted for disease-causing mutations in the PKD1 gene in 147 unrelated ADPKD index cases. Using the polymerase chain reaction with primer pairs located in the 3' single copy region of the gene and single-strand conformation polymorphism analysis, we detected novel aberrant bands in five individuals that were absent in 100 control samples. Sequencing revealed three nonsense mutations (Q4010X, E4024X, Q4041X), a frameshift mutation (12262 del 2 bp), and a missense mutation (G4031D). In addition, three polymorphisms were detected [12346 + 19delG, heterozygosity (0.13), I4044V (0.23), 12212-34C > A (0.07)]. The mutational mechanism for the recurrent mutation (Q4041X) is likely to be slipped mispairing of an adjacent direct imperfect repeat sequence.
Collapse
|
|
27 |
21 |
11
|
Lee MC, Cai H, Murray CW, Li C, Shue YT, Andrejka L, He AL, Holzem AME, Drainas AP, Ko JH, Coles GL, Kong C, Zhu S, Zhu C, Wang J, van de Rijn M, Petrov DA, Winslow MM, Sage J. A multiplexed in vivo approach to identify driver genes in small cell lung cancer. Cell Rep 2023; 42:111990. [PMID: 36640300 PMCID: PMC9972901 DOI: 10.1016/j.celrep.2023.111990] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Small cell lung cancer (SCLC) is a lethal form of lung cancer. Here, we develop a quantitative multiplexed approach on the basis of lentiviral barcoding with somatic CRISPR-Cas9-mediated genome editing to functionally investigate candidate regulators of tumor initiation and growth in genetically engineered mouse models of SCLC. We found that naphthalene pre-treatment enhances lentiviral vector-mediated SCLC initiation, enabling high multiplicity of tumor clones for analysis through high-throughput sequencing methods. Candidate drivers of SCLC identified from a meta-analysis across multiple human SCLC genomic datasets were tested using this approach, which defines both positive and detrimental impacts of inactivating 40 genes across candidate pathways on SCLC development. This analysis and subsequent validation in human SCLC cells establish TSC1 in the PI3K-AKT-mTOR pathway as a robust tumor suppressor in SCLC. This approach should illuminate drivers of SCLC, facilitate the development of precision therapies for defined SCLC genotypes, and identify therapeutic targets.
Collapse
|
Meta-Analysis |
2 |
18 |
12
|
Rovira-Clavé X, Drainas AP, Jiang S, Bai Y, Baron M, Zhu B, Dallas AE, Lee MC, Chu TP, Holzem A, Ayyagari R, Bhattacharya D, McCaffrey EF, Greenwald NF, Markovic M, Coles GL, Angelo M, Bassik MC, Sage J, Nolan GP. Spatial epitope barcoding reveals clonal tumor patch behaviors. Cancer Cell 2022; 40:1423-1439.e11. [PMID: 36240778 PMCID: PMC9673683 DOI: 10.1016/j.ccell.2022.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2022] [Accepted: 09/21/2022] [Indexed: 01/09/2023]
Abstract
Intratumoral heterogeneity is a seminal feature of human tumors contributing to tumor progression and response to treatment. Current technologies are still largely unsuitable to accurately track phenotypes and clonal evolution within tumors, especially in response to genetic manipulations. Here, we developed epitopes for imaging using combinatorial tagging (EpicTags), which we coupled to multiplexed ion beam imaging (EpicMIBI) for in situ tracking of barcodes within tissue microenvironments. Using EpicMIBI, we dissected the spatial component of cell lineages and phenotypes in xenograft models of small cell lung cancer. We observed emergent properties from mixed clones leading to the preferential expansion of clonal patches for both neuroendocrine and non-neuroendocrine cancer cell states in these models. In a tumor model harboring a fraction of PTEN-deficient cancer cells, we observed a non-autonomous increase of clonal patch size in PTEN wild-type cancer cells. EpicMIBI facilitates in situ interrogation of cell-intrinsic and cell-extrinsic processes involved in intratumoral heterogeneity.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
17 |
13
|
