1
|
Haleem MIA, Gaballa MMS, El-Far AH, Taie HAA, Elshopakey GE. Mitigating impact of Glycyrrhiza glabra on virulent Newcastle disease virus challenge in chickens: clinical studies, histopathological alterations and molecular docking. Vet Res Commun 2024; 48:3823-3845. [PMID: 39316350 PMCID: PMC11538193 DOI: 10.1007/s11259-024-10530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Newcastle disease (ND) is widely regarded as one of the most virulent and destructive viral infections that create chaos in the poultry industry and cause widespread epidemics and consequentially debilitating economic losses on a global scale in terms of chicken products. The current experiment evaluates the protective effect of Glycyrrhiza glabra ( G. glabra) against the Newcastle disease virus (NDV) in chickens. Ninety (90) 1-day-old SPF chicks were treated according to ethical approval (BUFVTM 05-02-22) as follows (1) non-treated non-challenged control group; (2) NDV group: Challenged with genotype VII ND virus; and (3) LE/NDV group: Challenged with the virus and intermittently treated with powdered extract of G. glabra roots (LE) in drinking water (0.5 g/L) before and after viral challenge. RESULT The water medication of NDV-challenged chicks has resulted in a significant decrease in the severity of clinical symptoms, morbidity, and mortality rates, as well as the quantity of virus shed, compared with the NDV group. Treatment with LE has led to a significant reduction in serum ALT and AST activities, blood glucose level, urea, and creatinine, and significant restoration of serum proteins. In addition, the treatment has resulted in a decrease in MDA and NO levels, as well as an increase in T-SOD and catalase activities compared with untreated challenged chicks. LE decreased IFN-γ and TLR-3 gene expression in comparison with the NDV group. The treated challenged birds had fewer macroscopically detectable lesions in their respiratory, digestive, and lymphoid organs than the untreated challenged birds. Microscopically, the LE/NDV group exhibited mild to moderate pathological changes in the respiratory and digestive systems as well as lymphoid tissues, in contrast to the NDV group, which exhibited severe pathological changes. Furthermore, molecular docking assessment proved the efficacy of G. glabra against viral proliferation and invasion. CONCLUSION We concluded that Glycyrrhiza glabra powdered extract at a dose of 0.5 g/L drinking water can effectively mitigate the debilitating effects of Newcastle disease in chickens.
Collapse
|
2
|
Elshopakey GE, Abdelwarith AA, Younis EM, Davies SJ, Elbahnaswy S. Alleviating effects of Gracilaria verrucosa supplement on non-specific immunity, antioxidant capacity and immune-related genes of pacific white shrimp (Litopenaeus vannamei) provoked with white spot syndrome virus. BMC Vet Res 2024; 20:487. [PMID: 39455973 PMCID: PMC11515225 DOI: 10.1186/s12917-024-04304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Our work evaluated the possible underlying roles of dietary dried seaweed (Gracilaria verrucosa; GV) on the inherent immune response, antioxidant capacity, immune-related gene expression, and protection of whiteleg shrimp (Litopenaeus vannamei) contra white spot syndrome virus (WSSV). Three hundred and sixty healthy L. vannamei (15.26 g ± 1.29 g) were graded into four supplemental groups ( Triplicate/group) and fed with diets including 0 (control), 2, 4, and 8 g GV (kg diet) -1 for 21 days. Following the feeding period, each group of shrimp received an intramuscular WSSV injection (1.4 × 106 copies/ml). Hemolymph and gills samples were collected before and after the challenge with WSSV. Notably, the administration of dietary GV significantly enhanced the innate immune parameters of pacific white shrimp including total hemocyte count (THC), phagocytosis, phenoloxidase activity, reactive oxygen species (ROS) production, and lysozyme activity before and after challenge with WSSV. Additionally, dietary supplementation of 4, and 8 g of GV (kg diet)-1 remarkably elevated ACP, AKP, SOD, GPx, and catalase activities along with a decrease in the MDA level in gills of shrimp before and post-WSSV challenge. In response to the GV supplement, significant upregulation of expression of ALF1, CRU1, PEN4, and CTL with downregulation of TRAF6, STAT, TLR1, and NOS genes was recorded in the gills tissue before and post-challenge with WSSV, especially at a dose of 8.0 GV g kg - 1. Dietary inoculated shrimp with GV revealed notably higher survival percentages after being challenged with WSSV. Conclusively, these data indicate that Gracilaria verrucosa can be recommended as a valuable supplemented seaweed to stimulate the innate immunity and enhance the health of Litopenaeus vannamei against viral infection.
Collapse
|
3
|
Elbahnaswy S, Elshopakey GE, Abdelwarith AA, Younis EM, Davies SJ, El-Son MAM. Immune protective, stress indicators, antioxidant, histopathological status, and heat shock protein gene expression impacts of dietary Bacillus spp. against heat shock in Nile tilapia, Oreochromis niloticus. BMC Vet Res 2024; 20:469. [PMID: 39415213 PMCID: PMC11481596 DOI: 10.1186/s12917-024-04303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
This research evaluated the efficacy of mixed Bacillus strains probiotic supplements in mitigating acute thermal-induced stress in Nile tilapia (Oreochromis niloticus). Three experimental fish groups involved 135 Nile tilapia (49 ± 2 g); one control (no added probiotics), 0.5, and 1% of selected Bacillus strains (B. subtilis, B. licheniformis, and B. pumilus) for 58 days. After the feeding period, growth parameters, immunological parameters, stress biochemical markers, and antioxidant parameters in addition to genes related to stress and histopathological changes in fish, were assessed; subsequently subjected to heat shock at 36 ± 0.5 ◦C for 2 h. Before the heat challenge, our results exhibited a marked increase in the growth efficacy (P < 0.05), lower marked serum levels of triglycerides and cholesterol, and tissue malondialdehyde (MDA) levels along with significantly increased superoxide dismutase (SOD) and catalase (CAT) enzymes activity in fish-fed Bacillus probiotic at 0.5% concerning the control group (P < 0.05). There were no significant changes in the serum levels of glucose, cortisol, lactate, phagocytic activity, respiratory burst (ROS), total immunoglobulin Ig, alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total protein, albumin, globulin, uric acid, urea, creatinine, as well as HSP70, GST, and GPx mRNA expression in most of the probiotic groups compared to the control group (P > 0.05). When Nile tilapia was exposed to heat stress, supplementation with Bacillus probiotic in the diet significantly decreased most of the indices related to serum biochemical (ALT (P < 0.01; P < 0.001), AST (P < 0.01), LDH (P < 0.01), urea (P < 0.05), and creatinine (P < 0.01)), triglycerides (P < 0.001; (P < 0.01)), cholesterol (P < 0.01; (P < 0.05)), glucose (P < 0.001), and cortisol (P < 0.01; (P < 0.05)), with tissue oxidative stress MDA levels (P < 0.05), and HSP70 mRNA expression (P < 0.01; P < 0.001), aligned with the stressed control group. In addition, a notable upsurge in the total protein, albumin, globulin, phagocytic and ROS activities, and total Ig, as well as the enzymatic antioxidant ability (SOD, CAT) (P < 0.01), with GST and GPx mRNA expression (P < 0.05; P < 0.01), were shown in fish-fed Bacillus spp. post-exposure compared with the stressed control group. Besides, no histopathological alterations were revealed in the spleen and brain of fish pre- and post-heat exposure. According to our findings, diet supplementation of Bacillus species has the potential to combat the suppressive effects of heat shock in Nile tilapia.
