1
|
Cantero-Recasens G, Fandos C, Rubio-Moscardo F, Valverde MA, Vicente R. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum Mol Genet 2010; 19:111-21. [PMID: 19819884 DOI: 10.1093/hmg/ddp471] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alterations of protein folding or Ca(2+) levels within the endoplasmic reticulum (ER) result in the unfolded-protein response (UPR), a process considered as an endogenous inducer of inflammation. Thereby, understanding how genetic factors modify UPR is particularly relevant in chronic inflammatory diseases such as asthma. Here we identified that ORMDL3, the only genetic risk factor recently associated to asthma in a genome wide study, alters ER-mediated Ca(2+) homeostasis and facilitates the UPR. Heterologous expression of human ER-resident transmembrane ORMDL3 protein increased resting cytosolic Ca(2+) levels and reduced ER-mediated Ca(2+) signaling, an effect reverted by co-expression with the sarco-endoplasmic reticulum Ca(2+) pump (SERCA). Increased ORMDL3 expression also promoted stronger activation of UPR transducing molecules and target genes while siRNA-mediated knock-down of endogenous ORMDL3 potentiated ER Ca(2+) release and attenuated the UPR. In conclusion, our findings are consistent with a model in which ORMDL3 binds and inhibits SERCA resulting in a reduced ER Ca(2+) concentration and increased UPR. Thus, we provide a first insight into the molecular mechanism explaining the association of ORMDL3 with proinflammatory diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
203 |
2
|
Cantero-Recasens G, Gonzalez JR, Fandos C, Duran-Tauleria E, Smit LAM, Kauffmann F, Antó JM, Valverde MA. Loss of function of transient receptor potential vanilloid 1 (TRPV1) genetic variant is associated with lower risk of active childhood asthma. J Biol Chem 2010; 285:27532-5. [PMID: 20639579 DOI: 10.1074/jbc.c110.159491] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transient receptor potential cation channels of the vanilloid subfamily (TRPV) participate in the generation of Ca(2+) signals at different locations of the respiratory system, thereby controlling its correct functioning. TRPV1 expression and activity appear to be altered under pathophysiological conditions such as chronic cough and airway hypersensitivity, whereas TRPV4 single nucleotide polymorphisms (SNP) are associated with chronic obstructive pulmonary disease. However, to date, there is no information about the genetic impact of either TRPV1 or TRPV4 on asthma pathophysiology. We now report on the association of two functional SNPs, TRPV1-I585V and TRPV4-P19S, with childhood asthma. Both SNPs were genotyped in a population of 470 controls without respiratory symptoms and 301 asthmatics. Although none of the SNPs modified the risk of suffering from asthma, carriers of the TRPV1-I585V genetic variant showed a lower risk of current wheezing (odds ratio = 0.51; p = 0.01), a characteristic of active asthma, or cough (odds ratio = 0.57; p = 0.02). Functional analysis of TRPV1-I585V, using the Ca(2+)-sensitive dye fura-2 to measure intracellular [Ca(2+)] concentrations, revealed a decreased channel activity in response to two typical TRPV1 stimuli, heat and capsaicin. On the other hand, TRPV4-P19S, despite its loss-of-channel function, showed no significant association with asthma or the presence of wheezing. Our data suggest that genetically determined level of TRPV1 activity is relevant for asthma pathophysiology.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
97 |
3
|
Carreras-Sureda A, Cantero-Recasens G, Rubio-Moscardo F, Kiefer K, Peinelt C, Niemeyer BA, Valverde MA, Vicente R. ORMDL3 modulates store-operated calcium entry and lymphocyte activation. Hum Mol Genet 2012; 22:519-30. [PMID: 23100328 DOI: 10.1093/hmg/dds450] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
