1
|
Paunesku T, Rajh T, Wiederrecht G, Maser J, Vogt S, Stojićević N, Protić M, Lai B, Oryhon J, Thurnauer M, Woloschak G. Biology of TiO2-oligonucleotide nanocomposites. NATURE MATERIALS 2003; 2:343-346. [PMID: 12692534 DOI: 10.1038/nmat875] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Accepted: 03/11/2003] [Indexed: 05/24/2023]
Abstract
Emerging areas of nanotechnology hold the promise of overcoming the limitations of existing technologies for intracellular manipulation. These new developments provide approaches for the creation of chemical-biological hybrid nanocomposites that can be introduced into cells and subsequently used to initiate intracellular processes or biochemical reactions. Such nanocomposites would advance medical biotechnology, just as they are improving microarray technology and imaging in biology and medicine, and introducing new possibilities in chemistry and material sciences. Here we describe the behaviour of 45-A nanoparticles of titanium dioxide semiconductor combined with oligonucleotide DNA into nanocomposites in vivo and in vitro. These nanocomposites not only retain the intrinsic photocatalytic capacity of TiO2 and the bioactivity of the oligonucleotide DNA (covalently attached to the TiO2 nanoparticle), but also possess the chemically and biologically unique new property of a light-inducible nucleic acid endonuclease, which could become a new tool for gene therapy.
Collapse
|
|
22 |
159 |
2
|
Paunesku T, Vogt S, Maser J, Lai B, Woloschak G. X-ray fluorescence microprobe imaging in biology and medicine. J Cell Biochem 2007; 99:1489-502. [PMID: 17006954 DOI: 10.1002/jcb.21047] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Characteristic X-ray fluorescence is a technique that can be used to establish elemental concentrations for a large number of different chemical elements simultaneously in different locations in cell and tissue samples. Exposing the samples to an X-ray beam is the basis of X-ray fluorescence microscopy (XFM). This technique provides the excellent trace element sensitivity; and, due to the large penetration depth of hard X-rays, an opportunity to image whole cells and quantify elements on a per cell basis. Moreover, because specimens prepared for XFM do not require sectioning, they can be investigated close to their natural, hydrated state with cryogenic approaches. Until several years ago, XFM was not widely available to bio-medical communities, and rarely offered resolution better then several microns. This has changed drastically with the development of third-generation synchrotrons. Recent examples of elemental imaging of cells and tissues show the maturation of XFM imaging technique into an elegant and informative way to gain insight into cellular processes. Future developments of XFM-building of new XFM facilities with higher resolution, higher sensitivity or higher throughput will further advance studies of native elemental makeup of cells and provide the biological community including the budding area of bionanotechnology with a tool perfectly suited to monitor the distribution of metals including nanovectors and measure the results of interactions between the nanovectors and living cells and tissues.
Collapse
|
Review |
18 |
141 |
3
|
Thurn KT, Arora H, Paunesku T, Wu A, Brown EMB, Doty C, Kremer J, Woloschak G. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 7:123-30. [PMID: 20887814 DOI: 10.1016/j.nano.2010.09.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 08/27/2010] [Accepted: 09/10/2010] [Indexed: 11/28/2022]
Abstract
UNLABELLED Nanotechnology has introduced many exciting new tools for the treatment of human diseases. One of the obstacles in its application to that end is the lack of a fundamental understanding of the interaction that occurs between nanoparticles and living cells. This report describes the quantitative analysis of the kinetics and endocytic pathways involved in the uptake of anatase titanium dioxide (TiO(2)) nanoparticles into prostate cancer PC-3M cells. The experiments were performed with TiO(2) nanoconjugates: 6-nm nanoparticles with surface-conjugated fluorescent Alizarin Red S. Results obtained by flow cytometry, fluorescence microscopy, and inductively coupled plasma-mass spectrometry confirmed a complex nanoparticle-cell interaction involving a variety of endocytic mechanisms. The results demonstrated that a temperature, concentration, and time-dependent internalization of the TiO(2) nanoparticles and nanoconjugates occurred via clathrin-mediated endocytosis, caveolin-mediated endocytosis, and macropinocytosis. FROM THE CLINICAL EDITOR The interaction and uptake of TiO(2) nanoparticles (6-nm) with prostate PC-3M cells was investigated and found to undergo temperature, time, and concentration dependent intracellular transport that was mediated through clathrin pits, caveolae, and macropinocytosis. These results suggest that nanoparticles may widely permeate through tissues and enter almost any active cell through a variety of biological mechanisms, posing both interesting opportunity and possible challenges for systemic use.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
122 |
4
|
Chapman S, Dobrovolskaia M, Farahani K, Goodwin A, Joshi A, Lee H, Meade T, Pomper M, Ptak K, Rao J, Singh R, Sridhar S, Stern S, Wang A, Weaver JB, Woloschak G, Yang L. Nanoparticles for cancer imaging: The good, the bad, and the promise. NANO TODAY 2013; 8:454-460. [PMID: 25419228 PMCID: PMC4240321 DOI: 10.1016/j.nantod.2013.06.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent advances in molecular imaging and nanotechnology are providing new opportunities for biomedical imaging with great promise for the development of novel imaging agents. The unique optical, magnetic, and chemical properties of materials at the scale of nanometers allow the creation of imaging probes with better contrast enhancement, increased sensitivity, controlled biodistribution, better spatial and temporal information, multi-functionality and multi-modal imaging across MRI, PET, SPECT, and ultrasound. These features could ultimately translate to clinical advantages such as earlier detection, real time assessment of disease progression and personalized medicine. However, several years of investigation into the application of these materials to cancer research has revealed challenges that have delayed the successful application of these agents to the field of biomedical imaging. Understanding these challenges is critical to take full advantage of the benefits offered by nano-sized imaging agents. Therefore, this article presents the lessons learned and challenges encountered by a group of leading researchers in this field, and suggests ways forward to develop nanoparticle probes for cancer imaging. Published by Elsevier Ltd.