Lim YW, Coles GL, Sandhu SK, Johnson DS, Adler AS, Stone EL. Single-cell transcriptomics reveals the effect of PD-L1/TGF-β blockade on the tumor microenvironment. BMC Biol 2021; 19:107. [PMID: 34030676 PMCID: PMC8147417 DOI: 10.1186/s12915-021-01034-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy of anti-PD-1/PD-L1 therapy. TGF-β has been shown to contribute to T cell exclusion, and anti-TGF-β improves anti-PD-L1 efficacy in vivo. However, TGF-β inhibition has frequently been shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-β blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 blockade, the transcriptional programs associated with PD-L1 and/or TGF-β blockade in the tumor microenvironment should be further elucidated. RESULTS We used single-cell RNA sequencing in a mouse model to characterize the transcriptomic effects of PD-L1 and/or TGF-β blockade on nearly 30,000 single cells in the tumor and surrounding microenvironment. Combination treatment led to upregulation of immune response genes, including multiple chemokine genes such as CCL5, in macrophages, and downregulation of extracellular matrix genes in fibroblasts. Analysis of publicly available tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with immune cell infiltration in various human cancers. Further investigation with in vivo models showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-tumor activity of anti-PD-L1. CONCLUSIONS Taken together, our data could be leveraged translationally to complement or find alternatives to anti-PD-L1 plus anti-TGF-β combination therapy, for example through companion biomarkers, and/or to identify novel targets that could be modulated to overcome resistance.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
15 |
14
|
Peters C, Church M, Coles G. Mineral magnetism and archaeology at Galson on the Isle of Lewis, Scotland. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1464-1895(00)00070-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
|
25 |
13 |
15
|
Coles GL, Baglia LA, Ackerman KG. KIF7 Controls the Proliferation of Cells of the Respiratory Airway through Distinct Microtubule Dependent Mechanisms. PLoS Genet 2015; 11:e1005525. [PMID: 26439735 PMCID: PMC4595342 DOI: 10.1371/journal.pgen.1005525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022] Open
Abstract
The cell cycle must be tightly coordinated for proper control of embryonic development and for the long-term maintenance of organs such as the lung. There is emerging evidence that Kinesin family member 7 (Kif7) promotes Hedgehog (Hh) signaling during embryonic development, and its misregulation contributes to diseases such as ciliopathies and cancer. Kif7 encodes a microtubule interacting protein that controls Hh signaling through regulation of microtubule dynamics within the primary cilium. However, whether Kif7 has a function in nonciliated cells remains largely unknown. The role Kif7 plays in basic cell biological processes like cell proliferation or cell cycle progression also remains to be elucidated. Here, we show that Kif7 is required for coordination of the cell cycle, and inactivation of this gene leads to increased cell proliferation in vivo and in vitro. Immunostaining and transmission electron microscopy experiments show that Kif7dda/dda mutant lungs are hyperproliferative and exhibit reduced alveolar epithelial cell differentiation. KIF7 depleted C3H10T1/2 fibroblasts and Kif7dda/dda mutant mouse embryonic fibroblasts have increased growth rates at high cellular densities, suggesting that Kif7 may function as a general regulator of cellular proliferation. We ascertained that in G1, Kif7 and microtubule dynamics regulate the expression and activity of several components of the cell cycle machinery known to control entry into S phase. Our data suggest that Kif7 may function to regulate the maintenance of the respiratory airway architecture by controlling cellular density, cell proliferation, and cycle exit through its role as a microtubule associated protein. Respiratory diseases such as lung cancer, COPD, and asthma are the second leading cause of death in the United States. These diseases are heterogeneous and arise from genetic factors, environmental hazards, or developmental abnormalities that persist throughout life. An increased understanding of the genes and cellular mechanisms regulating respiratory system homeostasis and regeneration should provide information for the development of future therapeutics. We show that the gene Kif7 regulates cell