Collapse
|
4
|
Elghareeb MM, Elshopakey GE, Hendam BM, Rezk S, Lashen S. Retraction Note: Synergistic effects of Ficus Carica extract and extra virgin olive oil against oxidative injury, cytokine liberation, and inflammation mediated by 5-Fluorouracil in cardiac and renal tissues of male albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59658. [PMID: 39390307 DOI: 10.1007/s11356-024-35285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
5
|
Lokman MS, Kassab RB, Salem FAM, Elshopakey GE, Hussein A, Aldarmahi AA, Theyab A, Alzahrani KJ, Hassan KE, Alsharif KF, Albrakati A, Tayyeb JZ, El-Khadragy M, Alkhateeb MA, Al-Ghamdy AO, Althagafi HA, Abdel Moneim AE, El-Hennamy RE. Asiatic acid rescues intestinal tissue by suppressing molecular, biochemical, and histopathological changes associated with the development of ulcerative colitis. Biosci Rep 2024; 44:BSR20232004. [PMID: 38699907 PMCID: PMC11130539 DOI: 10.1042/bsr20232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Asiatic acid (AA) is a polyphenolic compound with potent antioxidative and anti-inflammatory activities that make it a potential choice to attenuate inflammation and oxidative insults associated with ulcerative colitis (UC). Hence, the present study aimed to evaluate if AA can attenuate molecular, biochemical, and histological alterations in the acetic acid-induced UC model in rats. To perform the study, five groups were applied, including the control, acetic acid-induced UC, UC-treated with 40 mg/kg aminosalicylate (5-ASA), UC-treated with 20 mg/kg AA, and UC-treated with 40 mg/kg AA. Levels of different markers of inflammation, oxidative stress, and apoptosis were studied along with histological approaches. The induction of UC increased the levels of lipid peroxidation (LPO) and nitric oxide (NO). Additionally, the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant proteins [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR)] were down-regulated in the colon tissue. Moreover, the inflammatory mediators [myeloperoxidase (MPO), monocyte chemotactic protein 1 (MCP1), prostaglandin E2 (PGE2), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β)] were increased in the colon tissue after the induction of UC. Notably, an apoptotic response was developed, as demonstrated by the increased caspase-3 and Bax and decreased Bcl2. Interestingly, AA administration at both doses lessened the molecular, biochemical, and histopathological changes following the induction in the colon tissue of UC. In conclusion, AA could improve the antioxidative status and attenuate the inflammatory and apoptotic challenges associated with UC.
Collapse
|
6
|
Eissa ESH, Khattab MS, Elbahnaswy S, Elshopakey GE, Alamoudi MO, Aljàrari RM, Munir MB, Kari ZA, Naiel MAE. The effects of dietary Spirulina platensis or curcumin nanoparticles on performance, body chemical composition, blood biochemical, digestive enzyme, antioxidant and immune activities of Oreochromis niloticus fingerlings. BMC Vet Res 2024; 20:215. [PMID: 38773537 PMCID: PMC11106962 DOI: 10.1186/s12917-024-04058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
CONTEXT Recently, prioritize has been given to using natural phytogenic or nano compounds as growth promoters and immunostimulants in fish diets as an alternative to antibiotics. AIMS The main propose of this trial was to determine the impact of supplementing diets with spirulina or curcumin nanoparticles on the performance and health indicators of Nile tilapia fingerlings. METHODS In a 56-day feeding trial, 180 tilapia fingerlings were assigned into three main groups, as follows: 1st, control group, 2nd, Spirulina platensis (SP; 5 g kg-1 diet) and 3rd, curcumin nanoparticles (CUR-NPs; 30 mg kg-1 diet). KEY RESULTS Incorporating tilapia diets with SP or CUR-NPs significantly improved performance, body chemical analysis, blood biochemical and hematological indices, digestive enzyme activities, and antioxidant and immunostimulant features compared to the control. CONCLUSION Fortified tilapia diets with CUR-NPs or SP efficiently boost the productivity and health of Nile tilapia fingerlings. IMPLICATIONS The research introduces new practical solutions for applying safe feed additives as alternatives to antibiotics in tilapia farming.
Collapse
|
7
|
Rahman ANA, Mahboub HH, Elshopakey GE, Darwish MIM, Gharib HSAR, Shaalan M, Fahmy EM, Abdel-Ghany HM, Ismail SH, Elsheshtawy HM. Pseudomonas putida infection induces immune-antioxidant, hepato-renal, ethological, and histopathological/immunohistochemical disruptions in Oreochromis niloticus: the palliative role of titanium dioxide nanogel. BMC Vet Res 2024; 20:127. [PMID: 38561720 PMCID: PMC10983678 DOI: 10.1186/s12917-024-03972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.
