1
|
Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 1989; 337:176-9. [PMID: 2643055 DOI: 10.1038/337176a0] [Citation(s) in RCA: 632] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An important corollary to the recent advances in our understanding of the primary cause of Duchenne muscular dystrophy, is the validation of genuine genetic homologues as animal models of the disease in which potential therapies can be tested. The persistent skeletal muscle necrosis that characterizes human Duchenne muscular dystrophy is also seen in the mdx mouse and is, in both, a consequence of a deficiency of dystrophin, probably within the muscle fibres themselves. As injected muscle precursor cells of one genotype can fuse with host muscle fibres of a different genotype and express the donor genes, we decided to test grafts of normal muscle precursor cells to see if they could induce synthesis of dystrophin in innately dystrophin-deficient mdx muscle fibres. We show that injected normal muscle precursor cells can fuse with pre-existing or regenerating mdx muscle fibres to render many of these fibres dystrophin-positive and so to partially or wholly rescue them from their biochemical defect.
Collapse
|
|
36 |
632 |
2
|
Coulton GR, Morgan JE, Partridge TA, Sloper JC. The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation. Neuropathol Appl Neurobiol 1988; 14:53-70. [PMID: 2967442 DOI: 10.1111/j.1365-2990.1988.tb00866.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Skeletal muscle has been examined in a colony of the mdx strain of myopathic mice. Sixty-five mice from 22 to 303 days of age, showed extensive and recurrent areas of necrosis and regeneration of muscle fibres, often accompanied by active cellular infiltration. Morphometry of the soleus muscle revealed an abnormal proportion of small and large muscle fibres; over half of the muscle fibres contained 'central' (non-peripheral) nuclei. No histochemical muscle fibre-type grouping was detected. Serum activities of muscle-derived enzymes were greatly elevated in all animals and probably reflect enzyme leakage from damaged muscle fibres. Histological evidence of a cardiomyopathy was found in 13 mice. The mdx myopathy thus shows features seen in Duchenne muscular dystrophy. Mdx differs from Duchenne dystrophy principally in that it exhibits a greater degree of compensatory muscle regeneration and an absence of fibro-fatty replacement of muscle fibres.
Collapse
|
|
37 |
279 |
3
|
Coulton GR, Curtin NA, Morgan JE, Partridge TA. The mdx mouse skeletal muscle myopathy: II. Contractile properties. Neuropathol Appl Neurobiol 1988; 14:299-314. [PMID: 3221977 DOI: 10.1111/j.1365-2990.1988.tb00890.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The contractile properties of soleus muscles from mdx and control mice aged between 26 and 350 days were compared with those of muscles from similarly aged control mice. Mdx mice were in general heavier (their individual soleus muscles were also heavier), of greater cross-sectional area and greater standard length than age-matched controls. Isometric forces produced by soleus muscles from young mdx mice (less than or equal to 100 days) were similar to controls, but were weaker when force was normalized for cross-sectional area. Conversely, although the absolute isometric forces produced by older (greater than 100 days) mdx muscles were greater than age-matched controls, when normalized for cross-sectional area they were similar. No differences were found between mdx and control muscles in terms of length-force or force-velocity relationships. Thus, young mdx control muscles produce similar absolute isometric force but mdx mouse muscles are larger. When muscle size is accounted for, in terms of cross-sectional area, younger mdx muscles are, therefore, weaker than controls. Inefficient contraction of young mdx muscles may result from lack of contractile fibres, physiological inefficiency of contractile fibres, or loss of tendon-fibre continuity during muscle fibre necrosis and regeneration. The striking supernormal size and strength of older mdx muscles reflects their considerable regenerative capacity; whether this is due to an increase in muscle fibre number rather than fibre hypertrophy remains unclear.