Collapse
|
research-article |
12 |
104 |
5
|
Candas-Green D, Xie B, Huang J, Fan M, Wang A, Menaa C, Zhang Y, Zhang L, Jing D, Azghadi S, Zhou W, Liu L, Jiang N, Li T, Gao T, Sweeney C, Shen R, Lin TY, Pan CX, Ozpiskin OM, Woloschak G, Grdina DJ, Vaughan AT, Wang JM, Xia S, Monjazeb AM, Murphy WJ, Sun LQ, Chen HW, Lam KS, Weichselbaum RR, Li JJ. Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nat Commun 2020; 11:4591. [PMID: 32929084 PMCID: PMC7490264 DOI: 10.1038/s41467-020-18245-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Although the efficacy of cancer radiotherapy (RT) can be enhanced by targeted immunotherapy, the immunosuppressive factors induced by radiation on tumor cells remain to be identified. Here, we report that CD47-mediated anti-phagocytosis is concurrently upregulated with HER2 in radioresistant breast cancer (BC) cells and RT-treated mouse syngeneic BC. Co-expression of both receptors is more frequently detected in recurrent BC patients with poor prognosis. CD47 is upregulated preferentially in HER2-expressing cells, and blocking CD47 or HER2 reduces both receptors with diminished clonogenicity and augmented phagocytosis. CRISPR-mediated CD47 and HER2 dual knockouts not only inhibit clonogenicity but also enhance macrophage-mediated attack. Dual antibody of both receptors synergizes with RT in control of syngeneic mouse breast tumor. These results provide the evidence that aggressive behavior of radioresistant BC is caused by CD47-mediated anti-phagocytosis conjugated with HER2-prompted proliferation. Dual blockade of CD47 and HER2 is suggested to eliminate resistant cancer cells in BC radiotherapy.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
100 |
6
|
Thurn KT, Paunesku T, Wu A, Brown EM, Lai B, Vogt S, Maser J, Aslam M, Dravid V, Bergan R, Woloschak G. Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2-DNA nanoconjugate stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1318-1325. [PMID: 19242946 PMCID: PMC2787618 DOI: 10.1002/smll.200801458] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
75 |
7
|
Qin L, Fan M, Candas D, Jiang G, Papadopoulos S, Tian L, Woloschak G, Grdina DJ, Li JJ. CDK1 Enhances Mitochondrial Bioenergetics for Radiation-Induced DNA Repair. Cell Rep 2015; 13:2056-63. [PMID: 26670043 DOI: 10.1016/j.celrep.2015.11.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/04/2015] [Accepted: 11/02/2015] [Indexed: 01/01/2023] Open
Abstract
Nuclear DNA repair capacity is a critical determinant of cell fate under genotoxic stress conditions. DNA repair is a well-defined energy-consuming process. However, it is unclear how DNA repair is fueled and whether mitochondrial energy production contributes to nuclear DNA repair. Here, we report a dynamic enhancement of oxygen consumption and mitochondrial ATP generation in irradiated normal cells, paralleled with increased mitochondrial relocation of the cell-cycle kinase CDK1 and nuclear DNA repair. The basal and radiation-induced mitochondrial ATP generation is reduced significantly in cells harboring CDK1 phosphorylation-deficient mutant complex I subunits. Similarly, mitochondrial ATP generation and nuclear DNA repair are also compromised severely in cells harboring mitochondrially targeted, kinase-deficient CDK1. These results demonstrate a mechanism governing the communication between mitochondria and the nucleus by which CDK1 boosts mitochondrial bioenergetics to meet the increased cellular fuel demand for DNA repair and cell survival under genotoxic stress conditions.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
69 |
8
|
Chen S, Deng J, Yuan Y, Flachenecker C, Mak R, Hornberger B, Jin Q, Shu D, Lai B, Maser J, Roehrig C, Paunesku T, Gleber SC, Vine DJ, Finney L, VonOsinski J, Bolbat M, Spink I, Chen Z, Steele J, Trapp D, Irwin J, Feser M, Snyder E, Brister K, Jacobsen C, Woloschak G, Vogt S. The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:66-75. [PMID: 24365918 PMCID: PMC3874019 DOI: 10.1107/s1600577513029676] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/28/2013] [Indexed: 05/20/2023]
Abstract