Collapse
|
8
|
Elbahnaswy S, Elshopakey GE. Recent progress in practical applications of a potential carotenoid astaxanthin in aquaculture industry: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:97-126. [PMID: 36607534 DOI: 10.1007/s10695-022-01167-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Astaxanthin is the main natural C40 carotenoid used worldwide in the aquaculture industry. It normally occurs in red yeast Phaffia rhodozyma and green alga Haematococcus pluvialis and a variety of aquatic sea creatures, such as trout, salmon, and shrimp. Numerous biological functions reported its antioxidant and anti-inflammatory activities since astaxanthin possesses the highest oxygen radical absorbance capacity (ORAC) and is considered to be over 500 more times effective than vitamin E and other carotenoids such as lutein and lycopene. Thus, synthetic and natural sources of astaxanthin have a commanding influence on industry trends, causing a wave in the world nutraceutical market of the encapsulated product. In vitro and in vivo studies have associated astaxanthin's unique molecular features with various health benefits, including immunomodulatory, photoprotective, and antioxidant properties, providing its chemotherapeutic potential for improving stress tolerance, disease resistance, growth performance, survival, and improved egg quality in farmed fish and crustaceans without exhibiting any cytotoxic effects. Moreover, the most evident effect is the pigmentation merit, where astaxanthin is supplemented in formulated diets to ameliorate the variegation of aquatic species and eventually product quality. Hence, carotenoid astaxanthin could be used as a curative supplement for farmed fish, since it is regarded as an ecologically friendly functional feed additive in the aquaculture industry. In this review, the currently available scientific literature regarding the most significant benefits of astaxanthin is discussed, with a particular focus on potential mechanisms of action responsible for its biological activities.
Collapse
|
9
|
Elghareeb MM, Elshopakey GE, Rezk S, Ateya A, El-Ashry ES, Shukry M, Ghamry HI, Alotaibi BS, Hashem NMA. Nigella sativa oil restores hormonal levels, and endocrine signals among thyroid, ovarian, and uterine tissues of female Wistar rats following sodium fluoride toxicity. Biomed Pharmacother 2024; 170:116080. [PMID: 38147737 DOI: 10.1016/j.biopha.2023.116080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
The current study aimed to explore the possible prophylactic and therapeutic effect of Nigella sativa L. oil (NSO) against disruption of endocrine signals and injuries in the thyroid gland, ovary, and uterine tissues induced by sodium fluoride (NaF). Twenty-eight mature female Wistar rats were randomly allocated into four experimental groups (n = 7/group) as follows: control group; NaF group, orally received NaF (20 mg/kg b.wt.) daily; NSO/NaF, orally received NSO (300 mg/kg b.wt.) two weeks before being given NaF and continued throughout the experiment; and NSO+NaF group orally received NSO concurrently with NaF. Our results indicated that NSO restored hormonal balance and suppressed oxidative damage and inflammation. Moreover, the levels of triiodothyronine, thyroxine, thyroid peroxidase, estrogen (E2), progesterone, follicle-stimulating hormone, and luteinizing hormone were elevated, while prostaglandins F2-α and cortisol levels were decreased in NSO treated groups compared to NaF-intoxicated rats. As well, NSO significantly boosted levels of antioxidant molecules, and lowered lipid peroxidation of examined tissues, unlike NaF-treated group. NSO also up-regulated antioxidant enzymes, anti-apoptotic protein, zona pellucida sperm-binding protein, bone morphogenetic protein, and thyroid stimulating hormone, conversely down-regulated inflammatory cytokines, apoptotic proteins, estrogen receptor-α, estrogen receptor-β, and thyroid stimulating hormone receptors compared to NaF-intoxicated group. Additionally, NSO ameliorated tissue damage of the thyroid gland, ovary, and uterus induced by NaF. -Overall, the prophylactic group (NSO/NaF) performed better antioxidant and anti-inflammatory activities than the treated group almost in all examined tissues, which is reflected by the improvement in the structure of the thyroid, ovarian, and uterine tissues.
Collapse
|
10
|
Hamdy S, Elshopakey GE, Risha EF, Rezk S, Ateya AI, Abdelhamid FM. Curcumin mitigates gentamicin induced-renal and cardiac toxicity via modulation of Keap1/Nrf2, NF-κB/iNOS and Bcl-2/BAX pathways. Food Chem Toxicol 2024; 183:114323. [PMID: 38056816 DOI: 10.1016/j.fct.2023.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Gentamicin (GEN) is an aminoglycoside antibiotic used to treat gram-negative bacterial infections. Our study aimed to explore curcumin's (CMN) protective role against GEN-induced renal and cardiac toxicity. Rats were randomly classified into 4 equal groups; Control (cont), GEN (100 mg/kg b.wt, i.p.) for seven days, CMN (200 mg/kg b.wt, orally) for 21 days, and CMN + GEN groups. GEN caused renal and cardiac dysfunctions; increased urea, creatinine, uric acid, cystatin C, CK-MB, LDH, and troponin I serum levels. MDA level was elevated significantly while activities of SOD, CAT, and GSH level were reduced significantly in renal and cardiac tissues. GEN-intoxicated rats showed up-regulation of NF-κB, IL-1β, Keap1, HMOX1, and BAX with down-regulation of Nrf2, and Bcl-2 mRNA expression in renal and cardiac tissues. Also, GEN-induced up-regulation of renal mRNA expression of KIM-1, NGAL, and intermediate filament proteins [desmin, nestin, and vimentin] as well cardiac gene expression of cMyBP-C and H-FABP. GEN-induced toxicity was significantly attenuated by CMN co-treatment as CMN improved renal and cardiac biomarkers, reduced oxidative stress and inflammatory response, and reversed alterations in mRNA expression of all tested renal and cardiac genes. These outcomes indicated that CMN could protect renal and cardiac tissues against GEN-induced oxidative stress, inflammation, and apoptosis.
