1
|
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108:1167-74. [PMID: 11602624 PMCID: PMC209533 DOI: 10.1172/jci13505] [Citation(s) in RCA: 4164] [Impact Index Per Article: 173.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin's beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin's inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.
Collapse
|
research-article |
24 |
4164 |
2
|
Xu S, Yan Z, Jang KI, Huang W, Fu H, Kim J, Wei Z, Flavin M, McCracken J, Wang R, Badea A, Liu Y, Xiao D, Zhou G, Lee J, Chung HU, Cheng H, Ren W, Banks A, Li X, Paik U, Nuzzo RG, Huang Y, Zhang Y, Rogers JA. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 2015; 347:154-9. [DOI: 10.1126/science.1260960] [Citation(s) in RCA: 615] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
10 |
615 |
3
|
Zhou G, Bao ZQ, Dixon JE. Components of a new human protein kinase signal transduction pathway. J Biol Chem 1995; 270:12665-9. [PMID: 7759517 DOI: 10.1074/jbc.270.21.12665] [Citation(s) in RCA: 516] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have identified two components of a new protein kinase signaling cascade, MAPK/ERK kinase 5 (MEK5) and extracellular signal-regulated kinase 5 (ERK5). The MEK5 cDNA was isolated by degenerate PCR and encodes a 444-amino acid protein, which has approximately 40% identity to known MEKs. ERK5 was identified by a specific interaction with the MEK5 mutants S311A/T315A and K195M in the yeast two-hybrid system. The proteins were found to interact in an in vitro binding assay as well. ERK5 did not interact with MEK1 or MEK2. ERK5 is predicted to contain 815 amino acids and is approximately twice the size of all known ERKs. The C terminus of ERK5 has sequences which suggest that it may be targeted to the cytoskeleton. Sequences located in the N terminus of MEK5 may be important in coupling GTPase signaling molecules to the MEK5 protein kinase cascade. Both MEK5 and ERK5 are expressed in many adult tissue and are abundant in heart and skeletal muscle. A recombinant GST-ERK5 kinase domain displays autophosphorylation on Ser/Thr and Tyr residues.
Collapse
|
|
30 |
516 |
4
|
Brilla CG, Zhou G, Matsubara L, Weber KT. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 1994; 26:809-20. [PMID: 7966349 DOI: 10.1006/jmcc.1994.1098] [Citation(s) in RCA: 459] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Myocardial fibrosis is associated with an activated renin-angiotensin-aldosterone system (RAAS). In renovascular hypertension, this presents as a reactive perivascular and interstitial fibrosis in not only the pressure overloaded, hypertrophied left ventricle but also the normotensive, nonhypertrophied right ventricle. It therefore would appear that circulating hormonal and not hemodynamic factors are responsible for this adverse fibrous tissue response. To ascertain whether the RAAS effector hormones angiotensin II (AII) or aldosterone (ALDO) directly stimulate collagen synthesis or inhibit collagenase production we used cell culture. Adult rat cardiac fibroblasts (Fb) were cultured since these cells express mRNA for types I and III collagens, the major fibrillar collagens in the heart, and collagenase or matrix metalloproteinase 1 (MMP 1), the key enzyme for interstitial collagen degradation. Collagen synthesis, determined by 3H-proline incorporation, and collagenase activity were measured in confluent, quiescent Fb after 24 h incubation with various concentrations of AII or ALDO (10(-11)-10(-6)M) in the presence or absence of either 10(-5)M type 1 (DuP 753) and type 2 (PD 123177) AII or 10(-9)-3 x 10(-6)M ALDO (spironolactone) receptor antagonists, respectively. Collagen synthesis, normalized per total protein synthesis, increased significantly (P < 0.005) after incubation with either 10(-9)M ALDO (5.9 +/- 1.0%) or 10(-7)M AII (5.3 +/- 1.2%) compared with untreated control cells (2.9 +/- 0.5%) of the same passage (p6-p10). This increase in collagen synthesis could be completely abolished by either types 1 or 2 AII receptor antagonists in AII stimulated Fb or the competitive ALDO receptor antagonist, spironolactone, at equimolar concentration in ALDO stimulated Fb. AII significantly decreased collagenase activity which could be completely abolished by PD 123177, but not DuP 753, while ALDO had no effect on collagenase activity. The mineralocorticoid, ALDO, stimulates collagen synthesis in cultured adult rat cardiac Fb in concentrations similar to those found in plasma in renovascular hypertension and this response appears to occur via type I corticoid receptors. AII appears to stimulate collagen synthesis by both type 1 and 2 AII receptors, but only in high concentrations that could be generated locally within the myocardium. In addition, AII unlike ALDO inhibits collagenase activity that could be attenuated only by type 2 receptor blockade. These findings suggest a direct interaction between ALDO, AII and cardiac Fb in mediating myocardial fibrosis in hypertensive heart disease.