Hard X-ray fluorescence microscopy is one of the most sensitive techniques for performing trace elemental analysis of biological samples such as whole cells and tissues. Conventional sample preparation methods usually involve dehydration, which removes cellular water and may consequently cause structural collapse, or invasive processes such as embedding. Radiation-induced artifacts may also become an issue, particularly as the spatial resolution increases beyond the sub-micrometer scale. To allow imaging under hydrated conditions, close to the `natural state', as well as to reduce structural radiation damage, the Bionanoprobe (BNP) has been developed, a hard X-ray fluorescence nanoprobe with cryogenic sample environment and cryo transfer capabilities, dedicated to studying trace elements in frozen-hydrated biological systems. The BNP is installed at an undulator beamline at sector 21 of the Advanced Photon Source. It provides a spatial resolution of 30 nm for two-dimensional fluorescence imaging. In this first demonstration the instrument design and motion control principles are described, the instrument performance is quantified, and the first results obtained with the BNP on frozen-hydrated whole cells are reported.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
64 |
9
|
Jin Q, Paunesku T, Lai B, Gleber SC, Chen SI, Finney L, Vine D, Vogt S, Woloschak G, Jacobsen C. Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy. J Microsc 2016; 265:81-93. [PMID: 27580164 PMCID: PMC5217071 DOI: 10.1111/jmi.12466] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 01/20/2023]
Abstract
Trace metals play important roles in biological function, and x-ray fluorescence microscopy (XFM) provides a way to quantitatively image their distribution within cells. The faithfulness of these measurements is dependent on proper sample preparation. Using mouse embryonic fibroblast NIH/3T3 cells as an example, we compare various approaches to the preparation of adherent mammalian cells for XFM imaging under ambient temperature. Direct side-by-side comparison shows that plunge-freezing-based cryoimmobilization provides more faithful preservation than conventional chemical fixation for most biologically important elements including P, S, Cl, K, Fe, Cu, Zn and possibly Ca in adherent mammalian cells. Although cells rinsed with fresh media had a great deal of extracellular background signal for Cl and Ca, this approach maintained cells at the best possible physiological status before rapid freezing and it does not interfere with XFM analysis of other elements. If chemical fixation has to be chosen, the combination of 3% paraformaldehyde and 1.5 % glutaraldehyde preserves S, Fe, Cu and Zn better than either fixative alone. When chemically fixed cells were subjected to a variety of dehydration processes, air drying was proved to be more suitable than other drying methods such as graded ethanol dehydration and freeze drying. This first detailed comparison for x-ray fluorescence microscopy shows how detailed quantitative conclusions can be affected by the choice of cell preparation method.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
56 |
10
|
Raha S, Paunesku T, Woloschak G. Peptide-mediated cancer targeting of nanoconjugates. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 3:269-81. [PMID: 21046660 DOI: 10.1002/wnan.121] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Targeted use of nanoparticles in vitro, in cells, and in vivo requires nanoparticle surface functionalization. Moieties that can be used for such a purpose include small molecules as well as polymers made of different biological and organic materials. Short amino acid polymers, peptides, can often rival target binding avidity of much larger molecules. At the same time, peptides are smaller than most nanoparticles and thus allow for multiple nanoparticle modifications and creation of pluripotent nanoparticles. Most nanoparticles provide multiple binding sites for different cargo and targeting peptides which can be used for the development of novel approaches for cancer targeting, diagnostics, and therapy. In this review, we will focus on peptides which have been used for the preparation of different nanoparticles designed for cancer research.