Collapse
|
Comparative Study |
37 |
134 |
4
|
Kemp TJ, Sadusky TJ, Saltisi F, Carey N, Moss J, Yang SY, Sassoon DA, Goldspink G, Coulton GR. Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein. Genomics 2000; 66:229-41. [PMID: 10873377 DOI: 10.1006/geno.2000.6213] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanically induced hypertrophy of skeletal muscles involves shifts in gene expression leading to increases in the synthesis of specific proteins. Full characterization of the regulation of muscle hypertrophy is a prerequisite for the development of novel therapies aimed at treating muscle wasting (atrophy) in human aging and disease. Using suppression subtractive hybridization, cDNAs corresponding to mRNAs that increase in relative abundance in response to mechanical stretch of mouse skeletal muscles in vivo were identified. A novel 1100-bp transcript was detected exclusively in skeletal muscle. This exhibited a fourfold increase in expression after 7 days of stretch. The transcript had an open reading frame of 328 amino acids encoding an ATP/GTP binding domain, a nuclear localization signal, two PEST protein-destabilization motifs, and a 132-amino-acid ankyrin-repeat region. We have named this gene ankyrin-repeat domain 2 (stretch-responsive muscle) (Ankrd2). We hypothesize that Ankrd2 plays an important role in skeletal muscle hypertrophy.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Ankyrin Repeat/genetics
- Base Sequence
- Cell Differentiation
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/genetics
- Exons
- Gene Expression
- Genomic Library
- Humans
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Nuclear Proteins
- Organ Specificity/genetics
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Repressor Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Stress, Mechanical
Collapse
|
|
25 |
106 |
5
|
Sterne GD, Coulton GR, Brown RA, Green CJ, Terenghi G. Neurotrophin-3-enhanced nerve regeneration selectively improves recovery of muscle fibers expressing myosin heavy chains 2b. J Biophys Biochem Cytol 1997; 139:709-15. [PMID: 9348287 PMCID: PMC2141699 DOI: 10.1083/jcb.139.3.709] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The purpose of this study was to evaluate the effect of neurotrophin 3 (NT-3) enhanced nerve regeneration on the reinnervation of a target muscle. Muscle fibers can be classified according to their mechanical properties and myosin heavy chain (MHC) isoform composition. MHC1 containing slow-type and MHC2a or 2b fast-type fibers are normally distributed in a mosaic pattern, their phenotype dictated by motor innervation. After denervation, all fibers switch to fast-type MHC2b expression and also undergo atrophy resulting in loss of muscle mass. After regeneration, discrimination between fast and slow fibers returns, but the distribution and fiber size change according to the level of reinnervation. In this study, rat gastrocnemius muscles (ipsilateral and contralateral to the side of nerve injury) were collected up to 8 mo after nerve repair, with or without local delivery of NT-3. The phenotype changes of MHC1, 2a, and 2b were analyzed by immunohistochemistry, and fiber type proportion, diameter, and grouping were assessed by computerized image analysis. At 8 mo, the local delivery of NT-3 resulted in significant improvement in gastrocnemius muscle weight compared with controls (NT-3 group 47%, controls 39% weight of contralateral normal muscle; P < 0.05). NT-3 delivery resulted in a significant increase in the proportion (NT-3 43.3%, controls 35.7%; P < 0.05) and diameter (NT-3 87.8 micron, controls 70.8 micron; P < 0.05) of fast type 2b fibers after reinnervation. This effect was specific to type 2b fibers; no normalization was seen in other fiber types. This study indicates that NT-3-enhanced axonal regeneration has a beneficial effect on the motor target organ. Also, NT-3 may be specifically affecting a subset of motoneurons that determine type 2b muscle fiber phenotype. As NT-3 was topically applied to cut nerves, our data suggest a discriminating effect of the neurotrophin on neuro-muscular interaction. These results would imply that muscle fibers may be differentially responsive to other neurotrophic factors and indicate the potential clinical role of NT-3 in the prevention of muscle atrophy after nerve injury.
Collapse
|
research-article |
28 |
72 |
6
|
Blanco G, Coulton GR, Biggin A, Grainge C, Moss J, Barrett M, Berquin A, Maréchal G, Skynner M, van Mier P, Nikitopoulou A, Kraus M, Ponting CP, Mason RM, Brown SD. The kyphoscoliosis (ky) mouse is deficient in hypertrophic responses and is caused by a mutation in a novel muscle-specific protein. Hum Mol Genet 2001; 10:9-16. [PMID: 11136708 DOI: 10.1093/hmg/10.1.9] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ky mouse mutant exhibits a primary degenerative myopathy preceding chronic thoraco-lumbar kyphoscoliosis. The histopathology of the ky mutant suggests that Ky protein activity is crucial for normal muscle growth and function as well as the maturation and stabilization of the neuromuscular junction. Muscle hypertrophy in response to increasing demand is deficient in the ky mutant, whereas adaptive fibre type shifts take place. The ky locus has previously been localized to a small region of mouse chromosome 9 and we have now identified the gene and the mutation underlying the kyphoscoliotic mouse. The ky transcript encodes a novel protein that is detected only in skeletal muscle and heart. The identification of the ky gene will allow detailed analysis of the impact of primary myopathy on idiopathic scoliosis in mice and man.