Collapse
|
11
|
Rahman ANA, Altohamy DE, Elshopakey GE, Abdelwarith AA, Younis EM, Elseddawy NM, Elgamal A, Bazeed SM, Khamis T, Davies SJ, Ibrahim RE. Potential role of dietary Boswellia serrata resin against mancozeb fungicide-induced immune-antioxidant suppression, histopathological alterations, and genotoxicity in Nile tilapia, Oreochromis niloticus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106738. [PMID: 37922777 DOI: 10.1016/j.aquatox.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
This study was established to look into the toxicological consequences of chronic exposure to a fungicide (mancozeb; MAZ) on the immune-antioxidant response, gene expressions, hepato-renal functions, and histological pictures of Nile tilapia (Oreochromis niloticus). Additionally, the effectiveness of Indian frankincense resin extract (IFRE) to mitigate their toxicity was taken into account. Fish (n =240; average body weight: 22.45 ± 2.21 g) were randomized into four groups for eight weeks in six replicates (control, IFRE, MAZ, and IFRE + MAZ), where ten fish were kept per replicate. The control and IFRE groups received basal diets that included 0.0 and 5 g/kg of IFRE without MAZ exposure. The MAZ and IFRE+MAZ groups received the same diets and were exposed to 1/10 of the 96-h of LC50 of MAZ (1.15 mg/L). The outcomes displayed that MAZ exposure resulted in a lower survival rate (56.67 %) and significantly decreased levels of immune-antioxidant variables (antiprotease, complement3, phagocytic activity, lysozyme, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to the control group. The MAZ-exposed fish showed the greatest levels of lipid peroxide (malondialdehyde), alkaline phosphatase, alanine amino-transferase, and stress indicators (cortisol and glucose). Additionally, histopathological alterations, including vacuolation, severe necrosis, degeneration, and mononuclear cell infiltrations in the hepatic, renal, and splenic tissues resulted, besides a reduction in the melanomacrophage center in the spleen. A down-regulation of immune-antioxidant-associated genes [toll-like receptors (TLR-2 and TLR-7), nuclear factor kappa beta (NF-κβ), transforming growth factor-beta (TGF-β), phosphoinositide-3-kinase regulatory subunit 3 gamma b (pik3r3b), interleukins (IL-1β and IL-8), glutathione synthetase (GSS), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] were the consequences of the MAZ exposure. Remarkably, the dietary inclusion of IFRE in MAZ-exposed fish augmented the immune-antioxidant parameters, including their associated genes, decreased stress response, and increased survival rate (85 %) compared with the MAZ-exposed fish. Moreover, dietary IFRE improved hepato-renal function indices by preserving the histological architecture of the hepatic, renal, and splenic tissues. The insights of this study advocate the use of an IFRE-dietary addition to protect Nile tilapia from MAZ toxicity, which provides perspectives for future implementations in enhancing fish health for sustainable aquaculture.
Collapse
|
12
|
Ramadan SS, El Zaiat FA, Habashy EA, Montaser MM, Hassan HE, Tharwat SS, El-khadragy M, Abdel Moneim AE, Elshopakey GE, Akabawy AMA. Coenzyme Q10-Loaded Albumin Nanoparticles Protect against Redox Imbalance and Inflammatory, Apoptotic, and Histopathological Alterations in Mercuric Chloride-Induced Hepatorenal Toxicity in Rats. Biomedicines 2023; 11:3054. [PMID: 38002054 PMCID: PMC10669886 DOI: 10.3390/biomedicines11113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to mercuric chloride (HgCl2), either accidental or occupational, induces substantial liver and kidney damage. Coenzyme Q10 (CoQ10) is a natural antioxidant that also has anti-inflammatory and anti-apoptotic activities. Herein, our study aimed to investigate the possible protective effects of CoQ10 alone or loaded with albumin nanoparticles (CoQ10NPs) against HgCl2-induced hepatorenal toxicity in rats. Experimental animals received CoQ10 (10 mg/kg/oral) or CoQ10NPs (10 mg/kg/oral) and were injected intraperitoneally with HgCl2 (5 mg/kg; three times/week) for two weeks. The results indicated that CoQ10NP pretreatment caused a significant decrease in serum liver and kidney function markers. Moreover, lowered MDA and NO levels were associated with an increase in antioxidant enzyme activities (SOD, GPx, GR, and CAT), along with higher GSH contents, in both the liver and kidneys of intoxicated rats treated with CoQ10NPs. Moreover, HgCl2-intoxicated rats that received CoQ10NPs revealed a significant reduction in the hepatorenal levels of TNF-α, IL-1β, NF-κB, and TGF-β, as well as an increase in the hepatic level of the fibrotic marker (α-SMA). Notably, CoQ10NPs counteracted hepatorenal apoptosis by diminishing the levels of Bax and caspase-3 and boosting the level of Bcl-2. The hepatic and renal histopathological findings supported the abovementioned changes. In conclusion, these data suggest that CoQ10, alone or loaded with albumin nanoparticles, has great power in reversing the hepatic and renal tissue impairment induced by HgCl2 via the modulation of hepatorenal oxidative damage, inflammation, and apoptosis. Therefore, this study provides a valuable therapeutic agent (CoQ10NPs) for preventing and treating several HgCl2-induced hepatorenal disorders.
Collapse
|
13
|
Rezk S, Lashen S, El-Adl M, Elshopakey GE, Elghareeb MM, Hendam BM, Caceci T, Cenciarelli C, Marei HE. Retraction Note: Effects of Rosemary Oil (Rosmarinus officinalis) supplementation on the fate of the transplanted human olfactory bulb neural stem cells against ibotenic acid-induced neurotoxicity (Alzheimer model) in rat. Metab Brain Dis 2023; 38:2499. [PMID: 37642898 DOI: 10.1007/s11011-023-01282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
|
14
|
Ibrahim RE, Elshopakey GE, Abdelwarith AA, Younis EM, Ismail SH, Ahmed AI, El-Saber MM, Abdelhamid AE, Davies SJ, El-Murr A, Abdel Rahman AN. Chitosan neem nanocapsule enhances immunity and disease resistance in nile tilapia ( Oreochromis niloticus). Heliyon 2023; 9:e19354. [PMID: 37662722 PMCID: PMC10474430 DOI: 10.1016/j.heliyon.2023.e19354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Finding eco-friendly alternatives for antibiotics in treating bacterial diseases affecting the aquaculture sector is essential. Herbal plants are promising alternatives, especially when combined with nanomaterials. Neem (Azadirachta indica) leaves extract was synthesized using a chitosan nanocapsule. Chitosan neem nanocapsule (CNNC) was tested in-vitro and in-vivo against the Aeromonas sobria (A. sobria) challenge in Nile tilapia. A preliminary experiment with 120 Nile tilapia was conducted to determine the therapeutic dose of CNNC, which was established to be 1 mg/L. A treatment study was applied for seven days using 200 fish categorized into four groups (10 fish/replicate: 50 fish/group). The first (control) and second (CNNC) groups were treated with 0 and 1 mg/L CNNC in water without being challenged. The third (A. sobria) and fourth (CNNC + A. sobria) groups were treated with 0 and 1 mg/L CNNC, respectively, and challenged with A. sobria (1 × 107 CFU/mL). Interestingly, CNNC had an in-vitro antibacterial activity against A. sobria; the minimum inhibitory concentration and minimum bactericidal concentration of CNNC against A. sobria were 6.25 and 12.5 mg/mL, respectively. A. sobria challenge caused behavioral alterations, skin hemorrhage, fin rot, and reduced survivability (60%). The infected fish suffered a noticeable elevation in the malondialdehyde level and hepato-renal function markers (aspartate aminotransferase, alanine aminotransferase, and creatinine). Moreover, a clear depletion in the level of the antioxidant and immune indicators (catalase, reduced glutathione, lysozymes, nitric oxide, and complement 3) was obvious in the A. sobria group. Treatment of the A. sobria-challenged fish with 1 mg/L CNNC recovered these parameters and enhanced fish survivability. Overall, CNNC can be used as a new versatile tool at 1 mg/L as a water treatment for combating the A. sobria challenge for sustainable aquaculture production.