Collapse
|
Review |
15 |
43 |
11
|
Gerin CG, Madueke IC, Perkins T, Hill S, Smith K, Haley B, Allen SA, Garcia RP, Paunesku T, Woloschak G. Combination strategies for repair, plasticity, and regeneration using regulation of gene expression during the chronic phase after spinal cord injury. Synapse 2011; 65:1255-81. [DOI: 10.1002/syn.20903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
14 |
35 |
12
|
Akakuru OU, Iqbal MZ, Saeed M, Liu C, Paunesku T, Woloschak G, Hosmane NS, Wu A. The Transition from Metal-Based to Metal-Free Contrast Agents for T1 Magnetic Resonance Imaging Enhancement. Bioconjug Chem 2019; 30:2264-2286. [PMID: 31380621 DOI: 10.1021/acs.bioconjchem.9b00499] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide. Some of these CAs have led to cytotoxicities such as the incurable Nephrogenic Systemic Fibrosis (NSF), resulting in their removal from the market. On the other hand, CAs based on organic nitroxide radicals, by virtue of their structural composition, are metal free and without the aforementioned drawbacks. They also have improved biocompatibility, ease of functionalization, and long blood circulation times, and have been proven to offer tissue contrast enhancement with longitudinal relaxivities comparable with those for the metal-containing CAs. Thus, this Review highlights the recent progress in metal-based CAs and their shortcomings. In addition, the remarkable goals achieved by the organic nitroxide radical CAs in the enhancement of MR images have also been discussed extensively. The focal point of this Review is to emphasize or demonstrate the crucial need for transition into the use of organic nitroxide radicals-metal-free CAs-as against the metal-containing CAs, with the aim of achieving safer application of MRI for early disease diagnosis and image-guided therapy.
Collapse
|
Review |
6 |
30 |
13
|
Eldridge A, Fan M, Woloschak G, Grdina DJ, Chromy BA, Li JJ. Manganese superoxide dismutase interacts with a large scale of cellular and mitochondrial proteins in low-dose radiation-induced adaptive radioprotection. Free Radic Biol Med 2012; 53:1838-47. [PMID: 23000060 PMCID: PMC3494792 DOI: 10.1016/j.freeradbiomed.2012.08.589] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022]
Abstract
The cellular adaptive response to certain low-level genotoxic stresses, including exposure to low-dose ionizing radiation (LDIR), shows promise as a tool to enhance radioprotection in normal cells but not in tumor cells. Manganese superoxide dismutase (MnSOD), a fundamental mitochondrial antioxidant in mammalian cells, plays a key role in the LDIR-induced adaptive response. In this study, we aimed to elucidate the signaling network associated with MnSOD-induced radiation protection. A MnSOD-interacting protein profile was established in LDIR-treated human skin cells. Human skin keratinocytes (HK18) were irradiated with a single dose of LDIR (10 cGy X-ray) and the cell lysates were immunoprecipitated using α-MnSOD and applied to two different gel-based proteomic experiments followed by mass spectrometry for protein identification. Analysis of the profiles of MnSOD-interacting partners before and after LDIR detected various patterns of MnSOD protein-protein interactions in response to LDIR. Interestingly, many of the MnSOD-interacting proteins are known to have functions related to mitochondrial regulation of cell metabolism, apoptosis, and DNA repair. These results provide evidence indicating that in addition to the enzymatic action of detoxifying superoxide, the antioxidant MnSOD may function as a signaling regulator in stress-induced adaptive protection through cell survival pathways.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
27 |
14
|
Refaat T, Sachdev S, Sathiaseelan V, Helenowski I, Abdelmoneim S, Pierce MC, Woloschak G, Small W, Mittal B, Kiel KD. Hyperthermia and radiation therapy for locally advanced or recurrent breast cancer. Breast 2015; 24:418-25. [PMID: 25900383 DOI: 10.1016/j.breast.2015.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/27/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION This study aims to report the outcome and toxicity of combined hyperthermia (HT) and radiation therapy (RT) in treatment of locally advanced or loco-regionally recurrent breast cancer. PATIENTS AND METHODS Patients treated with HT and RT from January 1991 to December 2007 were reviewed. RT doses for previously irradiated patients were > 40 Gy and for RT naïve patients > 60 Gy, at 1.8-2 Gy/day. HT was planned for 2 sessions/week, immediately after RT, for a minimum of 20 min and for > 4 sessions. Superficial or interstitial applicators were used with temperature measured by superficial or interstitial thermistors based on target thickness. HT treatment was assessed by thermal equivalent dose (TED), > 42.5 °C and > 43 °C. Endpoints included treatment response, lack of local progression (local control), and survival. RESULTS 127 patients received HT and RT to 167 sites. These included the intact breast (24.4%), chest wall/skin (67.7%), and breast/chest wall and nodes (7.9%). At a median follow-up of 13 months (mean 30 ± 38), improved overall survival was significantly associated with increasing RT dose (p < 0.0001), median TED 42.5 °C ≥ 200 min (p = 0.003), and local control (p = 0.0002). Local control at last follow-up was seen in 55.1% of patients. Complete response was significantly associated with median TED 42.5 °C ≥ 200 min (p = 0.002) and median TED 43 °C ≥ 100 min (p = 0.03). CONCLUSION HT and RT are effective for locally advanced or recurrent breast cancer in patients that have been historically difficult to treat by RT alone. Over 50% of patients achieved control of locoregional disease. Overall survival was improved with local control.