T lymphocytes rely on a Ca(2+) signal known as store-operated calcium entry (SOCE) for their activation. This Ca(2+) signal is generated by activation of a T-cell receptor, depletion of endoplasmic reticulum (ER) Ca(2+) stores and activation of Ca(2+) release-activated Ca(2+) currents (I(CRAC)). Here, we report that the ER protein orosomucoid like 3 (ORMDL3), the product of the ORMDL3 gene associated with several autoimmune and/or inflammatory diseases, negatively modulates I(CRAC), SOCE, nuclear factor of activated T cells nuclear translocation and interleukin-2 production. ORMDL3 inhibits the Ca(2+) influx mechanism at the outer mitochondrial membrane, resulting in a Ca(2+)-dependent inhibition of I(CRAC) and reduced SOCE. The effect of ORMDL3 could be mimicked by interventions that decreased mitochondrial Ca(2+) influx and reverted by buffering of cytosolic Ca(2+) or activation of mitochondrial Ca(2+) influx. In conclusion, ORMDL3 modifies key steps in the process of T-lymphocyte activation, providing a functional link between the genetic associations of the ORMDL3 gene with autoimmune and/or inflammatory diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
73 |
4
|
Mitrovic S, Nogueira C, Cantero-Recasens G, Kiefer K, Fernández-Fernández JM, Popoff JF, Casano L, Bard FA, Gomez R, Valverde MA, Malhotra V. TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet cells. eLife 2013; 2:e00658. [PMID: 23741618 PMCID: PMC3667631 DOI: 10.7554/elife.00658] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/23/2013] [Indexed: 12/23/2022] Open
Abstract
Mucin 5AC (MUC5AC) is secreted by goblet cells of the respiratory tract and, surprisingly, also expressed de novo in mucus secreting cancer lines. siRNA-mediated knockdown of 7343 human gene products in a human colonic cancer goblet cell line (HT29-18N2) revealed new proteins, including a Ca(2+)-activated channel TRPM5, for MUC5AC secretion. TRPM5 was required for PMA and ATP-induced secretion of MUC5AC from the post-Golgi secretory granules. Stable knockdown of TRPM5 reduced a TRPM5-like current and ATP-mediated Ca(2+) signal. ATP-induced MUC5AC secretion depended strongly on Ca(2+) influx, which was markedly reduced in TRPM5 knockdown cells. The difference in ATP-induced Ca(2+) entry between control and TRPM5 knockdown cells was abrogated in the absence of extracellular Ca(2+) and by inhibition of the Na(+)/Ca(2+) exchanger (NCX). Accordingly, MUC5AC secretion was reduced by inhibition of NCX. Thus TRPM5 activation by ATP couples TRPM5-mediated Na(+) entry to promote Ca(2+) uptake via an NCX to trigger MUC5AC secretion. DOI:http://dx.doi.org/10.7554/eLife.00658.001.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
36 |
5
|
Cantero-Recasens G, Butnaru CM, Brouwers N, Mitrovic S, Valverde MA, Malhotra V. Sodium channel TRPM4 and sodium/calcium exchangers (NCX) cooperate in the control of Ca 2+-induced mucin secretion from goblet cells. J Biol Chem 2018; 294:816-826. [PMID: 30482841 DOI: 10.1074/jbc.ra117.000848] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/21/2018] [Indexed: 01/08/2023] Open
Abstract
Regulated mucin secretion is essential for the formation of the mucus layer that protects the underlying epithelial cells from foreign particles. Alterations in the quantity or quality of secreted mucins are therefore detrimental to airway and colon physiology. Based on various biochemical assays in several human cell lines, we report here that Na+/Ca2+ exchanger 2 (NCX2) works in conjunction with transient receptor potential cation channel subfamily M member 4 (TRPM4), and perhaps TRPM5, Na+ channels to control Ca2+-mediated secretion of both mucin 2 (MUC2) and MUC5AC from HT29-18N2 colonic cancer cells. Differentiated normal bronchial epithelial (NHBE) cells and tracheal cells from patients with cystic fibrosis (CFT1-LC3) expressed only TRPM4 and all three isoforms of NCXs. Blocking the activity of TRPM4 or NCX proteins abrogated MUC5AC secretion from NHBE and CFT1-LC3 cells. Altogether, our findings reveal that NCX and TRPM4/TRPM5 are both required for mucin secretion. We therefore propose that these two proteins could be potential pharmacological targets to control mucus-related pathologies such as cystic fibrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
26 |
6
|
Valverde MA, Cantero-Recasens G, Garcia-Elias A, Jung C, Carreras-Sureda A, Vicente R. Ion channels in asthma. J Biol Chem 2011; 286:32877-82. [PMID: 21799020 DOI: 10.1074/jbc.r110.215491] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.