Collapse
|
15
|
Reda D, Elshopakey GE, Albukhari TA, Almehmadi SJ, Refaat B, Risha EF, Mahgoub HA, El-Boshy ME, Abdelhamid FM. Vitamin D3 alleviates nonalcoholic fatty liver disease in rats by inhibiting hepatic oxidative stress and inflammation via the SREBP-1-c/ PPARα-NF-κB/IR-S2 signaling pathway. Front Pharmacol 2023; 14:1164512. [PMID: 37261280 PMCID: PMC10228732 DOI: 10.3389/fphar.2023.1164512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is a chronic disease characterized by fat deposits in liver cells, which can lead to hepatitis and fibrosis. This study attempted to explore the protective effect of vitamin D3 (VitD) against NAFLD. Methods: Adult male albino rats were randomized into four separate groups: the negative control group was fed a standard rat chow; the positive group received a high-fat diet (20%) and 25% fructose water (NAFLD); the VitD control group was intramuscularly treated with VitD (1,000 IU/kg BW) 3 days per week for 10 weeks; and the NAFLD group was treated with VitD therapy. Biochemical and hepatic histological analyses were performed. Hepatic oxidative stress and inflammatory conditions were also studied. Hepatic expression of sterol regulatory element-binding protein 1-c (SREBP-1-c), peroxisome proliferator-activated receptor alpha (PPAR-α), and insulin receptor substrate-2 was analyzed by quantitative real-time polymerase chain reaction. Results and discussion: The NAFLD rats exhibited elevated terminal body weight, hepatic injury markers, dyslipidemia, glucose intolerance, and insulin resistance. Moreover, the NAFLD rats had increased SREBP-1-c expression and reduced PPAR-α and IRS-2 expressions. Histological analysis showed hepatic steatosis and inflammation in the NAFLD group. In contrast, VitD administration improved the serum biochemical parameters and hepatic redox status in NAFLD rats. Also, VitD treatment ameliorated hepatic inflammation and steatosis in the NAFLD group by decreasing the expression of SREBP-1-c and increasing the expression of PPAR-α. Overall, these results suggest that VitD could have a protective effect against NAFLD and its associated complication.
Collapse
|
16
|
Mansour LAH, Elshopakey GE, Abdelhamid FM, Albukhari TA, Almehmadi SJ, Refaat B, El-Boshy M, Risha EF. Hepatoprotective and Neuroprotective Effects of Naringenin against Lead-Induced Oxidative Stress, Inflammation, and Apoptosis in Rats. Biomedicines 2023; 11:biomedicines11041080. [PMID: 37189698 DOI: 10.3390/biomedicines11041080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Naringenin (NRG) is one of the most important naturally occurring flavonoids, predominantly found in some edible fruits, such as citrus species and tomatoes. It has several biological activities, such as antioxidant, antitumor, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The heavy metal lead is toxic and triggers oxidative stress, which causes toxicity in many organs, including the liver and brain. This study explored the potential protective role of NRG in hepato- and neurotoxicity caused by lead acetate in rats. Four groups of ten male albino rats were included: group 1 was a control, group 2 was orally treated with lead acetate (LA) at a dose of 500 mg/kg BW, group 3 was treated with naringenin (NRG) at a dose of 50 mg/kg BW, and group 4 was treated with 500 mg/kg LA and 50 mg/kg NRG for 4 weeks. Then, blood was taken, the rats were euthanized, and liver and brain tissues were collected. The findings revealed that LA exposure induced hepatotoxicity with a significant increase in liver function markers (p < 0.05). In addition, albumin and total protein (TP) and the albumin/globulin ratio (A/G ratio) (p < 0.05) were markedly lowered, whereas the serum globulin level (p > 0.05) was unaltered. LA also induced oxidative damage, demonstrated by a significant increase in malonaldehyde (MDA) (p < 0.05), together with a pronounced antioxidant system reduction (SOD, CAT, and GSH) (p < 0.05) in both liver and brain tissues. Inflammation of the liver and brain caused by LA was indicated by increased levels of nuclear factor kappa beta (NF-κβ) and caspase-3, (p < 0.05), and the levels of B-cell lymphocyte-2 (BCL-2) and interleukin-10 (IL-10) (p < 0.05) were decreased. Brain tissue damage induced by LA toxicity was demonstrated by the downregulation of the neurotransmitters norepinephrine (NE), dopamine (DA), serotonin (5-HT), and creatine kinase (CK-BB) (p < 0.05). Additionally, the liver and brain of LA-treated rats displayed notable histopathological damage. In conclusion, NRG has potential hepato- and neuroprotective effects against lead acetate toxicity. However, additional research is needed in order to propose naringenin as a potential protective agent against renal and cardiac toxicity mediated by lead acetate.
Collapse
|
17
|
El-Shewehy DMM, Elshopakey GE, Ismail A, Hassan SS, Ramez AM. Therapeutic Potency of Ginger, Garlic, and Pomegranate Extracts Against Cryptosporidium parvum-Mediated Gastro-Splenic Damage in Mice. Acta Parasitol 2023; 68:32-41. [PMID: 36348178 PMCID: PMC10011320 DOI: 10.1007/s11686-022-00635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Cryptosporidium parvum is a protozoan parasite infecting most mammalian hosts and causing major health issues. The present study investigated the efficacy of ginger (Zingiber officinale), garlic (Allium sativum), and pomegranate (Punica granatum) peel extracts on the development and progression of experimental cryptosporidiosis in mice. METHODS Eighty-two mice were assigned to 6 groups: control, infected non-treated, metronidazole (MTZ), ginger, garlic, and pomegranate. The control group topically received no treatments. The infected non-treated group was experimentally infected by 104 C. parvum oocysts per mouse using a stomach tube. The MTZ group was infected with C. parvum oocysts combined with MTZ (50 mg/kg b.w./day). The ginger, garlic, and pomegranate groups daily received different plant extracts at doses of 100 mg/kg BW, 50 mg/kg BW, and 3 gm/kg BW, respectively, followed by infection with C. parvum oocysts. All treatments were applied orally one day after the infection for continuous 30 days. RESULTS Histopathological and immunohistochemical examinations for P53 and caspase-3 expressions in stomach and spleen tissues showed that MTZ and garlic-treated mice had a more significant effect on infected mice. CONCLUSION The garlic extract was found to exert a more pronounced effect on infected mice compared with the other treatments as well as to improve health. Garlic extracts, therefore, represent an effective and natural therapeutic alternative for the treatment of cryptosporidiosis with low side effects and without drug resistance.