Collapse
|
Journal Article |
10 |
27 |
15
|
Deng J, Virmani S, Young J, Harris K, Yang GY, Rademaker A, Woloschak G, Omary RA, Larson AC. Diffusion-weighted PROPELLER MRI for quantitative assessment of liver tumor necrotic fraction and viable tumor volume in VX2 rabbits. J Magn Reson Imaging 2008; 27:1069-76. [PMID: 18407540 PMCID: PMC2925233 DOI: 10.1002/jmri.21327] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To test the hypothesis that diffusion-weighted (DW)-PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) MRI provides more accurate liver tumor necrotic fraction (NF) and viable tumor volume (VTV) measurements than conventional DW-SE-EPI (spin echo echo-planar imaging) methods. MATERIALS AND METHODS Our institutional Animal Care and Use Committee approved all experiments. In six rabbits implanted with 10 VX2 liver tumors, DW-PROPELLER and DW-SE-EPI scans were performed at contiguous axial slice positions covering each tumor volume. Apparent diffusion coefficient maps of each tumor were used to generate spatially resolved tumor viability maps for NF and VTV measurements. We compared NF, whole tumor volume (WTV), and VTV measurements to corresponding reference standard histological measurements based on correlation and concordance coefficients and the Bland-Altman analysis. RESULTS DW-PROPELLER generally improved image quality with less distortion compared to DW-SE-EPI. DW-PROPELLER NF, WTV, and VTV measurements were strongly correlated and satisfactorily concordant with histological measurements. DW-SE-EPI NF measurements were weakly correlated and poorly concordant with histological measurements. Bland-Altman analysis demonstrated that DW-PROPELLER WTV and VTV measurements were less biased from histological measurements than the corresponding DW-SE-EPI measurements. CONCLUSION DW-PROPELLER MRI can provide spatially resolved liver tumor viability maps for accurate NF and VTV measurements, superior to DW-SE-EPI approaches. DW-PROPELLER measurements may serve as a noninvasive surrogate for pathology, offering the potential for more accurate assessments of therapy response than conventional anatomic size measurements.
Collapse
|
Comparative Study |
17 |
27 |
16
|
Liu SC, Murley JS, Woloschak G, Grdina DJ. Repression of c-myc gene expression by the thiol and disulfide forms of the cytoprotector amifostine. Carcinogenesis 1997; 18:2457-9. [PMID: 9450496 DOI: 10.1093/carcin/18.12.2457] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The clinically approved cytoprotector amifostine, designated WR-2721, [S-2-(3-aminopropylamino)ethylphosphorothioic acid], protects against both radiation and drug-induced mutagenesis in animal systems. These effects extend over a wide concentration range making amifostine a strong candidate for evaluation as a possible cancer chemopreventive agent. To better identify and develop potential intermediate biomarkers for chemoprevention at the molecular level we applied the technique of differential display RT-PCR to assess the effects of both the thiol (SH), i.e. WR1065 and the disulfide (SS), i.e. WR-33278, metabolites of amifostine on gene expression in CHO-AA8 cells. Cells were exposed to either 40 microM or 4 mM of each agent for 30 min, and subsequent changes in gene expression were identified and contrasted to that found in corresponding untreated control cells. One band that showed a differential response was sequenced and was found to have 78% homology with a segment of the human pHL-1 cDNA clone contained in GenBank. This clone contains a COX III mitochondrial DNA insert and two exons of human c-myc. Northern blot analyses were performed by using the cloned human c-myc exon 1 probe to confirm whether c-myc gene expression was affected. Repression of c-myc expression was observed under all of the conditions evaluated. An exposure of cells to 40 microM of the disulfide form of amifostine was the most effective in repressing c-myc, i.e. 27% of control level. A concentration of 4 mM of the disulfide form reduced gene expression to 45% of the control level, while the thiol form was less effective, with 4 mM and 40 microM concentrations reducing c-myc gene expression to 65% and 46% of control levels, respectively.