Collapse
|
|
24 |
72 |
7
|
Morgan JE, Coulton GR, Partridge TA. Muscle precursor cells invade and repopulate freeze-killed muscles. J Muscle Res Cell Motil 1987; 8:386-96. [PMID: 3480896 DOI: 10.1007/bf01578428] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A problem with the use of muscle grafting as a therapeutic procedure is to produce a graft functionally adequate to replace a muscle of complex architecture, such as a sphincter muscle. We thought it might be possible to use dead cadaver muscles, repopulated by the patient's own muscle precursor cells (mpc), to reconstruct muscles whose anatomy would be imposed by the framework of dead muscle and whose genetic constitution would be determined by the mpc. Here we show, in the mouse, that an extensor digitorum longus (EDL) muscle, killed by repeated freezing and thawing, repopulated with mpc and grafted into a nu/nu or tolerant AKR host mouse, is capable of supporting muscle formation. By using the allotypic isoenzyme forms of glucose-6-phosphate isomerase as markers, we have shown that the newly regenerated muscle in such grafts is derived mainly from the implanted mpc, but also to some extent from the host mouse's own mpc. By 50-70 days after grafting, new muscle fibres were found to constitute up to 70% of the graft. Many fibres had assumed diameters in the normal range for mouse muscle, often having peripherally placed nuclei. These findings raise the possibility of the therapeutic use of such grafts. To our surprise, dead EDL muscle grafts into which no mpc had been implanted were also the site of good muscle regeneration. New-formed muscle in these grafts was shown to be derived entirely from mpc which must have migrated into the graft from the host. Investigation of the mechanisms underlying this phenomenon should further our knowledge of factors which regulate the proliferation and movement of dormant mpc in adult animals.
Collapse
|
|
38 |
71 |
8
|
Kalinina Ayuso V, de Boer JH, Byers HL, Coulton GR, Dekkers J, de Visser L, van Loon AM, Schellekens PAWJF, Rothova A, de Groot-Mijnes JDF. Intraocular biomarker identification in uveitis associated with juvenile idiopathic arthritis. Invest Ophthalmol Vis Sci 2013; 54:3709-20. [PMID: 23633652 DOI: 10.1167/iovs.12-10865] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the presence of biomarkers in aqueous humor (AH) from patients with uveitis associated with juvenile idiopathic arthritis (JIA). METHODS AH (N = 73) AND SERUM (N = 105) SAMPLES FROM 116 CHILDREN WERE ANALYZED USING SURFACE ENHANCED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY (SELDI-TOF MS). THE SAMPLES WERE DIVIDED INTO THE FOLLOWING GROUPS JIA, silent chronic anterior uveitis (AU), other uveitis entities, and noninflammatory controls. Statistical biomarker identification was performed using the SELDI-ToF Biomarker Analysis Cluster Wizard followed by multivariate statistical analysis. Biochemical identification of biomarkers was performed by polyacrylamide gel protein separation, followed by liquid chromatography tandem mass spectrometry. ELISA was performed in a number of AH samples representing all four study groups. RESULTS In the JIA group, one AH protein peak at mass/charge (m/z) 13,762 had qualitative and quantitative differences in expression compared with the other uveitis entities and the controls, but not to the group of silent chronic AU. Its quantitative expression in AH of patients with JIA and other silent chronic AU was positively associated with uveitis activity. The protein at m/z 13,762 in AH was identified as transthyretin (TTR). The TTR concentration in AH differed significantly between the study groups (P = 0.006) with considerably higher TTR concentrations in JIA and silent chronic AU samples positive for m/z 13,762 than those of the other uveitis and control groups. CONCLUSIONS TTR is a potential intraocular biomarker of JIA- associated uveitis. Its role in the pathogenesis of silent chronic AU with and without arthritis needs further investigation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
45 |
9
|
Francis SC, Hou Y, Baisley K, van de Wijgert J, Watson-Jones D, Ao TT, Herrera C, Maganja K, Andreasen A, Kapiga S, Coulton GR, Hayes RJ, Shattock RJ. Immune Activation in the Female Genital Tract: Expression Profiles of Soluble Proteins in Women at High Risk for HIV Infection. PLoS One 2016; 11:e0143109. [PMID: 26814891 PMCID: PMC4729472 DOI: 10.1371/journal.pone.0143109] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/30/2015] [Indexed: 01/20/2023] Open
Abstract
Soluble cervicovaginal biomarkers of inflammation, immune activation and risk of HIV acquisition are needed to reliably assess the safety of new biomedical prevention strategies including vaccines and microbicides. However, a fuller understanding of expression profiles in women at high risk for HIV infection is crucial to the effective use of these potential biomarkers in Phase 3 trial settings. We have measured 45 soluble proteins and peptides in cervicovaginal lavage samples from 100 HIV negative women at high risk for HIV infection. Women were followed over one menstrual cycle to investigate modulation by hormonal contraception, menstrual cycle phase, recent sexual exposure and intravaginal practices. Women using injectable DMPA had increased concentration of several soluble proteins of the innate and adaptive immune system, including IL-1α, IL-1β, IL-2, MIP-1β, IP-10, IL-8, TGF-β, HBD4, IgA, IgG1, and IgG2. Women using combined oral contraceptives had a similar signature. There were differences in concentrations among samples from post-ovulation compared to pre-ovulation, notably increased immunoglobulins. Increased prostate-specific antigen, indicative of recent sexual exposure, was correlated with increased IL-6, MCP-1, and SLPI, and decreased GM-CSF and HBD3. The identified signature profiles may prove critical in evaluating the potential safety and impact on risk of HIV acquisition of different biomedical intervention strategies.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