Collapse
|
|
31 |
459 |
5
|
Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, Sparrow CP, Lund EG. 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem 2001; 276:38378-87. [PMID: 11504730 DOI: 10.1074/jbc.m105805200] [Citation(s) in RCA: 413] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nuclear receptors liver X receptor alpha (LXRalpha) (NR1H3) and LXRbeta (NR1H2) are important regulators of genes involved in lipid metabolism, including ABCA1, ABCG1, and sterol regulatory element-binding protein-1c (SREBP-1c). Although it has been demonstrated that oxysterols are LXR ligands, little is known about the identity of the physiological activators of these receptors. Here we confirm earlier studies demonstrating a dose-dependent induction of ABCA1 and ABCG1 in human monocyte-derived macrophages by cholesterol loading. In addition, we show that formation of 27-hydroxycholesterol and cholestenoic acid, products of CYP27 action on cholesterol, is dependent on the dose of cholesterol used to load the cells. Other proposed LXR ligands, including 20(S)-hydroxycholesterol, 22(R)-hydroxycholesterol, and 24(S),25-epoxycholesterol, could not be detected under these conditions. A role for CYP27 in regulation of cholesterol-induced genes was demonstrated by the following findings. 1) Introduction of CYP27 into HEK-293 cells conferred an induction of ABCG1 and SREBP-1c; 2) upon cholesterol loading, CYP27-expressing cells induce these genes to a greater extent than in control cells; 3) in CYP27-deficient human skin fibroblasts, the induction of ABCA1 in response to cholesterol loading was ablated; and 4) in a coactivator association assay, 27-hydroxycholesterol functionally activated LXR. We conclude that 27-hydroxylation of cholesterol is an important pathway for LXR activation in response to cholesterol overload.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP-Binding Cassette Transporters/metabolism
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cells, Cultured
- Cholestenones/metabolism
- Cholesterol/metabolism
- Cholesterol, LDL/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Fibroblasts/metabolism
- Gas Chromatography-Mass Spectrometry
- Humans
- Hydroxycholesterols/metabolism
- Ligands
- Liver X Receptors
- Macrophages/metabolism
- Orphan Nuclear Receptors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Skin/metabolism
- Sterol Regulatory Element Binding Protein 1
- Time Factors
- Transcription Factors
- Transfection
- Xanthomatosis, Cerebrotendinous/metabolism
Collapse
|
|
24 |
413 |
6
|
Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY. The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 1999; 13:1037-49. [PMID: 10215630 PMCID: PMC316637 DOI: 10.1101/gad.13.8.1037] [Citation(s) in RCA: 395] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The embryonic expression of COUP-TFII, an orphan nuclear receptor, suggests that it may participate in mesenchymal-epithelial interactions required for organogenesis. Targeted deletion of the COUP-TFII gene results in embryonic lethality with defects in angiogenesis and heart development. COUP-TFII mutants are defective in remodeling the primitive capillary plexus into large and small microcapillaries. In the COUP-TFII mutant heart, the atria and sinus venosus fail to develop past the primitive tube stage. Reciprocal interactions between the endothelium and the mesenchyme in the vascular system and heart are essential for normal development of these systems. In fact, the expression of Angiopoietin-1, a proangiogenic soluble factor thought to mediate the mesenchymal-endothelial interactions during heart development and vascular remodeling, is down-regulated in COUP-TFII mutants. This down-regulation suggests that COUP-TFII may be required for bidirectional signaling between the endothelial and mesenchymal compartments essential for proper angiogenesis and heart development.