Collapse
|
Review |
14 |
22 |
7
|
Cantero-Recasens G, Butnaru CM, Valverde MA, Naranjo JR, Brouwers N, Malhotra V. KChIP3 coupled to Ca 2+ oscillations exerts a tonic brake on baseline mucin release in the colon. eLife 2018; 7:39729. [PMID: 30272559 PMCID: PMC6167051 DOI: 10.7554/elife.39729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Regulated mucin secretion from specialized goblet cells by exogenous agonist-dependent (stimulated) and -independent (baseline) manner is essential for the function of the epithelial lining. Over extended periods, baseline release of mucin can exceed quantities released by stimulated secretion, yet its regulation remains poorly characterized. We have discovered that ryanodine receptor-dependent intracellular Ca2+ oscillations effect the dissociation of the Ca2+-binding protein, KChIP3, encoded by KCNIP3 gene, from mature mucin-filled secretory granules, allowing for their exocytosis. Increased Ca2+ oscillations, or depleting KChIP3, lead to mucin hypersecretion in a human differentiated colonic cell line, an effect reproduced in the colon of Kcnip3-/- mice. Conversely, overexpressing KChIP3 or abrogating its Ca2+-sensing ability, increases KChIP3 association with granules, and inhibits baseline secretion. KChIP3 therefore emerges as the high-affinity Ca2+ sensor that negatively regulates baseline mucin secretion. We suggest KChIP3 marks mature, primed mucin granules, and functions as a Ca2+ oscillation-dependent brake to control baseline secretion. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
11 |
8
|
Sadofsky LR, Cantero-Recasens G, Wright C, Valverde MA, Morice AH. TRPV1 polymorphisms influence capsaicin cough sensitivity in men. J Thorac Dis 2017; 9:839-840. [PMID: 28449493 DOI: 10.21037/jtd.2017.03.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
Editorial |
8 |
5 |
9
|
Durán M, Burballa C, Cantero-Recasens G, Butnaru CM, Malhotra V, Ariceta G, Sarró E, Meseguer A. Novel Dent disease 1 cellular models reveal biological processes underlying ClC-5 loss-of-function. Hum Mol Genet 2021; 30:1413-1428. [PMID: 33987651 PMCID: PMC8283206 DOI: 10.1093/hmg/ddab131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Dent disease 1 (DD1) is a rare X-linked renal proximal tubulopathy characterized by low molecular weight proteinuria and variable degree of hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressing to chronic kidney disease. Although mutations in the electrogenic Cl-/H+ antiporter ClC-5, which impair endocytic uptake in proximal tubule cells, cause the disease, there is poor genotype-phenotype correlation and their contribution to proximal tubule dysfunction remains unclear. To further discover the mechanisms linking ClC-5 loss-of-function to proximal tubule dysfunction, we have generated novel DD1 cellular models depleted of ClC-5 and carrying ClC-5 mutants p.(Val523del), p.(Glu527Asp) and p.(Ile524Lys) using the human proximal tubule-derived RPTEC/TERT1 cell line. Our DD1 cellular models exhibit impaired albumin endocytosis, increased substrate adhesion and decreased collective migration, correlating with a less differentiated epithelial phenotype. Despite sharing functional features, these DD1 cell models exhibit different gene expression profiles, being p.(Val523del) ClC-5 the mutation showing the largest differences. Gene set enrichment analysis pointed to kidney development, anion homeostasis, organic acid transport, extracellular matrix organization and cell-migration biological processes as the most likely involved in DD1 pathophysiology. In conclusion, our results revealed the pathways linking ClC-5 mutations with tubular dysfunction and, importantly, provide new cellular models to further study DD1 pathophysiology.
Collapse
|
research-article |
4 |
4 |
10
|
Nemours S, Castro L, Ribatallada-Soriano D, Semidey ME, Aranda M, Ferrer M, Sanchez A, Morote J, Cantero-Recasens G, Meseguer A. Temporal and sex-dependent gene expression patterns in a renal ischemia-reperfusion injury and recovery pig model. Sci Rep 2022; 12:6926. [PMID: 35484379 PMCID: PMC9051203 DOI: 10.1038/s41598-022-10352-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 12/30/2022] Open
Abstract
Men are more prone to acute kidney injury (AKI) and chronic kidney disease (CKD), progressing to end-stage renal disease (ESRD) than women. Severity and capacity to regenerate after AKI are important determinants of CKD progression, and of patient morbidity and mortality in the hospital setting. To determine sex differences during injury and recovery we have generated a female and male renal ischemia/reperfusion injury (IRI) pig model, which represents a major cause of AKI. Although no differences were found in blood urea nitrogen (BUN) and serum creatinine (SCr) levels between both sexes, females exhibited higher mononuclear infiltrates at basal and recovery, while males showed more tubular damage at injury. Global transcriptomic analyses of kidney biopsies from our IRI pig model revealed a sexual dimorphism in the temporal regulation of genes and pathways relevant for kidney injury and repair, which was also detected in human samples. Enrichment analysis of gene sets revealed five temporal and four sexual patterns governing renal IRI and recovery. Overall, this study constitutes an extensive characterization of the time and sex differences occurring during renal IRI and recovery at gene expression level and offers a template of translational value for further study of sexual dimorphism in kidney diseases.
