1
|
Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 1987; 34:571-90. [PMID: 3588043 DOI: 10.1016/s0031-3955(16)36251-4] [Citation(s) in RCA: 1239] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The formula GFR = kL/Pcr can be used to estimate GFR in infants, children, and adolescents who have grossly normal body habitus and are in steady-state condition. GFR is expressed in ml/min per 1.73 m2 BSA, L represents body length in cm, Pcr represents plasma creatinine concentration in mg per dl and k is a constant of proportionality that reflects the relationship between urinary creatinine excretion and units of body size. The value of k varies as a function of age and sex being 0.33 in preterm infants, 0.45 in full-term infants, 0.55 in children and adolescent girls, and 0.70 in adolescent boys. The advantages of rapid determination, reasonable accuracy, and the avoidance of urine collection justify the use of this formula in pediatric patients.
Collapse
|
Comparative Study |
38 |
1239 |
2
|
Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 1978; 93:62-6. [PMID: 650346 DOI: 10.1016/s0022-3476(78)80601-5] [Citation(s) in RCA: 1205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estimates of body surface area were made based on measurement of 81 subjects, ranging from premature infants to adults. SA was calculated geometrically for each subject from 34 body measurements, and the values obtained compared with those based on previously published formulas and graphs. The most widely used formula, that of Du Bois and Du Bois, increasingly underestimated SA as values fell below 0.7 m2; the disparity was greatest in the newborn infant (7.96%). Closer agreement was obtained with the equations and nomograms of Body, Brody, Faber and Melcher, and Sendroy and Cecchini, although minor deviations were noted in some age ranges. The formula SA (m2) = weight (kg)0.5378 X height (cm)0.3964 X 0.024265, derived from the measured data by multiple regression analysis, gave a good fit for all values of SA from less than 0.2 m2 to greater than 2.0 m2 (r = 0.998). This formula was used to construct nomograms for estimation of SA in infants, children, and adults from height (length) and weight.
Collapse
|
|
47 |
1205 |
3
|
Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, Schraw T, Durand JL, Li H, Li G, Jelicks LA, Mehler MF, Hui DY, Deshaies Y, Shulman GI, Schwartz GJ, Scherer PE. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 2007; 117:2621-37. [PMID: 17717599 PMCID: PMC1950456 DOI: 10.1172/jci31021] [Citation(s) in RCA: 1004] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 05/31/2007] [Indexed: 02/06/2023] Open
Abstract
Excess caloric intake can lead to insulin resistance. The underlying reasons are complex but likely related to ectopic lipid deposition in nonadipose tissue. We hypothesized that the inability to appropriately expand subcutaneous adipose tissue may be an underlying reason for insulin resistance and beta cell failure. Mice lacking leptin while overexpressing adiponectin showed normalized glucose and insulin levels and dramatically improved glucose as well as positively affected serum triglyceride levels. Therefore, modestly increasing the levels of circulating full-length adiponectin completely rescued the diabetic phenotype in ob/ob mice. They displayed increased expression of PPARgamma target genes and a reduction in macrophage infiltration in adipose tissue and systemic inflammation. As a result, the transgenic mice were morbidly obese, with significantly higher levels of adipose tissue than their ob/ob littermates, leading to an interesting dichotomy of increased fat mass associated with improvement in insulin sensitivity. Based on these data, we propose that adiponectin acts as a peripheral "starvation" signal promoting the storage of triglycerides preferentially in adipose tissue. As a consequence, reduced triglyceride levels in the liver and muscle convey improved systemic insulin sensitivity. These mice therefore represent what we believe is a novel model of morbid obesity associated with an improved metabolic profile.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
1004 |
4
|
Pocai A, Lam TKT, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, Aguilar-Bryan L, Rossetti L. Hypothalamic K(ATP) channels control hepatic glucose production. Nature 2005; 434:1026-31. [PMID: 15846348 DOI: 10.1038/nature03439] [Citation(s) in RCA: 492] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 02/19/2005] [Indexed: 01/11/2023]
Abstract