Collapse
|
|
28 |
27 |
17
|
Jin C, Qin L, Shi Y, Candas D, Fan M, Lu CL, Vaughan ATM, Shen R, Wu LS, Liu R, Li RF, Murley JS, Woloschak G, Grdina DJ, Li JJ. CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection. Free Radic Biol Med 2015; 81:77-87. [PMID: 25578653 PMCID: PMC4359946 DOI: 10.1016/j.freeradbiomed.2014.12.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 12/20/2014] [Accepted: 12/28/2014] [Indexed: 01/08/2023]
Abstract
Mammalian cells are able to sense environmental oxidative and genotoxic conditions such as the environmental low-dose ionizing radiation (LDIR) present naturally on the earth's surface. The stressed cells then can induce a so-called radioadaptive response with an enhanced cellular homeostasis and repair capacity against subsequent similar genotoxic conditions such as a high dose radiation. Manganese superoxide dismutase (MnSOD), a primary mitochondrial antioxidant in mammals, has long been known to play a crucial role in radioadaptive protection by detoxifying O2(•-) generated by mitochondrial oxidative phosphorylation. In contrast to the well-studied mechanisms of SOD2 gene regulation, the mechanisms underlying posttranslational regulation of MnSOD for radioprotection remain to be defined. Herein, we demonstrate that cyclin D1/cyclin-dependent kinase 4 (CDK4) serves as the messenger to deliver the stress signal to mitochondria to boost mitochondrial homeostasis in human skin keratinocytes under LDIR-adaptive radioprotection. Cyclin D1/CDK4 relocates to mitochondria at the same time as MnSOD enzymatic activation peaks without significant changes in total MnSOD protein level. The mitochondrial-localized CDK4 directly phosphorylates MnSOD at serine-106 (S106), causing enhanced MnSOD enzymatic activity and mitochondrial respiration. Expression of mitochondria-targeted dominant negative CDK4 or the MnSOD-S106 mutant reverses LDIR-induced mitochondrial enhancement and adaptive protection. The CDK4-mediated MnSOD activation and mitochondrial metabolism boost are also detected in skin tissues of mice receiving in vivo whole-body LDIR. These results demonstrate a unique CDK4-mediated mitochondrial communication that allows cells to sense environmental genotoxic stress and boost mitochondrial homeostasis by enhancing phosphorylation and activation of MnSOD.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
26 |
18
|
Larson AC, Rhee TK, Deng J, Wang D, Sato KT, Salem R, Paunesku T, Woloschak G, Mulcahy MF, Li D, Omary RA. Comparison between intravenous and intraarterial contrast injections for dynamic 3D MRI of liver tumors in the VX2 rabbit model. J Magn Reson Imaging 2006; 24:242-7. [PMID: 16758469 DOI: 10.1002/jmri.20623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To test the hypothesis that catheter-directed intraarterial (IA) contrast agent injection increases tumor enhancement and conspicuity compared to intravenous (IV) injection. MATERIALS AND METHODS Eight VX2 liver tumors were grown in five rabbits. After positioning a catheter in the hepatic artery, we performed 3D inversion recovery GRE MRI after IA and IV gadopentetate-dimeglumine contrast injections at doses of 0.04 and 0.1 mmol/kg, respectively. Peak enhancement (signal-to-noise ratio (SNR)) and conspicuity (contrast-to-noise ratio (CNR)) were measured for each acquisition. RESULTS The peak SNR and CNR were 21.7 +/- 5.8 and 17.0 +/- 4.8 (mean +/- SD) after IA injection, and 16.9 +/- 10.2 and 6.2 +/- 2.6 after IV injection. The IA CNR was significantly greater than the IV CNR (P < 0.05), with a >60% increase in CNR for each tumor. For six of the eight tumors the IA SNR was greater than the IV SNR, but statistical significance was not achieved due to the small sample size of the study (P = 0.07). CONCLUSION We demonstrated the feasibility of using IA injection techniques to improve tumor conspicuity. This strategy could be employed to enhance the detection of small liver tumors or to conserve contrast agent in future MRI-guided transcatheter liver therapies.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
20 |
19
|