Collapse
|
research-article |
3 |
4 |
11
|
Cantero-Recasens G, Alonso-Marañón J, Lobo-Jarne T, Garrido M, Iglesias M, Espinosa L, Malhotra V. Reversing chemorefraction in colorectal cancer cells by controlling mucin secretion. eLife 2022; 11:73926. [PMID: 35131032 PMCID: PMC8846583 DOI: 10.7554/elife.73926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022] Open
Abstract
Fifteen percent of colorectal cancer (CRC) cells exhibit a mucin hypersecretory phenotype, which is suggested to provide resistance to immune surveillance and chemotherapy. We now formally show that CRC cells build a barrier to chemotherapeutics by increasing mucins’ secretion. We show that low levels of KChIP3, a negative regulator of mucin secretion (Cantero-Recasens et al., 2018), is a risk factor for CRC patients’ relapse in a subset of untreated tumours. Our results also reveal that cells depleted of KChIP3 are four times more resistant (measured as cell viability and DNA damage) to chemotherapeutics 5-fluorouracil + irinotecan (5-FU+iri.) compared to control cells, whereas KChIP3-overexpressing cells are 10 times more sensitive to killing by chemotherapeutics. A similar increase in tumour cell death is observed upon chemical inhibition of mucin secretion by the sodium/calcium exchanger (NCX) blockers (Mitrovic et al., 2013). Finally, sensitivity of CRC patient-derived organoids to 5-FU+iri. increases 40-fold upon mucin secretion inhibition. Reducing mucin secretion thus provides a means to control chemoresistance of mucinous CRC cells and other mucinous tumours.
Collapse
|
|
3 |
2 |
12
|
Nemours S, Castro L, Ribatallada-Soriano D, Semidey ME, Aranda M, Ferrer M, Sanchez A, Morote J, Cantero-Recasens G, Meseguer A. Author Correction: Temporal and sex-dependent gene expression patterns in a renal ischemia-reperfusion injury and recovery pig model. Sci Rep 2024; 14:8280. [PMID: 38594454 PMCID: PMC11004107 DOI: 10.1038/s41598-024-58876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
|
Published Erratum |
1 |
|
13
|
Durán M, Ariceta G, Semidey ME, Castells-Esteve C, Casal-Pardo A, Lu B, Meseguer A, Cantero-Recasens G. Renal antiporter ClC-5 regulates collagen I/IV through the β-catenin pathway and lysosomal degradation. Life Sci Alliance 2024; 7:e202302444. [PMID: 38670633 PMCID: PMC11053357 DOI: 10.26508/lsa.202302444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Mutations in Cl-/H+ antiporter ClC-5 cause Dent's disease type 1 (DD1), a rare tubulopathy that progresses to renal fibrosis and kidney failure. Here, we have used DD1 human cellular models and renal tissue from DD1 mice to unravel the role of ClC-5 in renal fibrosis. Our results in cell systems have shown that ClC-5 deletion causes an increase in collagen I (Col I) and IV (Col IV) intracellular levels by promoting their transcription through the β-catenin pathway and impairing their lysosomal-mediated degradation. Increased production of Col I/IV in ClC-5-depleted cells ends up in higher release to the extracellular medium, which may lead to renal fibrosis. Furthermore, our data have revealed that 3-mo-old mice lacking ClC-5 (Clcn5 +/- and Clcn5 -/- ) present higher renal collagen deposition and fibrosis than WT mice. Altogether, we describe a new regulatory mechanism for collagens' production and release by ClC-5, which is altered in DD1 and provides a better understanding of disease progression to renal fibrosis.