45 |
10
|
Kemp TJ, Sadusky TJ, Simon M, Brown R, Eastwood M, Sassoon DA, Coulton GR. Identification of a novel stretch-responsive skeletal muscle gene (Smpx). Genomics 2001; 72:260-71. [PMID: 11401441 DOI: 10.1006/geno.2000.6461] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle is able to respond to a range of stimuli, including stretch and increased load, by increasing in diameter and length in the absence of myofiber division. This type of cellular growth (hypertrophy) is a highly complex process involving division of muscle precursor cells (myoblasts) and their fusion to existing muscle fibers as well as increased protein synthesis and decreased protein degradation. Underlying the alterations in protein levels are increases in a range of specific mRNAs including those coding for structural proteins and proteins that regulate the hypertrophic process. Seven days of passive stretch in vivo of tibialis anterior (TA) muscle has been shown to elicit muscle hypertrophy. We have identified a cDNA corresponding to an mRNA that exhibits increased expression in response to 7 days of passive stretch imposed on TA muscles in vivo. This 944-bp novel murine transcript is expressed primarily in cardiac and skeletal muscle and to a lesser extent in brain. Translation of the transcript revealed an open reading frame of 85 amino acids encoding a nuclear localization signal and two overlapping casein kinase II phosphorylation sites. This gene has been called "small muscle protein (X chromosome)" (Smpx; HGMW-approved human gene symbol SMPX) and we hypothesize that it plays a role in skeletal muscle hypertrophy.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Differentiation/genetics
- Chromosome Mapping
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/metabolism
- Exons
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Humans
- Immunohistochemistry
- Introns
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muscle Proteins
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Porins/genetics
- Porins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Specific Pathogen-Free Organisms
- Stress, Mechanical
- Tissue Distribution
- X Chromosome/genetics
Collapse
|
|
24 |
39 |
11
|
Mckoy G, Hou Y, Yang SY, Vega Avelaira D, Degens H, Goldspink G, Coulton GR. Expression of Ankrd2 in fast and slow muscles and its response to stretch are consistent with a role in slow muscle function. J Appl Physiol (1985) 2005; 98:2337-43; discussion 2320. [PMID: 15677738 DOI: 10.1152/japplphysiol.01046.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In striated muscle, the structural genes associated with muscle fiber phenotype determination as well as muscle mass accretion are regulated largely by mechanical stimuli. Passive stretch of skeletal muscle stimulates muscle growth/hypertrophy and an increased expression of slow muscle genes. We previously identified Ankyrin repeat-domain protein (Ankrd2) as a novel transcript expressed in fast tibialis anterior muscles after 7 days of passive stretch immobilization in vivo. Here, we test the hypothesis that the expression of Ankrd2 in stretched fast muscle is associated with the stretch-induced expression of slow muscle phenotype rather than the hypertrophic response. Our results show that, in 4- and 7-day stretched tibialis anterior muscle, the expression of Ankrd2 mRNA and protein was significantly upregulated (P > 0.001). However, in fast muscles of kyphoscoliotic mutant mice, which lack the hypertrophic response to overload but have a slower muscle phenotype than wild-type, Ankrd2 expression was significantly upregulated. The distribution pattern of Ankrd2 in fast and slow muscle is also in accord with their slow fiber composition. Furthermore, it was markedly downregulated in denervated rat soleus muscle, which produces a pronounced shift toward the fast muscle phenotype. Using a sensitive proteomics approach (Ciphergen Technology), we observed that Ankrd2 protein was undetectable in soleus after 4 wk of denervation. We suggest that Ankrd2, which is also a titin binding protein, is a stretch-response gene associated with slow muscle function and that it is part of a separate mechanotransduction system to the one that regulates muscle mass.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
32 |
12
|
Simon M, Porter R, Brown R, Coulton GR, Terenghi G. Effect of NT-4 and BDNF delivery to damaged sciatic nerves on phenotypic recovery of fast and slow muscles fibres. Eur J Neurosci 2003; 18:2460-6. [PMID: 14622146 DOI: 10.1046/j.1460-9568.2003.02978.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated whether neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) affected the reinnervation of slow and fast motor units. Neurotrophin-impregnated or plain fibronectin (FN) conduits were inserted into a sciatic nerve gap. Fast extensor digitorum longus (EDL) and slow soleus muscles were collected 4 months postsurgery. Muscles were weighed and fibre type proportion and mean fibre diameters were derived from muscle cross-sections. All fibre types in muscles from FN animals were severely atrophied and this correlated well with type 1 fibre loss and atrophy in soleus and type 2b loss and atrophy in EDL. Treatment with NT-4 reversed soleus but not EDL mass loss above the FN group by significantly restoring type 1 muscle fibre proportion and diameters towards those of normal unoperated animals. BDNF did not increase muscle mass but did have minor effects on fibre type and diameter. Thus, NT-4 significantly improved slow motor unit recovery, and provides a basis for therapies intended to aid the functional recovery of muscles after denervating injury.