Collapse
|
18
|
Sadat A, Farag AMM, Elhanafi D, Awad A, Elmahallawy EK, Alsowayeh N, El-khadragy MF, Elshopakey GE. Immunological and Oxidative Biomarkers in Bovine Serum from Healthy, Clinical, and Sub-Clinical Mastitis Caused by Escherichia coli and Staphylococcus aureus Infection. Animals (Basel) 2023; 13:ani13050892. [PMID: 36899749 PMCID: PMC10000043 DOI: 10.3390/ani13050892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The study aimed to investigate the mastitis' emerging causative agents and their antimicrobial sensitivity, in addition to the hematological, biochemical indicators, oxidative biomarkers, acute phase protein (APP), and inflammatory cytokine changes in dairy farms in Gamasa, Dakahlia Governorate, Egypt. One hundred Holstein Friesian dairy cattle with clinical and subclinical mastitis were investigated and were allocated into three groups based on a thorough clinical examination. Escherichia coli and Staphylococcus aureus were found responsible for the clinical and subclinical mastitis in dairy farms, respectively. Multiple drug resistance (MDR) was detected in 100%, and 94.74% of E. coli and S. aureus isolates, respectively. Significantly low RBCs count, Hb, and PCV values were detected in mastitic cows compared with both subclinical mastitic and control groups; moreover, WBCs, lymphocytes, and neutrophil counts were significantly diminished in mastitic cows compared to the controls. Significantly higher levels of AST, LDH, total protein, and globulin were noticed in both mastitic and subclinical mastitic cows. The haptoglobin, fibrinogen, amyloid A, ceruloplasmin, TNF-α, IL-1β, and IL-6 levels were statistically increased in mastitic cows compared to the controls. Higher MDA levels and reduction of TAC and catalase were identified in all the mastitic cases compared to the controls. Overall, the findings suggested potential public health hazards due to antimicrobial resistance emergence. Meanwhile, the APP and cytokines, along with antioxidant markers can be used as early indicators of mastitis.
Collapse
|
19
|
Ahmed SAA, Ibrahim RE, Elshopakey GE, Khamis T, Abdel-Ghany HM, Abdelwarith AA, Younis EM, Davies SJ, Elabd H, Elhady M. Immune-antioxidant trait, growth, splenic cytokines expression, apoptosis, and histopathological alterations of Oreochromis niloticus exposed to sub-lethal copper toxicity and fed thyme and/or basil essential oils enriched diets. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1006-1018. [PMID: 36379445 DOI: 10.1016/j.fsi.2022.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Two experiments were conducted in this study, using 250 Oreochromis niloticus (O. niloticus) (average weight 30.28 ± 0.27 g). The first experiment was conducted to investigate the 96-h lethal concentration 50 (LC50) of copper chloride (CuCl2) using the probit analysis, seventy fish was divided into seven different concentration of CuCl2 (0, 22, 23, 24, 25, 26, and 27 mg/L), the accurate Cu concentrations were (1.23, 5.36, 6.02, 6.98, 7.05, 7.93, 8.12 mg/L Cu). The second experiment was conducted for investigating the effect of dietary supplementation with thyme (Thymus vulgaris, T. vulgaris) and sweet basil (Ocimum basilicum, O. basilicum) essential oils (TEO and BEO respectively) against sub-lethal Cu exposure (1/10 96-h LC50 of CuCl2). About 180 fish was divided into six groups in triplicate (10 fish/replicate, 30 fish/group). Group 1 (C) was kept as a control group with no Cu exposure and was fed the control basal diet. Group 2 (C-Cu) was fed the control basal diet and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L) as a sub-lethal concentration of Cu, where the realistic Cu concentration was 3.976 mg/L. Group 3 (TEO) and group 4 (BEO) were fed the diets fortified with 1%TEO and BEO, respectively without exposure to Cu. Group 5 (TEO-Cu) and group 6 (BEO-Cu) were fed the diets fortified with 1%TEO and 1%BEO, respectively, and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L). The growth and behavioral performance, immunological response and its related gene expression, antioxidant status, stress biomarker indicators, apoptosis biomarkers, and histopathological alteration were investigated. The results of the first experiment showed that the 96-h LC50 of CuCl2 in O. niloticus was 25.740 mg/L with lower and upper confidence limits of 25.152 and 26.356 mg/L, respectively. The results of the second experiment showed that sub-lethal Cu exposure induced growth retardation (lowered final body weight, total weight gain, and specific growth rate %), behavioral abnormalities (slower swimming activity and feeding performance), immunosuppression (lowered nitric oxide, complement-3, lysozyme, total proteins, albumin, and globulin), and lowering the hepatic antioxidant functions (higher MDA, and lower SOD, CAT, and GPx) in the exposed fish. Furthermore, alteration in the immune-related genes expression (down-regulation of IL-10 and TGF-β and up-regulation of IL-1β, IL-6, IL-8, and TRL-4), hepato-renal dysfunction (elevated ALT, AST, urea, and creatinine), and high levels of serum stress indicators (cortisol and glucose) were markedly evident. sub-lethal Cu toxicity induced significant up-regulation of apoptosis biomarkers involving, nuclear factor-κβ (NF-κβ), Bcl-2 Associated X-protein (BAX), meanwhile, the expression of B-cell lymphoma 2 (BCL2) and Proliferating cell nuclear antigen (PCNA) was remarkably down-regulated. In addition, apoptosis was also evident by histopathological investigation of branchial, hepatic, and renal sections. TEO and/or BEO dietary supplementation mitigate the destructive impacts of sub-lethal Cu exposure in O. niloticus, depending on the results of our study, it could be concluded that TEO and BEO with a 1% dietary level could be a promising antioxidant, immunostimulant, anti-stress factors, and anti-apoptosis mediators against heavy metal contaminants (Cu) in O. niloticus, providing a solution to the problem of aquatic bodies pollution, consequently aiding in the development of aquaculture industry.