Collapse
|
research-article |
1 |
|
14
|
Burballa C, Duran M, Martínez C, Ariceta G, Cantero-Recasens G, Meseguer A. Isolation and characterization of exosome-enriched urinary extracellular vesicles from Dent's disease type 1 Spanish patients. Nefrologia 2023; 43 Suppl 2:77-84. [PMID: 38286722 DOI: 10.1016/j.nefroe.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/13/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Dent's disease type 1 (DD1) is a rare X-linked hereditary pathology caused by CLCN5 mutations that is characterized mainly by proximal tubule dysfunction, hypercalciuria, nephrolithiasis/nephrocalcinosis, progressive chronic kidney disease, and low-weight proteinuria, the molecular hallmark of the disease. Currently, there is no specific curative treatment, only symptomatic and does not prevent the progression of the disease. In this study we have isolated and characterized urinary extracellular vesicles (uEVs) enriched in exosomes that will allow us to identify biomarkers associated with DD1 progression and a better understanding of the pathophysiological bases of the disease. MATERIALS AND METHODS Through a national call from the Spanish Society of Nephrology (SEN) and the Spanish Society of Pediatric Nephrology (AENP), urine samples were obtained from patients and controls from different Spanish hospitals, which were processed to obtain the uEVS. The data of these patients were provided by the respective nephrologists and/or extracted from the RENALTUBE registry. The uEVs were isolated by ultracentrifugation, morphologically characterized and their protein and microRNA content extracted. RESULTS 25 patients and 10 controls were recruited, from which the urine was processed to isolate the uEVs. Our results showed that the relative concentration of uEVs/mL is lower in patients compared to controls (0.26 × 106 uEVs/mL vs 1.19 × 106 uEVs/mL, p < 0.01). In addition, the uEVs of the patients were found to be significantly larger than those of the control subjects (mean diameter: 187.8 nm vs 143.6 nm, p < 0.01). Finally, our data demonstrated that RNA had been correctly extracted from both patient and control exosomes. CONCLUSIONS In this work we describe the isolation and characterization of uEVs from patients with Dent 1 disease and healthy controls, that shall be useful for the subsequent study of differentially expressed cargo molecules in this pathology.
Collapse
|
|
2 |
|
15
|
Vall-Palomar M, Torchia J, Morata J, Durán M, Tonda R, Ferrer M, Sánchez A, Cantero-Recasens G, Ariceta G, Meseguer A, Martinez C. Identification of modifier gene variants overrepresented in familial hypomagnesemia with hypercalciuria and nephrocalcinosis patients with a more aggressive renal phenotype. PLoS Genet 2025; 21:e1011568. [PMID: 40173198 PMCID: PMC12005529 DOI: 10.1371/journal.pgen.1011568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 04/17/2025] [Accepted: 01/08/2025] [Indexed: 04/04/2025] Open
Abstract
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an ultra-rare autosomal recessive renal tubular disease with an incidence of <1/1.000.000 individuals, caused by loss-of-function mutations in CLDN16 and CLDN19. Our study includes a unique cohort representing all known FHHNC patients in Spain, with 90% harbouring mutations in CLDN19. Of these, 70% carry the p.G20D mutation in homozygosis. Despite this high genetic homogeneity, our FHHNC cohort display a high phenotypic variability, even among siblings harbouring identical mutations. Patients were stratified at the extremes of the renal phenotype according to their estimated glomerular filtration rate annual decline and subjected to whole exome sequencing (WES) aiming to find candidate phenotype-modifier genes. Initial statistical analysis by SKAT-O identified numerous variants, which were then filtered based on P-value <0.01 and kidney expression. A thorough prioritization strategy was then applied by an exhaustive disease knowledge-driven exploitation of data from public databases (Human Protein Atlas, GWAS catalog, GTEx) to further refine candidate genes. Odds ratios were also calculated to identify potential risk variants. This analysis pipeline suggested several gene variants associated with a higher risk of developing a more aggressive renal phenotype. While these findings hint at the existence of genetic modifiers in FHHNC, further research is needed to confirm their role and potential clinical significance. Clinical decisions should not be based on these preliminary findings, and additional cohorts should be studied to validate and expand upon our results. This exploratory study provides a foundation for future investigations into the genetic factors influencing FHHNC progression and may contribute to our understanding of the disease's variable expressivity potentially enabling the implementation of more tailored therapeutic strategies.