Murley JS, Kataoka Y, Miller RC, Li JJ, Woloschak G, Grdina DJ. SOD2-mediated effects induced by WR1065 and low-dose ionizing radiation on micronucleus formation in RKO human colon carcinoma cells. Radiat Res 2010; 175:57-65. [PMID: 21175348 DOI: 10.1667/rr2349.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RKO36 cells exposed to either WR1065 or 10 cGy X rays show elevated SOD2 gene expression and SOD2 enzymatic activity. Cells challenged at this time with 2 Gy exhibit enhanced radiation resistance. This phenomenon has been identified as a delayed radioprotective effect or an adaptive response when induced by thiols or low-dose radiation, respectively. In this study we investigated the relative effectiveness of both WR1065 and low-dose radiation in reducing the incidence of radiation-induced micronucleus formation in binucleated RKO36 human colon carcinoma cells. The role of SOD2 in this process was assessed by measuring changes in enzymatic activity as a function of the inducing agent used, the level of protection afforded, and the inhibitory effects of short interfering RNA (SOD2 siRNA). Both WR1065 and 10 cGy X rays effectively induced a greater than threefold elevation in SOD2 activity 24 h after exposure. Cells irradiated at this time with 2 Gy exhibited a significant resistance to micronucleus formation (P < 0.05; Student's two-tailed t test). This protective effect was significantly inhibited in cells transfected with SOD2 siRNA. SOD2 played an important role in the adaptive/delayed radioprotective response by inhibiting the initiation of a superoxide anion-induced ROS cascade leading to enhanced mitochondrial and nuclear damages.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
17 |
20
|
Verma A, Adhikary A, Woloschak G, Dwarakanath BS, Papineni RVL. A combinatorial approach of a polypharmacological adjuvant 2-deoxy-D-glucose with low dose radiation therapy to quell the cytokine storm in COVID-19 management. Int J Radiat Biol 2020; 96:1323-1328. [PMID: 32910699 DOI: 10.1080/09553002.2020.1818865] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pandemic disease and is the major cause of deaths worldwide. The clinical complexities (inflammation, cytokine storm, and multi-organ dysfunction) associated with COVID-19 poses constraints to effective management of critically ill COVID-19 patients. Low dose radiation therapy (LDRT) has been evaluated as a potential therapeutic modality for COVID-19 pneumonia. However, due to heterogeneity in disease manifestation and inter-individual variations, effective planning for LDRT is limited for this large-scale event. 2-deoxy-D-glucose (2-DG) has emerged as a polypharmacological agent for COVID-19 treatment due to its effects on the glycolytic pathway, anti-inflammatory action, and interaction with viral proteins. We suggest that 2-DG will be a potential adjuvant to enhance the efficacy of LDRT in the treatment of COVID-19 pneumonia. Withal, azido analog of 2-DG, 2-azido-2-DG can produce rapid catastrophic oxidative stress and quell the cytokine storm in critically ill COVID-19 patients.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
16 |
21
|
Virmani S, Wang D, Harris KR, Ryu RK, Sato KT, Lewandowski RJ, Nemcek AA, Szolc-Kowalska B, Woloschak G, Salem R, Larson AC, Omary RA. Comparison of transcatheter intraarterial perfusion MR imaging and fluorescent microsphere perfusion measurements during transcatheter arterial embolization of rabbit liver tumors. J Vasc Interv Radiol 2008; 18:1280-6. [PMID: 17911519 DOI: 10.1016/j.jvir.2007.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Transcatheter intraarterial perfusion (TRIP) magnetic resonance (MR) imaging is clinically used in the interventional MR imaging setting to verify distribution of injected embolic or chemoembolic material during liver-directed transcatheter therapies and to monitor reductions in perfusion. The accuracy of this technique remains unknown. In the present study, rabbit VX2 liver tumors were used to test the hypothesis that TRIP MR imaging accurately measures changes in tumor perfusion during transcatheter arterial embolization (TAE), with injection of fluorescent microspheres used as the gold-standard technique. MATERIALS AND METHODS Five New Zealand White rabbits were used for this study (two donor rabbits and three with VX2 liver tumors). In three rabbits with implanted VX2 liver tumors, catheters were superselectively placed under digital subtraction angiographic guidance into the left hepatic artery supplying the targeted tumor. Fluorescent microspheres were injected into each rabbit's left ventricle before and after TAE. TRIP MR images were obtained at baseline and after embolizations for all rabbits with intraarterial injections of 2.5% gadopentetate dimeglumine solution. Linear regression was used to compare relative reductions in tumor perfusion between TRIP MR imaging and fluorescent microspheres. Results were considered statistically significant at a P value less than .05. RESULTS There was good correlation between TRIP MR imaging and fluorescent microsphere measurements of reduction in tumor perfusion (r = 0.722, P < .012). CONCLUSIONS TRIP MR imaging provides accurate semiquantitative measurement of perfusion reduction during TAE in rabbit liver tumors.