Collapse
|
20
|
Ibrahim RE, Elshopakey GE, Abd El-Rahman GI, Ahmed AI, Altohamy DE, Zaglool AW, Younis EM, Abdelwarith AA, Davies SJ, Al-Harthi HF, Abdel Rahman AN. Palliative role of colloidal silver nanoparticles synthetized by moringa against Saprolegnia spp. infection in Nile Tilapia: Biochemical, immuno-antioxidant response, gene expression, and histopathological investigation. AQUACULTURE REPORTS 2022; 26:101318. [DOI: 10.1016/j.aqrep.2022.101318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
21
|
Elghareeb MM, Elshopakey GE, Elkhooly TA, Salama B, Samy A, Bazer FW, Elmetwally MA, Almutairi MH, Aleya L, Abdel-Daim MM, Rezk S. Estradiol and zinc-doped nano hydroxyapatite as therapeutic agents in the prevention of osteoporosis; oxidative stress status, inflammation, bone turnover, bone mineral density, and histological alterations in ovariectomized rats. Front Physiol 2022; 13:989487. [PMID: 36200054 PMCID: PMC9527315 DOI: 10.3389/fphys.2022.989487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoporosis (OP) is a serious health problem, and the most popular therapeutic strategy for OP is hormone replacement (estrogen); however, it increases the risk of reproductive cancers. Hydroxyapatite (HA) nanoparticles have a similar chemical structure to the bone mineral component and can be used as a new remedy for OP. This study was designed to investigate the osteoporosis-protective potential of nano zinc hydroxyapatite (ZnHA-NPs) and/or estradiol (E2) combined therapy. A total of 35 adult female rats were assigned into five groups (n = 7): 1) control group; 2) ovariectomized group (OVX); 3) OVX received oral estradiol replacement therapy (OVX/E2); 4) OVX received ZnHA replacement therapy (OVX/ZnHA); and 5) OVX received both estradiol and ZnHA-NPs combined therapy (OVX/E2+ZnHA). After 3 months of treatment, serum bone markers and estrogen level, oxidative/antioxidant, and inflammatory cytokines were determined. Additionally, femoral expression of estrogen receptors alpha and beta (ESR1; ESR2), receptor activator of nuclear factor-kappa B (RANKL) ligand, osteoprotegerin (OPG), bone mineral density (BMD), histological alterations, and immunohistochemical expression of vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) were assessed. ALP, PINP, Ca, and P concentrations improved significantly (p < 0.05) in all treatment groups, especially in the OVX/E + ZnHA group. MDA and NO were higher in OVX rats, while SOD activity and GSH were lower (p < 0.05). E2 alone or with ZnHA-NPs restored the estimated antioxidant molecules and cytokines toward normal levels in OVX rats (p < 0.05). On the other hand, E2 and ZnHA increased OPG and OC expression in femurs while decreasing ESR1, ESR2, and NF-kB expression (p < 0.05). The combination treatment was superior in the restoration of normal femoral histoarchitecture and both cortical and trabecular BMD (p < 0.05). Overall, the combined therapy of OVX/E2+ZnHA was more effective than the individual treatments in attenuating excessive bone turnover and preventing osteoporosis.
Collapse
|
22
|
Abdel Rahman AN, Elshopakey GE, Behairy A, Altohamy DE, Ahmed AI, Farroh KY, Alkafafy M, Shahin SA, Ibrahim RE. Chitosan-Ocimum basilicum nanocomposite as a dietary additive in Oreochromis niloticus: Effects on immune-antioxidant response, head kidney gene expression, intestinal architecture, and growth. FISH & SHELLFISH IMMUNOLOGY 2022; 128:425-435. [PMID: 35985625 DOI: 10.1016/j.fsi.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Several studies have looked into the use of basil, Ocimum basilicum (L.) in aquaculture as a dietary additive; however, more research is needed to see the possibility of it's including in nanocarriers in aquafeeds. An experiment was undertaken to highlight the efficacy chitosan-Ocimum basilicum nanocomposite (COBN), for the first time, on Nile tilapia (Oreochromis niloticus) growth, stress and antioxidant status, immune-related parameters, and gene expression. For 60 days, fish (average weight: 23.55 ± 0.08 g) were fed diets provided with different concentrations of COBN (g/kg): 0 g [COBN0], 1 g [COBN1], 2 g [COBN2], and 3 g [COBN3], where COBN0 was kept as control diet. Following the trial, the fish were challenged with pathogenic bacteria (Aeromonas sobria) and yeast (Candida albicans) infection. In comparison to the control (COBN0), a notable increase in growth parameters (weight gain, feed intake, and specific growth rate) and intestinal morphometric indices (average intestinal goblet cells count, villous width, and length) in all COBN groups was observed, where COBN2 and COBN3 groups had the highest values. The COBN diets significantly (p < 0.05) declined levels of serum triglycerides, glucose, cholesterol, and hepatic malondialdehyde. Moreover, the higher levels of serum biochemical biomarkers (growth hormone, total protein, globulin, and albumin), immunological parameters (phagocytic activity%, nitric oxide, and lysozyme), and hepatic antioxidant parameters (superoxide dismutase, total antioxidant capacity, and glutathione peroxidase) were obvious in the COBN2 and COBN3 groups followed by COBN1. The immune-antioxidant genes (TNF-α, IL-10, IL-1β, TGF-β, GPx, and SOD) were found to be considerably up-regulated in all COBN groups (COBN2 and COBN3 followed by COBN1). Fifteen days post-challenge with A. sobria and C. albicans, the highest survival rate was recorded in the COBN2 group (83.33 and 91.67%) followed by the COBN3 group (75 and 83.33%), respectively. The findings showed that a dietary intervention with COBN can promote growth, intestinal architecture, immunity, and antioxidant markers as well as protect O. niloticus against A. sobria and C. albicans infection. As a result, the COBN at a dose of 2 g/kg could be used as a food additive for the sustainable aquaculture industry.