Collapse
|
research-article |
1 |
|
16
|
Burballa C, Cantero-Recasens G, Prikhodina L, Lugani F, Schlingmann K, Ananin PV, Besouw M, Bockenhauer D, Madariaga L, Bertholet-Thomas A, Taroni F, Parolin M, Conlon P, Delprete D, Chauveau D, Koster-Kamphuis L, Fila M, Pasini A, Castro I, Colussi G, Gil M, Mohidin B, Wlodkowski T, Schaefer F, Ariceta G, Bacchetta J, Paglialonga F, Murer L, Andersone I, Sayer JA, Boyer O, Levart TK, Rus R, Paripović D, Gonzalez ER, Nieto F, Zieg J, Caballero JÁ, Vara J, Keijzer-Veen M, Ferraro PM, Gonzalez R, Rotaeche RMS, Fenoglio R, Ballesteros SS, Lobo ST, Ghuysen MS, Ordóñez Álvarez FA, Vandyck M, Rosenberg M, Thorsteinsdottir H, Tasic V, Bayram MT, Mir S, Costea GC, Yildiz N, Lumbreras J, Yel S, Cerkauskiene R, La Manna A, Elhassan E, Ciurli F, Meseguer A, Duran M. Clinical and genetic characteristics of Dent's Disease type 1 in Europe. Nephrol Dial Transplant 2022; 38:1497-1507. [DOI: 10.1093/ndt/gfac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/30/2022] Open
Abstract
Abstract
Background
Dent's disease type 1 (DD1) is a rare X-linked nephropathy caused by CLCN5 mutations, characterized by proximal tubule dysfunction, including low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrolithiasis-nephrocalcinosis, progressive chronic kidney disease (CKD) and kidney failure (KF). Current management is symptomatic and does not prevent disease progression. Here we describe the contemporary DD1 picture across Europe to highlight its unmet needs.
Methods
A physician-based anonymous international e-survey supported by several European Nephrology Networks/Societies was conducted. Questions focused on DD1 clinical features, diagnostic procedure and mutation spectrum.
Results
Two-hundred seven DD1 male patients were reported, being clinical data available for 163 with confirmed CLCN5 mutations. Proteinuria was the most common leading manifestation (49.1%). During follow-up, all patients showed LMWP, 66.4% nephrocalcinosis, 44.4% hypercalciuria and 26.4% nephrolithiasis. After 5.5 years, ∼50% of patients presented renal dysfunction, 20.7% developed CKD ≥ 3, and 11.1% KF. At last visit, hypercalciuria was more frequent in pediatric patients than in adults (73.4% vs. 19.0%). Conversely, nephrolithiasis, nephrocalcinosis and renal dysfunction were more prominent in adults. Furthermore, CKD progressed with age. Despite no clear phenotype/genotype correlation was observed, decreased glomerular filtration rate was more frequent in subjects with CLCN5 mutations affecting the pore or CBS domains compared to those with early-stop mutations.
Conclusions
Results from this large DD1 cohort confirm previous findings and provide new insights regarding age and genotype impact on CKD progression. Our data strongly support that DD1 should be considered in male patients with CKD, nephrocalcinosis/hypercalciuria and non-nephrotic proteinuria and provide additional support for new research opportunities.
Collapse
|
|
3 |
|
17
|
Arévalo J, Campoy I, Durán M, Nemours S, Areny A, Vall-Palomar M, Martínez C, Cantero-Recasens G, Meseguer A. STAT3 phosphorylation at serine 727 activates specific genetic programs and promotes clear cell renal cell carcinoma (ccRCC) aggressiveness. Sci Rep 2023; 13:19552. [PMID: 37945711 PMCID: PMC10636117 DOI: 10.1038/s41598-023-46628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) is a transcription factor mainly activated by phosphorylation in either tyrosine 705 (Y705) or serine 727 (S727) residues that regulates essential processes such as cell differentiation, apoptosis inhibition, or cell survival. Aberrant activation of STAT3 has been related to development of nearly 50% of human cancers including clear cell renal cell carcinoma (ccRCC). In fact, phosho-S727 (pS727) levels correlate with overall survival of ccRCC patients. With the aim to elucidate the contribution of STAT3 phosphorylation in ccRCC development and progression, we have generated human-derived ccRCC cell lines carrying STAT3 Y705 and S727 phosphomutants. Our data show that the phosphomimetic substitution Ser727Asp facilitates a pro-tumoral phenotype in vitro, in a Y705-phosphorylation-independent manner. Moreover, we describe that STAT3 phosphorylation state determines the expression of different subsets of target genes associated with distinct biological processes, being pS727-dependent genes the most related to cellular hallmarks of cancer. In summary, the present study constitutes the first analysis on the role of overall STAT3 phosphorylation state in ccRCC and demonstrates that pS727 promotes the expression of a specific subset of target genes that might be clinically relevant as novel biomarkers and potential therapeutic targets for ccRCC.
Collapse
|
research-article |
2 |
|