Collapse
|
research-article |
26 |
395 |
7
|
Berger J, Leibowitz MD, Doebber TW, Elbrecht A, Zhang B, Zhou G, Biswas C, Cullinan CA, Hayes NS, Li Y, Tanen M, Ventre J, Wu MS, Berger GD, Mosley R, Marquis R, Santini C, Sahoo SP, Tolman RL, Smith RG, Moller DE. Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem 1999; 274:6718-25. [PMID: 10037770 DOI: 10.1074/jbc.274.10.6718] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) include three receptor subtypes encoded by separate genes: PPARalpha, PPARdelta, and PPARgamma. PPARgamma has been implicated as a mediator of adipocyte differentiation and the mechanism by which thiazolidinedione drugs exert in vivo insulin sensitization. Here we characterized novel, non-thiazolidinedione agonists for PPARgamma and PPARdelta that were identified by radioligand binding assays. In transient transactivation assays these ligands were agonists of the receptors to which they bind. Protease protection studies showed that ligand binding produced specific alterations in receptor conformation. Both PPARgamma and PPARdelta directly interacted with a nuclear receptor co-activator (CREB-binding protein) in an agonist-dependent manner. Only the PPARgamma agonists were able to promote differentiation of 3T3-L1 preadipocytes. In diabetic db/db mice all PPARgamma agonists were orally active insulin-sensitizing agents producing reductions of elevated plasma glucose and triglyceride concentrations. In contrast, selective in vivo activation of PPARdelta did not significantly affect these parameters. In vivo PPARalpha activation with WY-14653 resulted in reductions in elevated triglyceride levels with minimal effect on hyperglycemia. We conclude that: 1) synthetic non-thiazolidinediones can serve as ligands of PPARgamma and PPARdelta; 2) ligand-dependent activation of PPARdelta involves an apparent conformational change and association of the receptor ligand binding domain with CREB-binding protein; 3) PPARgamma activation (but not PPARdelta or PPARalpha activation) is sufficient to potentiate preadipocyte differentiation; 4) non-thiazolidinedione PPARgamma agonists improve hyperglycemia and hypertriglyceridemia in vivo; 5) although PPARalpha activation is sufficient to affect triglyceride metabolism, PPARdelta activation does not appear to modulate glucose or triglyceride levels.
Collapse
|
|
26 |
333 |
8
|
Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, Johnson RL, Lee B. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet 1998; 19:47-50. [PMID: 9590287 DOI: 10.1038/ng0598-47] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The LIM-homeodomain protein Lmx1b plays a central role in dorso-ventral patterning of the vertebrate limb. Targeted disruption of Lmx1b results in skeletal defects including hypoplastic nails, absent patellae and a unique form of renal dysplasia (see accompanying manuscript by H. Chen et al.; ref. 2). These features are reminiscent of the dominantly inherited skeletal malformation nail patella syndrome (NPS). We show that LMX1B maps to the NPS locus and that three independent NPS patients carry de novo heterozygous mutations in this gene. Functional studies show that one of these mutations disrupts sequence-specific DNA binding, while the other two mutations result in premature termination of translation. These data demonstrate a unique role for LMX1B in renal development and in patterning of the skeletal system, and suggest that alteration of Lmx1b/LMX1B function in mice and humans results in similar phenotypes. Furthermore, we provide evidence for the first described mutations in a LIM-homeodomain protein which account for an inherited form of abnormal skeletal patterning and renal failure.
Collapse
|
|
27 |
300 |
9
|
Hoegh-Guldberg O, Jacob D, Taylor M, Guillén Bolaños T, Bindi M, Brown S, Camilloni IA, Diedhiou A, Djalante R, Ebi K, Engelbrecht F, Guiot J, Hijioka Y, Mehrotra S, Hope CW, Payne AJ, Pörtner HO, Seneviratne SI, Thomas A, Warren R, Zhou G. The human imperative of stabilizing global climate change at 1.5°C. Science 2019; 365:365/6459/eaaw6974. [DOI: 10.1126/science.aaw6974] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
Abstract
Increased concentrations of atmospheric greenhouse gases have led to a global mean surface temperature 1.0°C higher than during the pre-industrial period. We expand on the recent IPCC Special Report on global warming of 1.5°C and review the additional risks associated with higher levels of warming, each having major implications for multiple geographies, climates, and ecosystems. Limiting warming to 1.5°C rather than 2.0°C would be required to maintain substantial proportions of ecosystems and would have clear benefits for human health and economies. These conclusions are relevant for people everywhere, particularly in low- and middle-income countries, where the escalation of climate-related risks may prevent the achievement of the United Nations Sustainable Development Goals.