Obesity is the driving force behind the worldwide increase in the prevalence of type 2 diabetes mellitus. Hyperglycaemia is a hallmark of diabetes and is largely due to increased hepatic gluconeogenesis. The medial hypothalamus is a major integrator of nutritional and hormonal signals, which play pivotal roles not only in the regulation of energy balance but also in the modulation of liver glucose output. Bidirectional changes in hypothalamic insulin signalling therefore result in parallel changes in both energy balance and glucose metabolism. Here we show that activation of ATP-sensitive potassium (K(ATP)) channels in the mediobasal hypothalamus is sufficient to lower blood glucose levels through inhibition of hepatic gluconeogenesis. Finally, the infusion of a K(ATP) blocker within the mediobasal hypothalamus, or the surgical resection of the hepatic branch of the vagus nerve, negates the effects of central insulin and halves the effects of systemic insulin on hepatic glucose production. Consistent with these results, mice lacking the SUR1 subunit of the K(ATP) channel are resistant to the inhibitory action of insulin on gluconeogenesis. These findings suggest that activation of hypothalamic K(ATP) channels normally restrains hepatic gluconeogenesis, and that any alteration within this central nervous system/liver circuit can contribute to diabetic hyperglycaemia.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
492 |
5
|
Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 2008; 67:11612-20. [PMID: 18089790 DOI: 10.1158/0008-5472.can-07-5019] [Citation(s) in RCA: 446] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) are a new class of short noncoding regulatory RNAs (18-25 nucleotides) that are involved in diverse developmental and pathologic processes. Altered miRNA expression has been associated with several types of human cancer. However, most studies did not establish whether miRNA expression changes occurred within cells undergoing malignant transformation. To obtain insight into miRNA deregulation in breast cancer, we implemented an in situ hybridization (ISH) method to reveal the spatial distribution of miRNA expression in archived formalin-fixed, paraffin-embedded specimens representing normal and tumor tissue from >100 patient cases. Here, we report that expression of miR-145 and miR-205 was restricted to the myoepithelial/basal cell compartment of normal mammary ducts and lobules, whereas their accumulation was reduced or completely eliminated in matching tumor specimens. Conversely, expression of other miRNAs was detected at varying levels predominantly within luminal epithelial cells in normal tissue; expression of miR-21 was frequently increased, whereas that of let-7a was decreased in malignant cells. We also analyzed the association of miRNA expression with that of epithelial markers; prognostic indicators such as estrogen receptor, progesterone receptor, and HER2; as well as clinical outcome data. This ISH approach provides a more direct and informative assessment of how altered miRNA expression contributes to breast carcinogenesis compared with miRNA expression profiling in gross tissue biopsies. Most significantly, early manifestation of altered miR-145 expression in atypical hyperplasia and carcinoma in situ lesions suggests that this miRNA may have a potential clinical application as a novel biomarker for early detection.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
17 |
446 |
6
|
Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu YH. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 2007; 56:1647-54. [PMID: 17360978 DOI: 10.2337/db07-0123] [Citation(s) in RCA: 407] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leucine, as an essential amino acid and activator of mTOR (mammalian target of rapamycin), promotes protein synthesis and suppresses protein catabolism. However, the effect of leucine on overall glucose and energy metabolism remains unclear, and whether leucine has beneficial effects as a long-term dietary supplement has not been examined. In the present study, we doubled dietary leucine intake via leucine-containing drinking water in mice with free excess to either a rodent chow or a high-fat diet (HFD). While it produced no major metabolic effects in chow-fed mice, increasing leucine intake resulted in up to 32% reduction of weight gain (P < 0.05) and a 25% decrease in adiposity (P < 0.01) in HFD-fed mice. The reduction of adiposity resulted from increased resting energy expenditure associated with increased expression of uncoupling protein 3 in brown and white adipose tissues and in skeletal muscle, while food intake was not decreased. Increasing leucine intake also prevented HFD-induced hyperglycemia, which was associated with improved insulin sensitivity, decreased plasma concentrations of glucagon and glucogenic amino acids, and downregulation of hepatic glucose-6-phosphatase. Additionally, plasma levels of total and LDL cholesterol were decreased by 27% (P < 0.001) and 53% (P < 0.001), respectively, in leucine supplemented HFD-fed mice compared with the control mice fed the same diet. The reduction in cholesterol levels was largely independent of leucine-induced changes in adiposity. In conclusion, increases in dietary leucine intake substantially decrease diet-induced obesity, hyperglycemia, and hypercholesterolemia in mice with ad libitum consumption of HFD likely via multiple mechanisms.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