Collapse
|
23
|
Mansour AT, Mahboub HH, Elshopakey GE, Aziz EK, Alhajji AHM, Rayan G, Ghazzawy HS, El-Houseiny W. Physiological Performance, Antioxidant and Immune Status, Columnaris Resistance, and Growth of Nile Tilapia That Received Alchemilla vulgaris-Supplemented Diets. Antioxidants (Basel) 2022; 11:1494. [PMID: 36009213 PMCID: PMC9404728 DOI: 10.3390/antiox11081494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
The current perspective is a pioneering trial to assess the efficacy of the dietary supplementation of Alchemilla vulgaris powder (AVP) in the diet of Nile tilapia (Oreochromis niloticus) on growth performance, blood picture, hepatic and renal biomarkers, immune status, and serum and tissue antioxidant capacity and to investigate the resistance against Flavobacterium columnare challenge. Fish (n = 360) were distributed into six groups (three replicates each) and received increasing AVP supplementation levels (0, 2, 4, 6, 8, and 10 g kg-1) for 60 days. Furthermore, fish were exposed to the bacterial challenge of a virulent F. columnare strain and maintained under observation for 12 days. During the observation period, clinical signs and the cumulative mortality percentage were recorded. The results demonstrated that the growth performance, feed conversion ratio, and hematological profile were noticeably enhanced in the AVP-supplemented groups compared to the control. The most promising results of weight gain and feed conversion ratio were recorded in the groups with 6, 8, and 10 g AVP kg-1 diets in a linear regression trend. The levels of hepatorenal function indicators were maintained in a healthy range in the different dietary AVP-supplemented groups. In a dose-dependent manner, fish fed AVP dietary supplements displayed significant augmented serum levels of innate immune indicators (lysozyme, nitric oxide, and complement 3) and antioxidant biomarkers (Catalase (CAT), superoxide dismutase (SOD), total antioxidant (TAC), and reduced glutathione (GSH) with a marked decrease in myeloperoxidase (MPO) and malondialdehyde (MDA) levels). Likewise, hepatic CAT and SOD activities were significantly improved, and the opposite trend was recorded with hepatic MDA. The highest AVP-supplemented dose (10 g/kg) recorded the highest immune-antioxidant status. Based on the study findings, we highlight the efficacy of AVP as a nutraceutical dietary supplementation for aquaculture to enhance growth, physiological performance, and immune-antioxidant status and as a natural economic antibacterial agent in O. niloticus for sustaining aquaculture. It could be concluded that the dietary supplementation of 10 g AVP/kg enhanced O. niloticus growth, physiological performance, immune-antioxidant status, and resistance against F. columnare.
Collapse
|
24
|
Almanaa TN, Aref M, Kakakhel MA, Elshopakey GE, Mahboub HH, Abdelazim AM, Kamel S, Belali TM, Abomughaid MM, Alhujaily M, Fahmy EM, Ezzat Assayed M, Mostafa-Hedeab G, Daoush WM. Silica Nanoparticle Acute Toxicity on Male Rattus norvegicus Domestica: Ethological Behavior, Hematological Disorders, Biochemical Analyses, Hepato-Renal Function, and Antioxidant-Immune Response. Front Bioeng Biotechnol 2022; 10:868111. [PMID: 35464726 PMCID: PMC9022119 DOI: 10.3389/fbioe.2022.868111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
With extensive production and various applications of silica nanoparticles (SiNPs), there is a controversy regarding the ecotoxicological impacts of SiNPs. Therefore, the current study was aimed to assess the acute toxicity of silica nanoparticles in male Rattus norvegicus domestica after 24 and 96 h. Hematological, serum biochemical, stress biomarker, and immune-antioxidant parameters were addressed. Chemical composition, crystal structure, and the particle shape and morphology of SiNPs were investigated using XRD, FTIR, BET, UV-Vis, and SEM, while TEM was used to estimate the average size distribution of particles. For the exposure experiment, 48 male rats were divided into four groups (12 rat/group) and gavaged daily with different levels of zero (control), 5, 10, and 20 mg of SiNPs corresponding to zero, 31.25, 62.5, and 125 mg per kg of body weight. Sampling was carried out after 24 and 96 h. Relative to the control group, the exposure to SiNPs induced clear behavioral changes such as inactivity, lethargy, aggressiveness, and screaming. In a dose-dependent manner, the behavior scores recorded the highest values. Pairwise comparisons with the control demonstrated a significant (p < 0.05) decrease in hematological and immunological biomarkers [lysozymes and alternative complement activity (ACH50)] with a concomitant reduction in the antioxidant enzymes [catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] in all exposed groups to SiNPs. On the contrary, there was a noticeable increase in biochemical parameters (glucose, cortisol, creatinine, urea, low-density lipoproteins (LDL), high-density lipoproteins (HDL), total protein, and albumin) and hepato-renal indicators, including alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), of all SiNP-exposed groups. It was observed that SiNPs induced acute toxicity, either after 24 h or 96 h, post-exposure of rats to SiNPs evidenced by ethological changes, hepato-renal dysfunction, hyperlipemia, and severe suppression in hematological, protein, stress, and immune-antioxidant biomarkers reflecting an impaired physiological status. The obtained outcomes create a foundation for future research to consider the acute toxicity of nanoparticles to preserve human health and sustain the environment.
Collapse
|
25
|
Rezk S, Lashen S, El-Adl M, Elshopakey GE, Elghareeb MM, Hendam BM, Caceci T, Cenciarelli C, Marei HE. Effects of Rosemary Oil (Rosmarinus officinalis) supplementation on the fate of the transplanted human olfactory bulb neural stem cells against ibotenic acid-induced neurotoxicity (Alzheimer model) in rat. Metab Brain Dis 2022; 37:973-988. [PMID: 35075502 DOI: 10.1007/s11011-021-00890-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/05/2021] [Indexed: 12/16/2022]
Abstract
Rosemary oil (ROO) is known to have multiple pharmacological effects: it is an antioxidant, anti-inflammatory, and cytoprotective. In the present study, we examined the effects of ROO on Human olfactory bulb neuronal stem cells (hOBNSCs) after their transplantation into rats, with the ibotenic (IBO) acid-induced cognitive deficit model. After 7 weeks, cognitive functions were assessed using the Morris water maze (MWM). After two months blood and hippocampus samples were collected for biochemical, gene expression, and histomorphometric analyses. Learning ability and memory function were significantly enhanced (P < 0.05) after hOBNSCs transplantation and were nearly returned to normal in the treated group. The IBO acid injection was associated with a significant decline (P < 0.05) of total leukocyte count (TLC) and a significant increase (P < 0.05) in total and toxic neutrophils. As well, the level of IL-1β, TNF-α CRP in serum and levels of MDA and NO in hippocampus tissue were significantly elevated (P < 0.05), while antioxidant markers (CAT, GSH, and SOD) were reduced (P < 0.05) in treated tissue compared to controls. The administration of ROO before or with cell transplantation attenuated all these parameters. In particular, the level of NO nearly returned to normal when rosemary was administrated before cell transplantation. Gene expression analysis revealed the potential protective effect of ROO and hOBNSCs via down-expression of R-βAmyl and R- CAS 3 and R-GFAP genes. The improvement in the histological organization of the hippocampus was detected after the hOBNSCs transplantation especially in h/ROO/hOBNSCs group.
Collapse
|