Collapse
|
|
6 |
271 |
10
|
Hornés A, Hungría AB, Bera P, Cámara AL, Fernández-García M, Martínez-Arias A, Barrio L, Estrella M, Zhou G, Fonseca JJ, Hanson JC, Rodriguez JA. Inverse CeO2/CuO Catalyst As an Alternative to Classical Direct Configurations for Preferential Oxidation of CO in Hydrogen-Rich Stream. J Am Chem Soc 2009; 132:34-5. [DOI: 10.1021/ja9089846] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
16 |
255 |
11
|
Zhou G, Hansen J, Kaiser J. Nonlinear feature based classification of speech under stress. ACTA ACUST UNITED AC 2001. [DOI: 10.1109/89.905995] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
24 |
251 |
12
|
Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP. Uroplakin Ia is the urothelial receptor for uropathogenicEscherichia coli: evidence from in vitro FimH binding. J Cell Sci 2001; 114:4095-103. [PMID: 11739641 DOI: 10.1242/jcs.114.22.4095] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of uropathogenic Escherichia coli to the urothelial surface is a crucial initial event for establishing urinary tract infection because it allows the bacteria to gain a foothold on the urothelial surface, thus preventing them from being removed by micturition. In addition, it triggers bacterial invasion as well as host urothelial defense. This binding is mediated by the FimH adhesin located at the tip of the bacterial type 1-fimbrium, a filamentous attachment apparatus, and its urothelial receptor. We have prepared a biotinylated, recombinant FimH-FimC adhesin:chaperone complex and used it to identify its mouse urothelial receptor. The FimH-FimC complex binds specifically to a single 24 kDa major mouse urothelial plaque protein, which we identified as uroplakin Ia by mass spectrometry, cDNA cloning and immunoreactivity. The terminal mannosyl moieties on Asn-169 of uroplakin Ia are responsible for FimH as well as concanavalin A binding. Although FimH binds to uroplakin Ia with only moderate strength (Kd ∼100 nM between pH 4 and 9), the binding between multiple fimbriae of a bacterium and the crystalline array of polymerized uroplakin receptors should achieve high avidity and stable bacterial attachment. The FimH-FimC complex binds preferentially to the mouse urothelial umbrella cells in a pattern similar to uroplakin staining. Our results indicate that the structurally related uroplakins Ia and Ib are glycosylated differently, that uroplakin Ia serves as the urothelial receptor for the type 1-fimbriated E. coli, and that the binding of uropathogenic bacteria to uroplakin Ia may play a key role in mediating the urothelial responses to bacterial attachment.
Collapse
|
|
24 |
250 |
13
|
Zhang B, Berger J, Zhou G, Elbrecht A, Biswas S, White-Carrington S, Szalkowski D, Moller DE. Insulin- and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor gamma. J Biol Chem 1996; 271:31771-4. [PMID: 8943212 DOI: 10.1074/jbc.271.50.31771] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) gamma plays an important role in adipocyte differentiation and the regulation of adipocyte gene expression. Insulin also serves to promote adipogenesis. We report that insulin and a PPARgamma ligand (thiazolidinedione (TZD)) stimulate in a synergistic manner the expression of an adipocyte-specific gene (aP2) in rat adipocytes and 3T3-L1 cells. Potential cross-talk between insulin signaling and PPARgamma was studied in Chinese hamster ovary cells expressing insulin receptors (CHO.T), PPARgamma, and reporter genes. Both TZD and insulin independently stimulated PPARgamma-mediated transactivation of aP2 promoter-luciferase reporter genes; both agents combined resulted in a synergistic effect. Co-transfection of CHO.T cells with dominant-negative mitogen-activated protein (MAP) kinase-kinase (MKK1) abrogated both insulin- and TZD-mediated activation of PPARgamma; transactivation was markedly increased in cells co-transfected with constitutively active MKK1. Both insulin and constitutively active MKK1 also stimulated 32P incorporation into PPARgamma in vivo. The conclusions are: 1) Insulin synergizes with a PPARgamma ligand and can activate the receptor in a ligand-independent fashion. 2) PPARgamma is phosphorylated in vivo by insulin stimulation or activation of the MAP kinase pathway. 3) MAP kinase is an important mediator of cross-talk between insulin signal transduction pathways and PPARgamma function.
Collapse
|
|
29 |
218 |
14
|
Green SA, Simpson DJ, Zhou G, Ho PS, Blough NV. Intramolecular quenching of excited singlet states by stable nitroxyl radicals. J Am Chem Soc 2002. [DOI: 10.1021/ja00176a038] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
23 |
216 |
15
|
Zhou G, Somasundaram T, Blanc E, Parthasarathy G, Ellington WR, Chapman MS. Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc Natl Acad Sci U S A 1998; 95:8449-54. [PMID: 9671698 PMCID: PMC21096 DOI: 10.1073/pnas.95.15.8449] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Arginine kinase belongs to the family of enzymes, including creatine kinase, that catalyze the buffering of ATP in cells with fluctuating energy requirements and that has been a paradigm for classical enzymological studies. The 1.86-A resolution structure of its transition-state analog complex, reported here, reveals its active site and offers direct evidence for the importance of precise substrate alignment in the catalysis of bimolecular reactions, in contrast to the unimolecular reactions studied previously. In the transition-state analog complex studied here, a nitrate mimics the planar gamma-phosphoryl during associative in-line transfer between ATP and arginine. The active site is unperturbed, and the reactants are not constrained covalently as in a bisubstrate complex, so it is possible to measure how precisely they are pre-aligned by the enzyme. Alignment is exquisite. Entropic effects may contribute to catalysis, but the lone-pair orbitals are also aligned close enough to their optimal trajectories for orbital steering to be a factor during nucleophilic attack. The structure suggests that polarization, strain toward the transition state, and acid-base catalysis also contribute, but, in contrast to unimolecular enzyme reactions, their role appears to be secondary to substrate alignment in this bimolecular reaction.