Collapse
|
|
22 |
31 |
13
|
Noble JL, Dua RS, Coulton GR, Isacke CM, Gui GPH. A comparative proteinomic analysis of nipple aspiration fluid from healthy women and women with breast cancer. Eur J Cancer 2007; 43:2315-20. [PMID: 17904354 DOI: 10.1016/j.ejca.2007.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Accepted: 08/06/2007] [Indexed: 11/22/2022]
Abstract
This pilot study examines the feasibility of nipple aspiration to distinguish women with breast cancer from healthy women using surface-enhanced laser desorption ionisation time-of-flight mass spectrometry (SELDI-TOF/MS). Nipple aspiration fluid (NAF) was collected from each breast in 21 women newly diagnosed with unilateral breast cancer and 44 healthy women. No differences were found when proteomic profiles of NAF from the cancer-bearing breast and the contralateral non-cancerous breast were compared. In contrast, 9 protein peaks were significantly different between the cancer-bearing breast compared with healthy women and 10 peaks were significantly different between the contralateral healthy breast and healthy women (P<0.05). These data suggest that invasive breast cancer may result in a field change across both breasts and that proteomic profiling of NAF may have more value in breast cancer risk assessment than as a diagnostic or screening tool.
Collapse
|
|
18 |
29 |
14
|
Bridges LR, Coulton GR, Howard G, Moss J, Mason RM. The neuromuscular basis of hereditary kyphoscoliosis in the mouse. Muscle Nerve 1992; 15:172-9. [PMID: 1372391 DOI: 10.1002/mus.880150208] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe a new neuromuscular disorder in the kyphoscoliotic mouse mutant (ky). Mice were killed at ages from birth to 210 days, and tissues were taken for standard light microscopy, histochemistry, nerve ending studies, and electron microscopy. At birth a few myofibers showed phagocytosis ultrastructurally. Between 6 and 25 days there was prominent necrosis and regeneration in soleus, gracilis, paraspinal, and back muscles. At 47 days, these muscles were atrophic and necrosis and regeneration were rare. At 136 days, all muscle groups, including head muscles, showed some degree of myofiber atrophy and gracilis was fibrotic. Prominent intramuscular axonal sprouting was present from 31 days. Peripheral nerves and anterior horn cells were normal. The findings indicate a neuromuscular basis of hereditary kyphoscoliosis in the mouse. The animal may be useful as a model of human muscle disease and scoliosis.
Collapse
|
|
33 |
26 |
15
|
Peng T, Sadusky T, Li Y, Coulton GR, Zhang H, Archard LC. Altered expression of Bag-1 in Coxsackievirus B3 infected mouse heart. Cardiovasc Res 2001; 50:46-55. [PMID: 11282077 DOI: 10.1016/s0008-6363(00)00323-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE The mechanisms by which Coxsackie B viruses cause myocarditis or dilated cardiomyopathy are not well understood. This study examined changes in the expression of cardiac genes resulting from Coxsackievirus B3 (CVB3) infection of mice. METHODS Mice (five per group) were experimentally infected with CVB3 or mock-infected with diluent. Altered expression of genes was initially identified by cDNA array, and confirmed by semiquantitative RT-PCR, western blot and immunohistochemistry. RESULTS Forty-two up-regulated or down-regulated genes were observed in cDNA arrays carrying 588 known mouse genes. Among these, one down-regulated gene, Bag-1, known to be involved in inhibition of apoptosis and modulation of chaperone activity, was investigated further. Semiquantitative RT-PCR showed that Bag-1 expression was down-regulated by up to 30% in virus-infected mouse heart on day 7 compared to the mock-infected. Cell fractionation and western blot analysis confirmed that Bag-1 isoform p32 was predominant in the cytoplasm of mouse myocardium and down-regulated at 4 days or 7 days after CVB3 infection. In contrast, Bag-1 isoform p50 appeared to increase in the nuclear fraction of mouse heart at 7 days after infection. Down regulated expression and distribution of Bag-1 protein or evidence of apoptosis in the infected mouse heart was demonstrated by immunostaining or histochemistry (TUNEL assay), respectively. CONCLUSION CVB3 infection induced differential expression of Bag-1 in cytoplasmic and nuclear fractions of mouse heart and apoptosis. This may be important in the pathogenesis of enterovirus heart muscle disease.