407 |
7
|
Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 2009; 119:3329-39. [PMID: 19855132 DOI: 10.1172/jci39228] [Citation(s) in RCA: 387] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 08/26/2009] [Indexed: 12/11/2022] Open
Abstract
The relative balance between the quantity of white and brown adipose tissue can profoundly affect lipid storage and whole-body energy homeostasis. However, the mechanisms regulating the formation, expansion, and interconversion of these 2 distinct types of fat remain unknown. Recently, the lysosomal degradative pathway of macroautophagy has been identified as a regulator of cellular differentiation, suggesting that autophagy may modulate this process in adipocytes. The function of autophagy in adipose differentiation was therefore examined in the current study by genetic inhibition of the critical macroautophagy gene autophagy-related 7 (Atg7). Knockdown of Atg7 in 3T3-L1 preadipocytes inhibited lipid accumulation and decreased protein levels of adipocyte differentiation factors. Knockdown of Atg5 or pharmacological inhibition of autophagy or lysosome function also had similar effects. An adipocyte-specific mouse knockout of Atg7 generated lean mice with decreased white adipose mass and enhanced insulin sensitivity. White adipose tissue in knockout mice had increased features of brown adipocytes, which, along with an increase in normal brown adipose tissue, led to an elevated rate of fatty acid, beta-oxidation, and a lean body mass. Autophagy therefore functions to regulate body lipid accumulation by controlling adipocyte differentiation and determining the balance between white and brown fat.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
387 |
8
|
Burstein HJ, Sun Y, Dirix LY, Jiang Z, Paridaens R, Tan AR, Awada A, Ranade A, Jiao S, Schwartz G, Abbas R, Powell C, Turnbull K, Vermette J, Zacharchuk C, Badwe R. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol 2010; 28:1301-7. [PMID: 20142587 DOI: 10.1200/jco.2009.25.8707] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Neratinib is an oral, irreversible pan-ErbB receptor tyrosine kinase inhibitor. The efficacy and safety of neratinib were evaluated in two cohorts of patients with advanced ErbB2-positive breast cancer-those with and those without prior trastuzumab treatment-in an open-label, multicenter, phase II trial. PATIENTS AND METHODS Patients in the two cohorts (prior trastuzumab, n = 66; no prior trastuzumab, n = 70) received oral neratinib 240 mg once daily. The primary end point was the 16-week progression-free survival (PFS) rate for the evaluable population (prior trastuzumab, n = 63; no prior trastuzumab, n = 64), as assessed by independent review. RESULTS The 16-week PFS rates were 59% for patients with prior trastuzumab treatment and 78% for patients with no prior trastuzumab treatment. Median PFS was 22.3 and 39.6 weeks, respectively. Objective response rates were 24% among patients with prior trastuzumab treatment and 56% in the trastuzumab-naïve cohort. The most common adverse events were diarrhea, nausea, vomiting, and fatigue. Diarrhea was the most frequent grades 3 to 4 adverse event, occurring in 30% of patients with prior trastuzumab treatment and in 13% of patients with no prior trastuzumab treatment, which prompted dose reductions in 29% and 4% of patients, respectively, but treatment discontinuation in only one patient. No neratinib-related, grades 3 or 4 cardiotoxicity was reported. CONCLUSION Oral neratinib showed substantial clinical activity and was reasonably well tolerated among both heavily pretreated and trastuzumab-naïve patients who had advanced, ErbB2-positive breast cancer. Diarrhea was the most common adverse effect but was manageable with antidiarrheal agents and dose modification.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
383 |
9
|
Abstract
Selective regions of the brain, including the hypothalamus, are capable of gathering information on the body's nutritional status in order to implement appropriate behavioral and metabolic responses to changes in fuel availability. This review focuses on direct metabolic signaling within the hypothalamus. There is growing evidence supporting the idea that fatty acid metabolism within discrete hypothalamic regions can function as a sensor for nutrient availability that can integrate multiple nutritional and hormonal signals.