proliferation, cellular density, and intracellular signaling within the epithelial and mesenchymal cells of the respiratory airway. We expand on the known role for Kif7 in regulating microtubule architecture within ciliated cells by showing that this protein regulates cell signaling in non-ciliated secretory cells. Furthermore, we show that microtubules function to regulate the abundance and activity of several factors known to be required for proper cell cycle timing. We propose that Kif7 and microtubule dynamics hone cellular signaling necessary for control of the balance between cell proliferation and cell cycle exit, and we provide evidence that Kif7 has a critical role in the maintenance of the respiratory system in postnatal life.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
9 |
16
|
Huang M, Zeki J, Sumarsono N, Coles GL, Taylor JS, Danzer E, Bruzoni M, Hazard FK, Lacayo NJ, Sakamoto KM, Dunn JCY, Spunt SL, Chiu B. Epigenetic Targeting of TERT-Associated Gene Expression Signature in Human Neuroblastoma with TERT Overexpression. Cancer Res 2020; 80:1024-1035. [PMID: 31900258 DOI: 10.1158/0008-5472.can-19-2560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
Neuroblastoma is a deadly pediatric solid tumor with infrequent recurrent somatic mutations. Particularly, the pathophysiology of tumors without MYCN amplification remains poorly defined. Utilizing an unbiased approach, we performed gene set enrichment analysis of RNA-sequencing data from 498 patients with neuroblastoma and revealed a differentially overexpressed gene signature in MYCN nonamplified neuroblastomas with telomerase reverse transcriptase (TERT) gene overexpression and coordinated activation of oncogenic signaling pathways, including E2Fs, Wnt, Myc, and the DNA repair pathway. Promoter rearrangement of the TERT gene juxtaposes the coding sequence to strong enhancer elements, leading to TERT overexpression and poor prognosis in neuroblastoma, but TERT-associated oncogenic signaling remains unclear. ChIP-seq analysis of the human CLB-GA neuroblastoma cells harboring TERT rearrangement uncovered genome-wide chromatin co-occupancy of Brd4 and H3K27Ac and robust enrichment of H3K36me3 in TERT and multiple TERT-associated genes. Brd4 and cyclin-dependent kinases (CDK) had critical regulatory roles in the expression and chromatin activation of TERT and multiple TERT-associated genes. Epigenetically targeting Brd4 or CDKs with their respective inhibitors suppressed the expression of TERT and multiple TERT-associated genes in neuroblastoma with TERT overexpression or MYCN amplification. ChIP-seq and ChIP-qPCR provided evidence that the CDK inhibitor directly inhibited Brd4 recruitment to activate chromatin globally. Therefore, inhibiting Brd4 and CDK concurrently with AZD5153 and dinaciclib would be most effective in tumor growth suppression, which we demonstrated in neuroblastoma cell lines, primary human cells, and xenografts. In summary, we describe a unique mechanism in neuroblastoma with TERT overexpression and an epigenetically targeted novel therapeutic strategy. SIGNIFICANCE: Epigenetically cotargeting Brd4 and Cdks suppresses human neuroblastoma with TERT overexpression by inhibiting the TERT-associated gene expression networks.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
9 |
17
|
Fisk PH, Sellars MJ, Lawn MA, Coles G. Accurate measurement of the 12.6 GHz "clock" transition in trapped (171)Yb(+) ions. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 1997; 44:344-354. [PMID: 18244132 DOI: 10.1109/58.585119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We have measured the frequency of the (171)Yb(+) 12.6 GHz M(F)=0-->0 ground state hyperfine "clock" transition in buffer gas-cooled ion clouds confined in two similar, but not identical, linear Paul traps. After correction for the known differences between the two ion traps, including significantly different second-order Doppler shifts, the frequencies agree within an uncertainty of less than 2 parts in 10(13). Our best value, based on an analytic model for the second-order Doppler shift, for the frequency of the clock transition of an isolated ion at zero temperature, velocity, electric field and magnetic field, is 12642812118.466+0.002 Hz.