Collapse
|
|
24 |
24 |
16
|
Maréchal G, Coulton GR, Beckers-Bleukx G. Mechanical power and myosin composition of soleus and extensor digitorum longus muscles of ky mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C513-9. [PMID: 7864091 DOI: 10.1152/ajpcell.1995.268.2.c513] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Muscles of ky/ky homozygote mice exhibit neonatal muscle fiber necrosis and regeneration with subsequent motor nerve sprouting and development of a prominent kyphoscoliosis from approximately 100 days onward. Soleus and extensor digitorum longus (EDL) muscles from ky mice weighted < 50% of control muscles from age-matched NMRI mice. Maximal tetanic force was more reduced in soleus than in EDL. In EDL, the velocity constant of the force-velocity relation, maximal velocity, twitch time-to-peak, and isomyosin content were normal at all ages. The early mechanical changes seen in ky soleus muscles (47 day) were not accompanied by significant alterations in isomyosin or myosin heavy- and light-chain composition, since ky and NMRI expressed slow-twitch native myosin 2 (SM2, type I fibers) and intermediate-twitch native myosin (IM, type IIa fibers). Adult ky soleus (172 day) showed wholesale loss of IM and sole expression of SM2. This is sufficient to account for the markedly slowing of the force-velocity relation and the twitches observed in adult ky soleus. We propose that since shifts in muscle type only occurred in soleus, this reflects the persistent requirement to withstand the force of gravity.
Collapse
|
|
30 |
24 |
17
|
Simon M, Terenghi G, Green CJ, Coulton GR. Differential effects of NT-3 on reinnervation of the fast extensor digitorum longus (EDL) and the slow soleus muscle of rat. Eur J Neurosci 2000; 12:863-71. [PMID: 10762316 DOI: 10.1046/j.1460-9568.2000.00975.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies of gastrocnemius muscle reinnervation showed specific normalization of the proportion and diameter of fast type 2b muscle fibres following NT-3 delivery to the proximal stump of the cut sciatic nerve. Here, we investigate if normalization was related to greater improvement of muscle reinnervation of fast (extensor digitorum longus; EDL) than slow (soleus) motor units. NT-3-impregnated (NT-3 group) or plain fibronectin (FN group) mats were inserted into a sciatic nerve gap. Neuromuscular junctions (NMJs) labelled with TRITC-alpha-bungarotoxin were colabelled with calcitonin gene-related peptide (CGRP) or 4E2 antisera and imaged using confocal microscopy. CGRP and 4E2 were used as markers for newly reinnervated and structurally mature NMJs, respectively. At 40 days postsurgery, denervated NMJs in EDL and soleus muscles of both groups presented a 50% decrease of surface area due to decreased width. At day 80 in EDL, more NMJs were reinnervated by CGRP-immunoreactive terminals in the NT-3 (7.1%) than in the FN group (4.2%); there was no difference between groups for soleus. At 120 days, 4E2-immunoreactive NMJs were more numerous in EDL of the NT-3 (40.0%) than in the FN group (7.3%), unlike in soleus (NT-3, 1. 6%; FN, 1.8%), and presented a partial size recovery. These results indicate that NT-3 preferentially improves reinnervation of fast muscles over slow muscle, although the mechanism of this improvement is still unclear.
Collapse
|
|
25 |
23 |
18
|
Le Bihan MC, Hou Y, Harris N, Tarelli E, Coulton GR. Proteomic analysis of fast and slow muscles from normal and kyphoscoliotic mice using protein arrays, 2-DE and MS. Proteomics 2006; 6:4646-61. [PMID: 16858738 DOI: 10.1002/pmic.200500746] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A proteomic strategy based upon the integrated use of SELDI-TOF/MS, 2-DE and MALDI-TOF/MS has been used to identify a panel of fast muscle protein markers: MLC1F, MLC3F, fast troponin C (STNC) and slow muscle markers: MLC1SB and MLC2v. MLC3F, MLC1F and STNC were virtually absent in the physiologically pure slow soleus muscle of kyphoscoliotic mutant mice compared to control BDmice, whereas MLC2v increased threefold. A SELDI-TOF/MS peak at 18,012 Da in spectra from strong anionic exchange protein array fractions of fast vastus muscle was confirmed as STNC by its specific depletion from crude extracts of vastus muscle using an anti-TNC mAb. SELDI-TOF/MS also identified MLC2F phosphorylation in crude muscle extracts after treatment with alkaline phosphatase. High probability protein identifications were achieved by SELDI-TOF/MS PMF based upon the resolution of large peptides formed by partial cleavage and high peptide coverage. When the pI from 2-D gels and molecular weight estimations from SELDI-TOF/MS were entered into the TagIdent algorithm, high probability protein identity predictions were obtained that were confirmed later by PMF. We confirm that SELDI-TOF/MS can be integrated with other proteomics techniques for the efficient analysis of protein expression changes and PTMs associated with physiological changes in skeletal muscle.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
22 |
19
|
Morgan JE, Coulton GR, Partridge TA. Mdx muscle grafts retain the mdx phenotype in normal hosts. Muscle Nerve 1989; 12:401-9. [PMID: 2725568 DOI: 10.1002/mus.880120511] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Whole muscle grafts were made between mdx and normal mice to investigate whether the mdx myopathic lesion is intrinsic to mdx muscle or is a property of its environment. Grafts were examined between 20 and 101 days. Unequivocal necrotic muscle fibers and/or newly formed basophilic myotubes were noted in 8 of 16 grafts of mdx muscle made in normal hosts but in none of 16 grafts of normal muscle made in mdx hosts. In older grafts, the proportion of centrally nucleated fibers and variability of fiber diameter were both higher in mdx muscle grafted into normal hosts than in normal muscle grafted into either mdx or normal hosts. Analysis of the glucose-6-phosphate isomerase (GPI) isoenzyme content of the grafts indicated that the muscle formed was predominantly of donor origin. These findings provide evidence that the mdx lesion is a primary myopathy rather than secondary to an extramuscular primary lesion.