Collapse
|
Validation Study |
17 |
15 |
22
|
Wang D, Virmani S, Tang R, Szolc-Kowalska B, Woloschak G, Omary RA, Larson AC. Four-dimensional transcatheter intraarterial perfusion (TRIP)-MRI for monitoring liver tumor embolization in VX2 rabbits. Magn Reson Med 2009; 60:970-5. [PMID: 18816818 DOI: 10.1002/mrm.21678] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcatheter intraarterial perfusion (TRIP)-MRI is an intraprocedural technique to iteratively monitor liver tumor perfusion changes during transcatheter arterial embolization (TAE) and chemoembolization (TACE). However, previous TRIP-MRI approaches using two-dimensional (2D) T(1)-weighted saturation-recovery gradient-recalled echo (GRE) sequences provided only limited spatial coverage and limited capacity for accurate perfusion quantification. In this preclinical study, a quantitative 4D TRIP-MRI technique (serial iterative 3D volumetric perfusion imaging) with rigorous radiofrequency (RF) B(1) field calibration and dynamic tissue longitudinal relaxation rate R(1) measurement is presented for monitoring intraprocedural liver tumor perfusion during TAE. 4D TRIP-MRI and TAE were performed in five rabbits with eight VX2 liver tumors (N = 8). After B(1) calibrated baseline and dynamic R(1) quantification, subsequent tissue contrast agent concentration time curves were derived. A single-input flow-limited pharmacokinetic model and peak gradient method were applied for perfusion analysis. The perfusion Frho reduced significantly from pre-TAE 0.477 (95% confidence interval [CI]: 0.384-0.570) to post-TAE 0.131 (95% CI: 0.080-0.183 ml/min/ml, P < 0.001).
Collapse
|
Journal Article |
16 |
15 |
23
|
Poropatich K, Hernandez D, Fontanarosa J, Brown K, Woloschak G, Paintal A, Raparia K, Samant S. Peritumoral cuffing by T-cell tumor-infiltrating lymphocytes distinguishes HPV-related oropharyngeal squamous cell carcinoma from oral cavity squamous cell carcinoma. J Oral Pathol Med 2017. [PMID: 28632936 DOI: 10.1111/jop.12605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND It is unclear why human papillomavirus (HPV)-related head and neck squamous cell carcinoma (HNSCC) has improved clinical behavior compared to HPV-negative HNSCC. We sought to better characterize the immune microenvironment of tongue cancers by examining the CD3 and CD8 TIL pattern in HPV-positive and HPV-negative tumors. METHODS Histologic sections from 40 oral tongue and oropharyngeal cases were analyzed (n=21 HPV DNA-positive, n=19 HPV DNA-negative). CD3 and CD8 T-cell immunostaining were performed on whole-slide sections to quantify tumor-infiltrating lymphocyte (TIL) density and assess its morphology. RESULTS A subset of cases (HPV-positive) displayed a unique TIL pattern consisting of circumferential peritumoral population T cells, which was absent in the HPV-negative cases. The presence of peritumoral cuffing was strongly predictive of improved recurrence-free survival compared to cases that lacked this morphologic pattern of immune infiltrate. Four HPV-positive cases lacked the pattern, including two cases with disease recurrence. CONCLUSIONS For the first time, we show an architectural pattern of immune infiltrate in HNSCC is seen exclusively in HPV-positive patients with improved recurrence-free survival and suggests an organized host immunological response contributes to disease control.
Collapse
|
Journal Article |
8 |
14 |
24
|
Zhang Z, Mascheri N, Dharmakumar R, Fan Z, Paunesku T, Woloschak G, Li D. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging. Cytotherapy 2009; 11:43-51. [PMID: 18956269 DOI: 10.1080/14653240802420243] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. METHODS The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 microg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. RESULTS SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75+/-0.11 pg Fe/cell (P<0.05 versus control). DISCUSSION This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies.
Collapse
|
Journal Article |
16 |
13 |
25
|
Haley B, Wang Q, Wanzer B, Vogt S, Finney L, Yang PL, Paunesku T, Woloschak G. Past and future work on radiobiology mega-studies: a case study at Argonne National Laboratory. HEALTH PHYSICS 2011; 100:613-21. [PMID: 22004930 PMCID: PMC3784403 DOI: 10.1097/hp.0b013e3181febad3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Between 1952 and 1992, more than 200 large radiobiology studies were conducted in research institutes throughout Europe, North America, and Japan to determine the effects of external irradiation and internal emitters on the lifespan and tissue toxicity development in animals. At Argonne National Laboratory, 22 external beam studies were conducted on nearly 700 beagle dogs and 50,000 mice between 1969 and 1992. These studies helped to characterize the effects of neutron and gamma irradiation on lifespan, tumorigenesis, and mutagenesis across a range of doses and dosing patterns. The records and tissues collected at Argonne during that time period have been carefully preserved and redisseminated. Using these archived data, ongoing statistical work has been done and continues to characterize quality of radiation, dose, dose rate, tissue, and gender-specific differences in the radiation responses of exposed animals. The ongoing application of newly-developed molecular biology techniques to the archived tissues has revealed gene-specific mutation rates following exposure to ionizing irradiation. The original and ongoing work with this tissue archive is presented here as a case study of a more general trend in the radiobiology megastudies. These experiments helped form the modern understanding of radiation responses in animals and continue to inform development of new radiation models. Recent archival efforts have facilitated open access to the data and materials produced by these studies, and so a unique opportunity exists to expand this continued research.
Collapse
|
research-article |
14 |
13 |