Collapse
|
Review |
20 |
343 |
10
|
Lam TKT, Pocai A, Gutierrez-Juarez R, Obici S, Bryan J, Aguilar-Bryan L, Schwartz GJ, Rossetti L. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 2005; 11:320-7. [PMID: 15735652 DOI: 10.1038/nm1201] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 02/01/2005] [Indexed: 11/09/2022]
Abstract
Increased glucose production is a hallmark of type 2 diabetes and alterations in lipid metabolism have a causative role in its pathophysiology. Here we postulate that physiological increments in plasma fatty acids can be sensed within the hypothalamus and that this sensing is required to balance their direct stimulatory action on hepatic gluconeogenesis. In the presence of physiologically-relevant increases in the levels of plasma fatty acids, negating their central action on hepatic glucose fluxes through (i) inhibition of the hypothalamic esterification of fatty acids, (ii) genetic deletion (Sur1-deficient mice) of hypothalamic K(ATP) channels or pharmacological blockade (K(ATP) blocker) of their activation by fatty acids, or (iii) surgical resection of the hepatic branch of the vagus nerve led to a marked increase in liver glucose production. These findings indicate that a physiological elevation in circulating lipids can be sensed within the hypothalamus and that a defect in hypothalamic lipid sensing disrupts glucose homeostasis.
Collapse
|
|
20 |
331 |
11
|
Colantuoni C, Schwenker J, McCarthy J, Rada P, Ladenheim B, Cadet JL, Schwartz GJ, Moran TH, Hoebel BG. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 2001; 12:3549-52. [PMID: 11733709 DOI: 10.1097/00001756-200111160-00035] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Palatable food stimulates neural systems implicated in drug dependence; thus sugar might have effects like a drug of abuse. Rats were given 25% glucose solution with chow for 12 h followed by 12 h of food deprivation each day. They doubled their glucose intake in 10 days and developed a pattern of excessive intake in the first hour of daily access. After 30 days, receptor binding was compared to chow-fed controls. Dopamine D-1 receptor binding increased significantly in the accumbens core and shell. In contrast, D-2 binding decreased in the dorsal striatum. Binding to dopamine transporter increased in the midbrain. Opioid mu-1 receptor binding increased significantly in the cingulate cortex, hippocampus, locus coeruleus and accumbens shell. Thus, intermittent, excessive sugar intake sensitized D-1 and mu-1 receptors much like some drugs of abuse.
Collapse
|
|
24 |
320 |
12
|
Schwartz GJ, Feld LG, Langford DJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 1984; 104:849-54. [PMID: 6726515 DOI: 10.1016/s0022-3476(84)80479-5] [Citation(s) in RCA: 312] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An estimate of glomerular filtration rate has been derived for children from body length (L, in centimeters) and plasma creatinine (Pcr, in milligrams per deciliter): GFR = 0.55 L/Pcr. The near universality of this estimate in children led us to seek a similar formula for estimating GFR in full-term infants during the first year of life. We measured Pcr in 137 healthy infants and performed creatinine clearance (Ccr) studies in 63 of them aged greater than or equal to 5 days. Beyond the first week, Pcr averaged 0.39 +/- 0.01 (0.10 SD) mg/dl. The estimate of GFR from 0.55 L/Pcr overestimated Ccr by 24% (P less than 0.001). Based on the calculation of a new constant from Ccr X Pcr/L, GFR was more accurately estimated from 0.45 L/Pcr (mean difference of Ccr - 0.45 L/Pcr = -0.4 +/- 3.7 (SE) ml/min X 1.73 m2) in full-term infants between 1 and 52 weeks of age. Because the constant 0.45 and Pcr do not change significantly during this period, GFR can be approximated at the bedside from body length of the healthy full-term infant (GFR = 0.45 L/0.39 = 1.1 L).