Collapse
|
|
36 |
21 |
20
|
Coulton GR, Firth JA. Cytochemical evidence for functional zonation of parietal cells within the gastric glands of the mouse. THE HISTOCHEMICAL JOURNAL 1983; 15:1141-50. [PMID: 6317615 DOI: 10.1007/bf01003977] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Parietal cells in the luminal segments of mouse gastric glands show high activity of acid-secreting potassium-dependent adenosine triphosphatase (H+, K+-ATPase) and of nicotinamide adenine dinucleotide-linked isocitrate dehydrogenase (NAD-ICDHase) and malate dehydrogenase (MDHase) but low activity of succinate dehydrogenase (SDHase). This pattern of activity is reversed in the basal segments of the same glands. These results and previous morphological findings support the conclusion that luminal segment parietal cells are much more active in hydrochloric acid secretion than those of the basal segment. The origin of this zonation may be either cellular deterioration with age or some more specific form of regulation of parietal cell metabolism.
Collapse
|
|
42 |
18 |
21
|
Le Bihan MC, Tarelli E, Coulton GR. Evaluation of an integrated strategy for proteomic profiling of skeletal muscle. Proteomics 2004; 4:2739-53. [PMID: 15352248 DOI: 10.1002/pmic.200300759] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Proteomic analysis of skeletal muscle presents particular challenges when trying to identify valid biomarkers of phenotypic change in small biopsies from genetically diverse human subjects. Currently, two-dimensional (2-D) gel electrophoresis and mass spectrometry are the chosen analytical strategies but 2-D gels are not appropriate for analyzing proteins less than 11 kDa, they can suffer from problems of reproducibility and in routine use are not a viable high-throughput technique. We have evaluated an integrated proteomic strategy employing Ciphergen ProteinChip arrays, one-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Protein fingerprints characteristic of fast and slow contracting muscles from normal and kyphoscoliosis (ky) mutant mice were obtained from Ciphergen protein arrays. Eight statistically validated protein biomarkers have so far been identified capable of discriminating fast from slow muscle. Five of these showed further differential expression in ky versus normal BDL soleus muscles. Several biomarkers have been formally identified, and were myosin light chain isoforms shown previously to be expressed differentially by fast versus slow skeletal muscles. This integrated experimental approach using a model mouse muscle system shows the potential of Ciphergen protein array technology for proteomic analysis of small proteins in small muscle samples and its applicability for phenotypic characterization of skeletal muscle in general.
Collapse
|
|
21 |
14 |
22
|
Coulton GR, Rogers B, Strutt P, Skynner MJ, Watt DJ. In situ localisation of single-stranded DNA breaks in nuclei of a subpopulation of cells within regenerating skeletal muscle of the dystrophic mdx mouse. J Cell Sci 1992; 102 ( Pt 3):653-62. [PMID: 1324249 DOI: 10.1242/jcs.102.3.653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Degeneration of muscle fibres during the early stages of Duchenne Muscular Dystrophy (DMD) is accompanied by muscle fibre regeneration where cell division and myoblast fusion to form multinucleate myotubes within the lesions appear to recapitulate the events of normal muscle development. The mechanisms that govern the expression of genes regulating differentiation of myoblasts in regenerating skeletal muscle are of great interest for the development of future therapies designed to stimulate muscle regeneration. We show here that single-stranded breaks in DNA are localised in nuclei, using an exogenously applied medium containing labelled deoxynucleotides and the Klenow fragment of DNA polymerase I. The nuclei of a sub-population of cells lying in the inflammatory infiltrate of lesions in the skeletal muscle of the muscular dystrophic mouse (mdx), a genetic homologue of DMD, were labelled in this fashion. By contrast, labelled cells were completely absent from the muscles of normal non-myopathic animals (C57BL/10) and non-lesioned areas of mdx muscles. Cells expressing the muscle-specific regulatory gene, myogenin, were also found within mononucleate cells and myotubes within similar mdx muscle lesions. While we cannot yet say that the cells labelled by the DNA polymerase reaction are in fact differentiating, they were found only in significant numbers within mdx muscle lesions where new muscle fibres appear, providing strong circumstantial evidence that they are intimately associated with the regenerative process. Using a range of nucleases and different DNA polymerases, we show that the DNA polymerase-labelling reaction observed was DNA-dependent and most probably due to infilling of naturally occurring single-stranded gaps in DNA. Since the regenerative process in human Duchenne Muscular Dystrophy is apparently less effective than that seen in mdx mice, continued study of single-stranded DNA breaks may help to elucidate further the mechanisms controlling the expression of genes that characterise the myogenic process during skeletal muscle regeneration. Such findings might be applied in the development of future therapies designed to stimulate muscle regeneration in human dystrophies.