Collapse
|
research-article |
27 |
199 |
16
|
Gelman L, Zhou G, Fajas L, Raspé E, Fruchart JC, Auwerx J. p300 interacts with the N- and C-terminal part of PPARgamma2 in a ligand-independent and -dependent manner, respectively. J Biol Chem 1999; 274:7681-8. [PMID: 10075656 DOI: 10.1074/jbc.274.12.7681] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear peroxisome proliferator-activated receptor gamma (PPARgamma) activates the transcription of multiple genes involved in intra- and extracellular lipid metabolism. Several cofactors are crucial for the stimulation or the silencing of nuclear receptor transcriptional activities. The two homologous cofactors p300 and CREB-binding protein (CBP) have been shown to co-activate the ligand-dependent transcriptional activities of several nuclear receptors as well as the ligand-independent transcriptional activity of the androgen receptor. We show here that the interaction between p300/CBP and PPARgamma is complex and involves multiple domains in each protein. p300/CBP not only bind in a ligand-dependent manner to the DEF region of PPARgamma but also bind directly in a ligand-independent manner to a region in the AB domain localized between residue 31 to 99. In transfection experiments, p300/CBP could thereby enhance the transcriptional activities of both the activating function (AF)-1 and AF-2 domains. p300/CBP displays itself at least two docking sites for PPARgamma located in its N terminus (between residues 1 and 113 for CBP) and in the middle of the protein (between residues 1099 and 1460).
Collapse
|
|
26 |
179 |
17
|
Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 2000; 18:1162-6. [PMID: 11062434 DOI: 10.1038/81145] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we describe a strategy for engineering transgenic plants with broad-spectrum resistance to bacterial and fungal phytopathogens. We expressed a synthetic gene encoding a N terminus-modified, cecropin-melittin cationic peptide chimera (MsrA1), with broad-spectrum antimicrobial activity. The synthetic gene was introduced into two potato (Solanum tuberosum L.) cultivars, Desiree and Russet Burbank, stable incorporation was confirmed by PCR and DNA sequencing, and expression confirmed by reverse transcription (RT)-PCR and recovery of the biologically active peptide. The morphology and yield of transgenic Desiree plants and tubers was unaffected. Highly stringent challenges with bacterial or fungal phytopathogens demonstrated powerful resistance. Tubers retained their resistance to infectious challenge for more than a year, and did not appear to be harmful when fed to mice. Expression of msrA1 in the cultivar Russet Burbank caused a striking lesion-mimic phenotype during leaf and tuber development, indicating its utility may be cultivar specific. Given the ubiquity of antimicrobial cationic peptides as well as their inherent capacity for recombinant and combinatorial variants, this approach may potentially be used to engineer a range of disease-resistant plants.
Collapse
|
|
25 |
171 |
18
|
Shu H, Wong B, Zhou G, Li Y, Berger J, Woods JW, Wright SD, Cai TQ. Activation of PPARalpha or gamma reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells. Biochem Biophys Res Commun 2000; 267:345-9. [PMID: 10623622 DOI: 10.1006/bbrc.1999.1968] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that directly control numerous genes of lipid metabolism by binding to response elements in the promoter. It has recently been proposed that PPARgamma may also regulate genes for proinflammatory proteins, not through PPRE binding but by interaction with transcription factors AP-1, STAT, and NF-kappaB. Recent studies with cultured human monocytes, however, have failed to observe an inhibitory effect of PPARgamma agonists on induced expression of TNFalpha and IL-6, genes known to be controlled by AP-1, STAT, and NF-kappaB. In a similar fashion, we show here that PPARalpha (fenofibrate) or PPARgamma (rosiglitazone) agonists failed to modulate LPS-induced secretion of IL-8 in THP-1 cells. When we made parallel observations on another gene, matrix metalloproteinase 9 (MMP-9), we were surprised to find profound downregulation of LPS-induced secretion by both PPARalpha or PPARgamma agonists. These findings suggest that PPAR may regulate only a subset of the proinflammatory genes controlled by AP-1, STAT, and NF-kappaB. Effects of PPARs on MMP-9 may account for the beneficial effect of PPAR agonists in animal models of atherosclerosis.