Collapse
|
|
41 |
312 |
13
|
Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell Metab 2005; 1:53-61. [PMID: 16054044 DOI: 10.1016/j.cmet.2004.11.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 08/23/2004] [Accepted: 10/06/2004] [Indexed: 11/24/2022]
Abstract
Increased glucose production (GP) is the major determinant of fasting hyperglycemia in diabetes mellitus. Previous studies suggested that lipid metabolism within specific hypothalamic nuclei is a biochemical sensor for nutrient availability that exerts negative feedback on GP. Here we show that central inhibition of fat oxidation leads to selective activation of brainstem neurons within the nucleus of the solitary tract and the dorsal motor nucleus of the vagus and markedly decreases liver gluconeogenesis, expression of gluconeogenic enzymes, and GP. These effects require central activation of ATP-dependent potassium channels (K(ATP)) and descending fibers within the hepatic branch of the vagus nerve. Thus, hypothalamic lipid sensing potently modulates glucose metabolism via neural circuitry that requires the activation of K(ATP) and selective brainstem neurons and intact vagal input to the liver. This crosstalk between brain and liver couples central nutrient sensing to peripheral nutrient production and its disruption may lead to hyperglycemia.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
308 |
14
|
Kaushik S, Rodriguez-Navarro JA, Arias E, Kiffin R, Sahu S, Schwartz GJ, Cuervo AM, Singh R. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab 2011; 14:173-83. [PMID: 21803288 PMCID: PMC3148494 DOI: 10.1016/j.cmet.2011.06.008] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/05/2011] [Accepted: 06/02/2011] [Indexed: 11/19/2022]
Abstract
Macroautophagy is a lysosomal degradative pathway that maintains cellular homeostasis by turning over cellular components. Here we demonstrate a role for autophagy in hypothalamic agouti-related peptide (AgRP) neurons in the regulation of food intake and energy balance. We show that starvation-induced hypothalamic autophagy mobilizes neuron-intrinsic lipids to generate endogenous free fatty acids, which in turn regulate AgRP levels. The functional consequences of inhibiting autophagy are the failure to upregulate AgRP in response to starvation, and constitutive increases in hypothalamic levels of pro-opiomelanocortin and its cleavage product α-melanocyte-stimulating hormone that typically contribute to a lean phenotype. We propose a conceptual framework for considering how autophagy-regulated lipid metabolism within hypothalamic neurons may modulate neuropeptide levels to have immediate effects on food intake, as well as long-term effects on energy homeostasis. Regulation of hypothalamic autophagy could become an effective intervention in conditions such as obesity and the metabolic syndrome.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
304 |
15
|
Abstract
We reexamined the relationship between creatinine clearance (Ccr) and body habitus in 212 girls and 356 boys, including 181 boys and 69 girls between 13 and 21 years of age. The use of formula Ccr = k L/Pcr, where k = 0.55 for the calculation of GFR, resulted in a significant underestimation of GFR in adolescent boys but was suitable for girls. In 51 adolescent boys the equation Ccr = 0.7 L/Pcr resulted in an accurate estimate of GFR. Regression analysis in 133 boys aged 3 to 21 years showed that the constant k increased gradually and linearly with age (r = 0.35, P less than 0.01). GFR could be better estimated for boys of any age by the linear bivariate equation Ccr = 1.5 (age) + 0.5 (L/Pcr), where age is given in years (r = 0.82, P less than 0.001). This equation yielded slightly better results than did 0.7 L/Pcr in 91 additional clearance studies performed in adolescent boys with native kidneys or functioning renal transplants. The larger value for the constant k (0.7) and the age correction for GFR reflect the greater rate of urinary creatine excretion (and thus muscle mass) per unit of body mass in adolescent boys.
Collapse
|
|
40 |
301 |
16
|
Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, Cuomo V, Piomelli D. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab 2008; 8:281-288. [PMID: 18840358 PMCID: PMC2572640 DOI: 10.1016/j.cmet.2008.08.005] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 06/27/2008] [Accepted: 08/01/2008] [Indexed: 11/27/2022]
Abstract
The association between fat consumption and obesity underscores the need to identify physiological signals that control fat intake. Previous studies have shown that feeding stimulates small-intestinal mucosal cells to produce the lipid messenger oleoylethanolamide (OEA) which, when administered as a drug, decreases meal frequency by engaging peroxisome proliferator-activated receptors-alpha (PPAR-alpha). Here, we report that duodenal infusion of fat stimulates OEA mobilization in the proximal small intestine, whereas infusion of protein or carbohydrate does not. OEA production utilizes dietary oleic acid as a substrate and is disrupted in mutant mice lacking the membrane fatty-acid transporter CD36. Targeted disruption of CD36 or PPAR-alpha abrogates the satiety response induced by fat. The results suggest that activation of small-intestinal OEA mobilization, enabled by CD36-mediated uptake of dietary oleic acid, serves as a molecular sensor linking fat ingestion to satiety.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
277 |
17
|