Collapse
|
|
28 |
4 |
18
|
Lawrenson RA, Coles G, Walton K, Farmer RDT. Characteristics of practices contributing to the MediPlus database and the implications for its use in epidemiological research. JOURNAL OF INNOVATION IN HEALTH INFORMATICS 1998. [DOI: 10.14236/jhi.v7i1.213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
|
27 |
2 |
19
|
|
Letter |
25 |
2 |
20
|
La Greca G, Amore A, Armato U, Coles G, Esposito C, Deppisch R, Feriani M, Mason R, Noonan D, Schleicher E, Sterzel B, Gambaro G. The un-physiology of peritoneal dialysis solution and the peritoneal membrane: from basic research to clinical nephrology. Nephrol Dial Transplant 2001; 16:905-12. [PMID: 11328894 DOI: 10.1093/ndt/16.5.905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
|
24 |
1 |
21
|
Stone EL, Lim YW, Coles GL, Sandhu SK, Johnson DS, Adler AS. Abstract 2684: Single cell transcriptomics reveals the effect of PD-L1 and TGF-B blockade on the tumor microenvironment. Cancer Res 2021. [DOI: 10.1158/1538-7445.am2021-2684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Background: The anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy of anti-PD-1/PD-L1 therapy. TGF-β has been shown to contribute to T cell exclusion and anti-TGF-β improves anti-PD-L1 efficacy in vivo. However, TGF-β inhibition has frequently been shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-β blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 blockade, the transcriptional programs associated with PD-L1 and/or TGF-β blockade in the tumor microenvironment should be further elucidated.
Results: We used single-cell RNA sequencing to characterize the transcriptomic effects of PD-L1 and/or TGF-β blockade on cells in the tumor and surrounding microenvironment. Combination treatment led to upregulation of immune response genes, including multiple chemokine genes such as CCL5, in CD45+ cells, and down-regulation of extracellular matrix genes in CD45- cells. Analysis of publicly available tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with immune cell infiltration in various human cancers. Further investigation with in vivo models showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-tumor activity of anti-PD-L1.
Conclusions: Taken together, our data could be leveraged translationally to improve anti-PD-L1 plus anti-TGF-β combination therapy, for example through companion biomarkers, and/or to identify novel targets that could be modulated to overcome resistance.
Citation Format: Erica L. Stone, Yoong Wearn Lim, Garry L. Coles, Savreet K. Sandhu, David S. Johnson, Adam S. Adler. Single cell transcriptomics reveals the effect of PD-L1 and TGF-B blockade on the tumor microenvironment [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 2684.
Collapse
|
|
4 |
1 |
22
|
Williams P, Mariott J, Coles G, Stead R, Tranaeus A, Hopwood AM, Faict D. Insulin efficacy with a new bicarbonate/lactate peritoneal dialysis solution. Perit Dial Int 2000; 20:467-9. [PMID: 11007380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
Clinical Trial |
25 |
|
23
|
Coles G. Benzimidazole-resistant nematodes in sheep. J Am Vet Med Assoc 1983; 183:166. [PMID: 6885588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
Letter |
42 |
|
24
|
Komiskey HL, Orthoefer J, Coles G. Comparison of xylazine and midazolam as intramuscular CNS depressants in dogs. CONTEMPORARY TOPICS IN LABORATORY ANIMAL SCIENCE 1995; 34:61-3. [PMID: 16457580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
|
30 |
|
25
|
Mujais S, Nolph K, Gokal R, Blake P, Burkart J, Coles G, Kawaguchi Y, Kawanishi H, Korbet S, Krediet R, Lindholm B, Oreopoulos D, Rippe B, Selgas R. Evaluation and management of ultrafiltration problems in peritoneal dialysis. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit Dial Int 2001; 20 Suppl 4:S5-21. [PMID: 11098926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
Review |
24 |
|