Collapse
|
|
25 |
169 |
19
|
Kupferman ME, Jiffar T, El-Naggar A, Yilmaz T, Zhou G, Xie T, Feng L, Wang J, Holsinger FC, Yu D, Myers JN. TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. Oncogene 2010; 29:2047-59. [PMID: 20101235 DOI: 10.1038/onc.2009.486] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a significant public health problem, accounting for over 5% of all cancer-related deaths, and these deaths primarily result from metastatic disease. The molecular processes involved in HNSCC pathogenesis and progression are poorly understood, and here we present experimental evidence for a direct role of the cell surface receptor tyrosine kinase, TrkB, in HNSCC tumor progression. Using immunohistochemical analysis and transcriptional profiling of archival HNSCC tumor specimens, we found that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF), are expresses in greater than 50% of human HNSCC tumors, but not in normal upper aerodigestive tract (UADT) epithelia. Studies with HNSCC cell lines reveal that in vitro stimulation with BDNF, the ligand for TrkB, upregulates the migration and invasion of HNSCC cells, and both transient and stable suppressions of TrkB result in significant abrogation of constitutive and ligand-mediated migration and invasion. Furthermore, enforced overexpression of TrkB results in altered expression of molecular mediators of epithelial-to-mesenchymal transition (EMT), including downregulation of E-cadherin and upregulation of Twist. Using an in vivo mouse model of HNSCC, we were able to show that downregulation of TrkB suppresses tumor growth. These results directly implicate TrkB in EMT and the invasive behavior of HNSCC, and correlate with the in vivo overexpression of TrkB in human HNSCC. Taken together, these data suggest that the TrkB receptor may be a critical component in the multi-step tumor progression of HNSCC, and may be an attractive target for much needed new therapies for this disease.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
165 |
20
|
Morello R, Zhou G, Dreyer SD, Harvey SJ, Ninomiya Y, Thorner PS, Miner JH, Cole W, Winterpacht A, Zabel B, Oberg KC, Lee B. Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Nat Genet 2001; 27:205-8. [PMID: 11175791 DOI: 10.1038/84853] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Basement membrane (BM) morphogenesis is critical for normal kidney function. Heterotrimeric type IV collagen, composed of different combinations of six alpha-chains (1-6), is a major matrix component of all BMs (ref. 2). Unlike in other BMs, glomerular BM (GBM) contains primarily the alpha 3(IV) and alpha 4(IV) chains, together with the alpha 5(IV) chain. A poorly understood, coordinated temporal and spatial switch in gene expression from ubiquitously expressed alpha 1(IV) and alpha 2(IV) collagen to the alpha 3(IV), alpha 4(IV) and alpha 5(IV) chains occurs during normal embryogenesis of GBM (ref. 4). Structural abnormalities of type IV collagen have been associated with diverse biological processes including defects in molecular filtration in Alport syndrome, cell differentiation in hereditary leiomyomatosis, and autoimmunity in Goodpasture syndrome; however, the transcriptional and developmental regulation of type IV collagen expression is unknown. Nail patella syndrome (NPS) is caused by mutations in LMX1B, encoding a LIM homeodomain transcription factor. Some patients have nephrosis-associated renal disease characterized by typical ultrastructural abnormalities of GBM (refs. 8,9). In Lmx1b(-/-) mice, expression of both alpha(3)IV and alpha(4)IV collagen is strongly diminished in GBM, whereas that of alpha1, alpha2 and alpha5(IV) collagen is unchanged. Moreover, LMX1B binds specifically to a putative enhancer sequence in intron 1 of both mouse and human COL4A4 and upregulates reporter constructs containing this enhancer-like sequence. These data indicate that LMX1B directly regulates the coordinated expression of alpha 3(IV) and alpha 4(IV) collagen required for normal GBM morphogenesis and that its dysregulation in GBM contributes to the renal pathology and nephrosis in NPS.