Tolcher AW, Gerson SL, Denis L, Geyer C, Hammond LA, Patnaik A, Goetz AD, Schwartz G, Edwards T, Reyderman L, Statkevich P, Cutler DL, Rowinsky EK. Marked inactivation of O6-alkylguanine-DNA alkyltransferase activity with protracted temozolomide schedules. Br J Cancer 2003; 88:1004-11. [PMID: 12671695 PMCID: PMC2376384 DOI: 10.1038/sj.bjc.6600827] [Citation(s) in RCA: 277] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Temozolomide, an oral DNA methylator that inactivates the DNA repair enzyme O(6)-alkylguanine-DNA alkyltransferase (AGAT), has demonstrated anticancer activity on protracted schedules. Protracted schedules may lead to an 'autoenhancement' of temozolomide's inherent cytotoxic potential by cumulative reduction of the cell's capacity for AGAT-mediated DNA repair and resistance. This study was undertaken to characterise AGAT inactivation and regeneration in the peripheral blood mononuclear cells (PBMCs) of patients treated on two protracted temozolomide schedules. O(6)-alkyl guanine-DNA alkyltransferase activity was measured in the PBMCs of patients treated on two phase I protracted temozolomide studies. Patients were treated daily for either 7 days every 2 weeks (Schedule A) or 21 days every 4 weeks (Schedule B). The effects of various temozolomide doses (75-175 mg m(-2)), treatment duration (7-21 days), and temozolomide plasma levels on AGAT inactivation and regeneration, as well as the relation between AGAT inactivation and toxicity, were studied. O(6)-alkyl guanine-DNA alkyltransferase activity in PBMCs was measured serially in 52 patients. Marked inactivation of AGAT occurred following 7 days of temozolomide treatment, with mean AGAT activity decreasing by 72% (P<0.0001). Similarly, mean AGAT activity decreased by 63 and 73% after 14 and 21 days of treatment, respectively (P<0.001 for both comparisons). O(6)-alkyl guanine-DNA alkyltransferase inactivation was greater after 7 days of treatment with higher doses of temozolomide than lower doses and remained markedly reduced 7 days post-treatment. However, AGAT inactivation following temozolomide treatment for 14 and 21 days was similar at all doses. On the continuous 21-day schedule, AGAT inactivation was significantly greater in patients who experienced severe thrombocytopenia than those who did not (90.3+/-5.5 vs 72.5+/-16.1%, P<0.045). In conclusion, protracted administration of temozolomide, even at relatively low daily doses, leads to significant and prolonged depletion of AGAT activity, which may enhance the antitumour activity of the agent.
Collapse
|
other |
22 |
277 |
18
|
van de Wall E, Leshan R, Xu AW, Balthasar N, Coppari R, Liu SM, Jo YH, MacKenzie RG, Allison DB, Dun NJ, Elmquist J, Lowell BB, Barsh GS, de Luca C, Myers MG, Schwartz GJ, Chua SC. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 2008; 149:1773-85. [PMID: 18162515 PMCID: PMC2276717 DOI: 10.1210/en.2007-1132] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two known types of leptin-responsive neurons reside within the arcuate nucleus: the agouti gene-related peptide (AgRP)/neuropeptide Y (NPY) neuron and the proopiomelanocortin (POMC) neuron. By deleting the leptin receptor gene (Lepr) specifically in AgRP/NPY and/or POMC neurons of mice, we examined the several and combined contributions of these neurons to leptin action. Body weight and adiposity were increased by Lepr deletion from AgRP and POMC neurons individually, and simultaneous deletion in both neurons (A+P LEPR-KO mice) further increased these measures. Young (periweaning) A+P LEPR-KO mice exhibit hyperphagia and decreased energy expenditure, with increased weight gain, oxidative sparing of triglycerides, and increased fat accumulation. Interestingly, however, many of these abnormalities were attenuated in adult animals, and high doses of leptin partially suppress food intake in the A+P LEPR-KO mice. Although mildly hyperinsulinemic, the A+P LEPR-KO mice displayed normal glucose tolerance and fertility. Thus, AgRP/NPY and POMC neurons each play mandatory roles in aspects of leptin-regulated energy homeostasis, high leptin levels in adult mice mitigate the importance of leptin-responsiveness in these neurons for components of energy balance, suggesting the presence of other leptin-regulated pathways that partially compensate for the lack of leptin action on the POMC and AgRP/NPY neurons.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
266 |
19
|
Siprashvili Z, Sozzi G, Barnes LD, McCue P, Robinson AK, Eryomin V, Sard L, Tagliabue E, Greco A, Fusetti L, Schwartz G, Pierotti MA, Croce CM, Huebner K. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci U S A 1997; 94:13771-6. [PMID: 9391102 PMCID: PMC28382 DOI: 10.1073/pnas.94.25.13771] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The candidate tumor suppressor gene, FHIT, encompasses the common human chromosomal fragile site at 3p14.2, the hereditary renal cancer translocation breakpoint, and cancer cell homozygous deletions. Fhit hydrolyzes dinucleotide 5',5"'-P1,P3-triphosphate in vitro and mutation of a central histidine abolishes hydrolase activity. To study Fhit function, wild-type and mutant FHIT genes were transfected into cancer cell lines that lacked endogenous Fhit. No consistent effect of exogenous Fhit on growth in culture was observed, but Fhit and hydrolase "dead" Fhit mutant proteins suppressed tumorigenicity in nude mice, indicating that 5',5"'-P1, P3-triphosphate hydrolysis is not required for tumor suppression.