Collapse
|
|
33 |
14 |
23
|
Sadusky TJ, Kemp TJ, Simon M, Carey N, Coulton GR. Identification of Serhl, a new member of the serine hydrolase family induced by passive stretch of skeletal muscle in vivo. Genomics 2001; 73:38-49. [PMID: 11352564 DOI: 10.1006/geno.2000.6483] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to extended periods of stretch, skeletal muscle typically exhibits cell hypertrophy associated with sustained increases in mRNA and protein synthesis. Several soluble hypertrophic agonists have been identified, yet relatively little is known as to how mechanical load is converted into intracellular signals regulating gene expression or how increased cell size is maintained. In skeletal muscle, hypertrophy is generally regarded as a beneficial adaptive response to increased workload. In some cases, however, hypertrophy can be detrimental as seen in long-term cardiac hypertrophy. Skeletal muscle wasting (atrophy) is a feature of both inherited and acquired muscle disease and normal aging. Elucidating the molecular regulation of cell size is a fundamental step toward comprehending the complex molecular systems underlying muscle hypertrophy and atrophy. Subtractive hybridization between passively stretched and control murine skeletal muscle tissue identified an mRNA that undergoes increased expression in response to passive stretch. Encoded within the mRNA is an open reading frame of 311 amino acids containing a highly conserved type 1 peroxisomal targeting signal and a serine lipase active center. The sequence shows identity to a family of serine hydrolases and thus is named serine hydrolase-like (Serhl). The predicted three-dimensional structure displays a core alpha/beta-hydrolase fold and catalytic triad characteristic of several hydrolytic enzymes. Endogenous Serhl protein immunolocalizes to perinuclear vesicles as does Serhl-FLAG fusion protein transiently expressed in muscle cells in vitro. Overexpression of Serhl-FLAG has no effect on muscle cell phenotype in vitro. Serhl's expression patterns and its response to passive stretch suggest that it may play a role in normal peroxisome function and skeletal muscle growth in response to mechanical stimuli.
Collapse
|
Research Support, Non-U.S. Gov't |
24 |
10 |
24
|
Zeidan B, Jackson TR, Larkin SET, Cutress RI, Coulton GR, Ashton-Key M, Murray N, Packham G, Gorgoulis V, Garbis SD, Townsend PA. Annexin A3 is a mammary marker and a potential neoplastic breast cell therapeutic target. Oncotarget 2016; 6:21421-7. [PMID: 26093083 PMCID: PMC4673275 DOI: 10.18632/oncotarget.4070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
Breast cancers are the most common cancer-affecting women; critically the identification of novel biomarkers for improving early detection, stratification and differentiation from benign tumours is important for the reduction of morbidity and mortality. To identify and functionally characterise potential biomarkers, we used mass spectrometry (MS) to analyse serum samples representing control, benign breast disease (BBD) and invasive breast cancer (IDC) patients. Complementary and multidimensional proteomic approaches were used to identify and validate novel serum markers. Annexin A3 (ANX A3) was found to be differentially expressed amongst different breast pathologies. The diagnostic value of serum ANX A3 was subsequently validated by ELISA in an independent serum set representing the three groups. Here, ANX A3 was significantly upregulated in the benign disease group sera compared with other groups (P < 0.0005). In addition, paired breast tissue immunostaining confirmed that ANX A3 was abundantly expressed in benign and to a lesser extent malignant neoplastic epithelium. Finally, we illustrated ANX A3 expression in cell culture lysates and conditioned media from neoplastic breast cell lines, and its role in neoplastic breast cell migration in vitro. This study confirms the novel role of ANX A3 as a mammary biomarker, regulator and therapeutic target.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
9 |
25
|
Skynner MJ, Gangadharan U, Coulton GR, Mason RM, Nikitopoulou A, Brown SD, Blanco G. Genetic mapping of the mouse neuromuscular mutation kyphoscoliosis. Genomics 1995; 25:207-13. [PMID: 7774920 DOI: 10.1016/0888-7543(95)80127-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ky mouse mutant, kyphoscoliosis, exhibits a degenerative muscle disease resulting in chronic deformation of the spinal column. Using an interspecific backcross segregating the ky mutation, we have mapped the ky locus to a small region of mouse chromosome 9. ky is nonrecombinant with the microsatellites D9Mit24 and D9Mit169 and lies in a conserved linkage group that encompasses human chromosome 3. s-Laminin (LAMS) and the gene for dystrophin-associated glycoprotein 1 (DAG1), which map to human chromosome 3, are both recombinant with ky, ruling them out as candidates.
Collapse
|
Comparative Study |
30 |
9 |