Collapse
|
|
24 |
161 |
21
|
Zhou G, Chen Y, Zhou L, Thirunavukkarasu K, Hecht J, Chitayat D, Gelb BD, Pirinen S, Berry SA, Greenberg CR, Karsenty G, Lee B. CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia. Hum Mol Genet 1999; 8:2311-6. [PMID: 10545612 DOI: 10.1093/hmg/8.12.2311] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is a dominantly inherited skeletal dysplasia caused by mutations in the osteoblast-specific transcription factor CBFA1. To correlate CBFA1 mutations in different functional domains with the CCD clinical spectrum, we studied 26 independent cases of CCD and a total of 16 new mutations were identified in 17 families. The majority of mutations were de novo missense mutations that affected conserved residues in the runt domain and completely abolished both DNA binding and transactivation of a reporter gene. These, and mutations which result in premature termination in the runt domain, produced a classic CCD phenotype by abolishing transactivation of the mutant protein with consequent haploinsufficiency. We further identified three putative hypomorphic mutations (R391X, T200A and 90insC) which result in a clinical spectrum including classic and mild CCD, as well as an isolated dental phenotype characterized by delayed eruption of permanent teeth. Functional studies show that two of the three mutations were hypomorphic in nature and two were associated with significant intrafamilial variable expressivity, including isolated dental anomalies without the skeletal features of CCD. Together these data show that variable loss of function due to alterations in the runt and PST domains of CBFA1 may give rise to clinical variability, including classic CCD, mild CCD and isolated primary dental anomalies.
Collapse
|
|
26 |
155 |
22
|
Wang W, Zhou G, Hu MC, Yao Z, Tan TH. Activation of the hematopoietic progenitor kinase-1 (HPK1)-dependent, stress-activated c-Jun N-terminal kinase (JNK) pathway by transforming growth factor beta (TGF-beta)-activated kinase (TAK1), a kinase mediator of TGF beta signal transduction. J Biol Chem 1997; 272:22771-5. [PMID: 9278437 DOI: 10.1074/jbc.272.36.22771] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor beta (TGF-beta)-activated kinase (TAK1) is known for its involvement in TGF-beta signaling and its ability to activate the p38-mitogen-activated protein kinase (MAPK) pathway. This report shows that TAK1 is also a strong activator of c-Jun N-terminal kinase (JNK). Both the wild-type and a constitutively active mutant of TAK1 stimulated JNK in transient transfection assays. Mitogen-activated protein kinase kinase 4 (MKK4)/stress-activated protein kinase/extracellular signal-regulated kinase (SEK1), a dual-specificity kinase that phosphorylates and activates JNK, synergized with TAK1 in activating JNK. Conversely, a dominant-negative (MKK4/SEK1 mutant inhibited TAK1-induced JNK activation. A kinasedefective mutant of TAK1 effectively suppressed hematopoietic progenitor kinase-1 (HPK1)-induced JNK activity but had little effect on germinal center kinase activation of JNK. There are two additional MAPK kinase kinases, MEKK1 and mixed lineage kinase 3 (MLK3), that are also downstream of HPK1 and upstream of MKK4/SEK mutant. However, because the dominant-negative mutants of MEKK1 and MLK3 did not inhibit TAK1-induced JNK activity, we conclude that activation of JNK1 by TAK1 is independent of MEKK1 and MLK3. In addition to TAK1, TGF-beta also stimulated JNK activity. Taken together, these results identify TAK1 as a regulator in the HPK1 --> TAK1 --> MKK4/SEK1 --> JNK kinase cascade and indicate the involvement of JNK in the TGF-beta signaling pathway. Our results also suggest the potential roles of TAK1 not only in the TGF-beta pathway but also in the other HPK1/JNK1-mediated pathways.
Collapse
|
|
28 |
154 |
23
|
Zhou G, Kuo MT. NF-kappaB-mediated induction of mdr1b expression by insulin in rat hepatoma cells. J Biol Chem 1997; 272:15174-83. [PMID: 9182539 DOI: 10.1074/jbc.272.24.15174] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of P-glycoproteins encoded by the mdr gene family is associated with the emergence of multidrug resistance phenotype in animal cells. However, the mechanisms controlling the expression of these genes have not been well elucidated. Here, we report that the expression of rat mdr1b gene in cultured H-4-II-E hepatoma cells can be induced by insulin. Transient transfection assays using reporter gene constructs containing various 5' mdr1b sequences showed that the sequence located between base pairs -243 and -163 is important for insulin's induction of mdr1b promoter activity. Further analyses revealed that a NF-kappaB-binding site (located between base pairs -167 and -158) is required for insulin-induced promoter activity. Gel mobility shift assay demonstrated that insulin stimulates the binding of nuclear p50/p65 subunits to the mdr1b NF-kappaB sequence. Cotransfection of plasmids expressing either the p50/p65 NF-kappaB subunits or Raf-1 kinase or both resulted in increased expression of the gene containing wild-type but not NF-kappaB site-mutated mdr1b promoter. Finally, expression of either the antisense p65 subunit of NF-kappaB or dominant negative Raf-1 kinase blocked insulin's induction of the mdr1b promoter activity. Taken together, our results suggest that the insulin-induced mdr1b expression is mediated by transcription factor NF-kappaB via the Raf-1 kinase signaling pathway.