Collapse
|
research-article |
28 |
264 |
20
|
Buettner C, Muse ED, Cheng A, Chen L, Scherer T, Pocai A, Su K, Cheng B, Li X, Harvey-White J, Schwartz GJ, Kunos G, Rossetti L, Buettner C. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med 2008; 14:667-75. [PMID: 18516053 PMCID: PMC2671848 DOI: 10.1038/nm1775] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/18/2008] [Indexed: 12/14/2022]
Abstract
Leptin (encoded by Lep) controls body weight by regulating food intake and fuel partitioning. Obesity is characterized by leptin resistance and increased endocannabinoid tone. Here we show that leptin infused into the mediobasal hypothalamus (MBH) of rats inhibits white adipose tissue (WAT) lipogenesis, which occurs independently of signal transducer and activator of transcription-3 (STAT3) signaling. Correspondingly, transgenic inactivation of STAT3 signaling by mutation of the leptin receptor (s/s mice) leads to reduced adipose mass compared to db/db mice (complete abrogation of leptin receptor signaling). Conversely, the ability of hypothalamic leptin to suppress WAT lipogenesis in rats is lost when hypothalamic phosphoinositide 3-kinase signaling is prevented or when sympathetic denervation of adipose tissue is performed. MBH leptin suppresses the endocannabinoid anandamide in WAT, and, when this suppression of endocannabinoid tone is prevented by systemic CB1 receptor activation, MBH leptin fails to suppress WAT lipogenesis. These data suggest that the increased endocannabinoid tone observed in obesity is linked to a failure of central leptin signaling to restrain peripheral endocannabinoids.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
262 |
21
|
Abstract
The fundamental characteristics that allow vectorial transport across an epithelial cell are the differential sorting and insertion of transport proteins either in the apical or the basolateral plasma membrane, and the preferential association of endocytosis and exocytosis with one or the other pole of the cell. Asymmetrical cellular structure and function, being manifestations of terminal differentiation, might be expected to be predetermined and invariant. Here we show that the polarity of transepithelial H+ transport, endocytosis and exocytosis in kidney can be reversed by environmental stimuli. The HCO3- secreting cell in the cortical collecting tubule is found to be an intercalated cell possessing a Cl-/HCO3- exchanger in the apical membrane and proton pumps in endocytic vesicles that fuse with the basolateral membrane; the H+-secreting cell in the medullary collecting tubule has these transport functions on the opposite membranes. Further, the HCO3- -secreting cell can be induced to change its functional polarity to that of the H+-secreting cell by acid-loading the animal.