Collapse
|
|
28 |
153 |
24
|
Yao Z, Zhou G, Wang XS, Brown A, Diener K, Gan H, Tan TH. A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway. J Biol Chem 1999; 274:2118-25. [PMID: 9890973 DOI: 10.1074/jbc.274.4.2118] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast serine/threonine kinase STE20 activates a signaling cascade that includes STE11 (mitogen-activated protein kinase kinase kinase), STE7 (mitogen-activated protein kinase kinase), and FUS3/KSS1 (mitogen-activated protein kinase) in response to signals from both Cdc42 and the heterotrimeric G proteins associated with transmembrane pheromone receptors. Using degenerate polymerase chain reaction, we have isolated a human cDNA encoding a protein kinase homologous to STE20. This protein kinase, designated HPK/GCK-like kinase (HGK), has nucleotide sequences that encode an open reading frame of 1165 amino acids with 11 kinase subdomains. HGK was a serine/threonine protein kinase that specifically activated the c-Jun N-terminal kinase (JNK) signaling pathway when transfected into 293T cells, but it did not stimulate either the extracellular signal-regulated kinase or p38 kinase pathway. HGK also increased AP-1-mediated transcriptional activity in vivo. HGK-induced JNK activation was inhibited by the dominant-negative MKK4 and MKK7 mutants. The dominant-negative mutant of TAK1, but not MEKK1 or MAPK upstream kinase (MUK), strongly inhibited HGK-induced JNK activation. TNF-alpha activated HGK in 293T cells, as well as the dominant-negative HGK mutants, inhibited TNF-alpha-induced JNK activation. These results indicate that HGK, a novel activator of the JNK pathway, may function through TAK1, and that the HGK --> TAK1 --> MKK4, MKK7 --> JNK kinase cascade may mediate the TNF-alpha signaling pathway.
Collapse
|
|
26 |
143 |
25
|
Lawrence JW, Li Y, Chen S, DeLuca JG, Berger JP, Umbenhauer DR, Moller DE, Zhou G. Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator-activated receptor (PPAR) alpha. PPAR alpha fails to induce peroxisome proliferation-associated genes in human cells independently of the level of receptor expresson. J Biol Chem 2001; 276:31521-7. [PMID: 11418601 DOI: 10.1074/jbc.m103306200] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We compared the ability of rat and human hepatocytes to respond to fenofibric acid and a novel potent phenylacetic acid peroxisome proliferator-activated receptor (PPAR) alpha agonist (compound 1). Fatty acyl-CoA oxidase (FACO) activity and mRNA were increased after treatment with either fenofibric acid or compound 1 in rat hepatocytes. In addition, apolipoprotein CIII mRNA was decreased by both fenofibric acid and compound 1 in rat hepatocytes. Both agonists decreased apolipoprotein CIII mRNA in human hepatocytes; however, very little change in FACO activity or mRNA was observed. Furthermore, other peroxisome proliferation (PP)-associated genes including peroxisomal 3-oxoacyl-CoA thiolase (THIO), peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (HD), peroxisomal membrane protein-70 (PMP-70) were not regulated by PPAR alpha agonists in human hepatocytes. Moreover, other genes that are regulated by PPAR alpha ligands in human hepatocytes such as mitochondrial HMG-CoA synthase and carnitine palmitoyl transferase-1 (CPT-1) were also regulated in HepG2 cells by PPAR alpha agonists. Several stably transfected HepG2 cell lines were established that overexpressed human PPAR alpha to levels between 6- and 26-fold over normal human hepatocytes. These PPAR alpha-overexpressing cells had higher basal mRNA levels of mitochondrial HMG-CoA synthase and CPT-1; however, basal FACO mRNA levels and other PP-associated genes including THIO, HD, or PMP-70 mRNA were not substantially affected. In addition, FACO, THIO, HD, and PMP-70 mRNA levels did not increase in response to PPAR alpha agonist treatment in the PPAR alpha-overexpressing cells, although mitochondrial HMG-CoA synthase and CPT-1 mRNAs were both induced. These results suggest that other factors besides PPAR alpha levels determine the species-specific response of human and rat hepatocytes to the induction of PP.
Collapse
|
Comparative Study |
24 |
139 |