Collapse
|
|
40 |
251 |
22
|
Martinez-Lopez N, Garcia-Macia M, Sahu S, Athonvarangkul D, Liebling E, Merlo P, Cecconi F, Schwartz GJ, Singh R. Autophagy in the CNS and Periphery Coordinate Lipophagy and Lipolysis in the Brown Adipose Tissue and Liver. Cell Metab 2016; 23:113-27. [PMID: 26698918 PMCID: PMC4715637 DOI: 10.1016/j.cmet.2015.10.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 01/22/2023]
Abstract
The integrative physiology of inter-organ communication in lipophagy regulation is not well understood. Lipophagy and the cytosolic lipases ATGL and HSL contribute to lipid droplet (LD) mobilization; however, whether autophagy proteins engage with lipases to promote lipid utilization remains unknown. Here, we show that cold induces autophagy in proopiomelanocortin (POMC) neurons and activates lipophagy in brown adipose tissue (BAT) and liver in mice. Targeted activation of autophagy in POMC neurons via intra-hypothalamic rapamycin is sufficient to trigger lipid utilization in room temperature-housed mice. Conversely, inhibiting autophagy in POMC neurons or in peripheral tissues or denervating BAT blocks lipid utilization. Unexpectedly, the autophagosome marker LC3 is mechanistically coupled to ATGL-mediated lipolysis. ATGL exhibits LC3-interacting region (LIR) motifs, and mutating a single LIR motif on ATGL displaces ATGL from LD and disrupts lipolysis. Thus, cold-induced activation of central autophagy activates lipophagy and cytosolic lipases in a complementary manner to mediate lipolysis in peripheral tissues.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
238 |
23
|
Blouet C, Schwartz GJ. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 2009; 209:1-12. [PMID: 20035790 DOI: 10.1016/j.bbr.2009.12.024] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/16/2009] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a center of convergence and integration of multiple nutrient-related signals. It can sense changes in circulating adiposity hormones, gastric hormones and nutrients, and receives neuroanatomical projections from other nutrient sensors, mainly within the brainstem. The hypothalamus also integrates these signals with various cognitive forebrain-descending information and reward/motivation-related signals coming from the midbrain-dopamine system, to coordinate neuroendocrine, behavioral and metabolic effectors of energy balance. Some of the key nutrient-sensing hypothalamic neurons have been identified in the arcuate, the ventro-medial and the lateral nuclei of the hypothalamus, and the molecular mechanisms underlying intracellular integration of nutrient-related signals in these neurons are currently under intensive investigation. However, little is known about the neural pathways downstream from hypothalamic nutrient sensors, and how they drive effectors of energy homeostasis under physiological conditions. This manuscript will review recent progress from molecular, genetic and neurophysiological studies that identify and characterize the critical intracellular signalling pathways and neurocircuits involved in determining hypothalamic nutrient detection, and link these circuits to behavioral and metabolic effectors of energy balance. We will provide a critical analysis of current data to identify ongoing challenges for future research in this field.
Collapse
|
Review |
16 |
225 |
24
|
Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limón P, Ren X, Lam TT, Schwartz GJ, de Araujo IE. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 2013; 341:800-2. [PMID: 23950538 DOI: 10.1126/science.1239275] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excessive intake of dietary fats leads to diminished brain dopaminergic function. It has been proposed that dopamine deficiency exacerbates obesity by provoking compensatory overfeeding as one way to restore reward sensitivity. However, the physiological mechanisms linking prolonged high-fat intake to dopamine deficiency remain elusive. We show that administering oleoylethanolamine, a gastrointestinal lipid messenger whose synthesis is suppressed after prolonged high-fat exposure, is sufficient to restore gut-stimulated dopamine release in high-fat-fed mice. Administering oleoylethanolamine to high-fat-fed mice also eliminated motivation deficits during flavorless intragastric feeding and increased oral intake of low-fat emulsions. Our findings suggest that high-fat-induced gastrointestinal dysfunctions play a key role in dopamine deficiency and that restoring gut-generated lipid signaling may increase the reward value of less palatable, yet healthier, foods.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
224 |
25
|
Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 2010; 318:34-43. [PMID: 19747957 PMCID: PMC2826518 DOI: 10.1016/j.mce.2009.08.031] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 12/14/2022]
Abstract
Circulating factors are typically invoked to explain bidirectional communication between the CNS and white adipose tissue (WAT). Thus, initiation of lipolysis has been relegated primarily to adrenal medullary secreted catecholamines and the inhibition of lipolysis primarily to pancreatic insulin, whereas signals of body fat levels to the brain have been ascribed to adipokines such as leptin. By contrast, evidence is given for bidirectional communication between brain and WAT occurring via the sympathetic nervous system (SNS) and sensory innervation of this tissue. Using retrograde transneuronal viral tract tracers, the SNS outflow from brain to WAT has been defined. Functionally, sympathetic denervation of WAT blocks lipolysis to a variety of lipolytic stimuli. Using anterograde transneuronal viral tract tracers, the sensory input from WAT to brain has been defined. Functionally, these WAT sensory nerves respond electrophysiologically to increases in WAT SNS drive suggesting a possible neural negative feedback loop to regulate lipolysis.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
219 |