1
|
Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk GE. Minimal surface scaffold designs for tissue engineering. Biomaterials 2011; 32:6875-82. [DOI: 10.1016/j.biomaterials.2011.06.012] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
|
14 |
272 |
2
|
Mickel W, Kapfer SC, Schröder-Turk GE, Mecke K. Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. J Chem Phys 2013; 138:044501. [DOI: 10.1063/1.4774084] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
|
12 |
182 |
3
|
Mezzenga R, Seddon JM, Drummond CJ, Boyd BJ, Schröder-Turk GE, Sagalowicz L. Nature-Inspired Design and Application of Lipidic Lyotropic Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900818. [PMID: 31222858 DOI: 10.1002/adma.201900818] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/16/2019] [Indexed: 05/20/2023]
Abstract
Amphiphilic lipids aggregate in aqueous solution into a variety of structural arrangements. Among the plethora of ordered structures that have been reported, many have also been observed in nature. In addition, due to their unique morphologies, the hydrophilic and hydrophobic domains, very high internal interfacial surface area, and the multitude of possible order-order transitions depending on environmental changes, very promising applications have been developed for these systems in recent years. These include crystallization in inverse bicontinuous cubic phases for membrane protein structure determination, generation of advanced materials, sustained release of bioactive molecules, and control of chemical reactions. The outstanding diverse functionalities of lyotropic liquid crystalline phases found in nature and industry are closely related to the topology, including how their nanoscopic domains are organized. This leads to notable examples of correlation between structure and macroscopic properties, which is itself central to the performance of materials in general. The physical origin of the formation of the known classes of lipidic lyotropic liquid crystalline phases, their structure, and their occurrence in nature are described, and their application in materials science and engineering, biology, medical, and pharmaceutical products, and food science and technology are exemplified.
Collapse
|
Review |
6 |
110 |
4
|
Wilts BD, Apeleo Zubiri B, Klatt MA, Butz B, Fischer MG, Kelly ST, Spiecker E, Steiner U, Schröder-Turk GE. Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development. SCIENCE ADVANCES 2017; 3:e1603119. [PMID: 28508050 PMCID: PMC5406134 DOI: 10.1126/sciadv.1603119] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/23/2017] [Indexed: 05/05/2023]
Abstract
The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. It is hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. However, this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or sequential processes, cannot yet be elucidated by in vivo imaging. We report an unusual hierarchical ultrastructure in the butterfly Thecla opisena that, as a solid material, allows high-resolution three-dimensional microscopy. Rather than the conventional polycrystalline space-filling arrangement, a gyroid occurs in isolated facetted crystallites with a pronounced size gradient. When interpreted as a sequence of time-frozen snapshots of the morphogenesis, this arrangement provides insight into the formation mechanisms of the nanoporous gyroid material as well as of the intracellular organelle membrane that acts as the template.
Collapse
|
research-article |
8 |
81 |
5
|
Schröder-Turk GE, Wickham S, Averdunk H, Brink F, Fitz Gerald JD, Poladian L, Large MCJ, Hyde ST. The chiral structure of porous chitin within the wing-scales of Callophrys rubi. J Struct Biol 2011; 174:290-5. [PMID: 21272646 DOI: 10.1016/j.jsb.2011.01.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/20/2010] [Accepted: 01/12/2011] [Indexed: 11/19/2022]
Abstract
The structure of the porous three-dimensional reticulated pattern in the wing scales of the butterfly Callophrys rubi (the Green Hairstreak) is explored in detail, via scanning and transmission electron microscopy. A full 3D tomographic reconstruction of a section of this material reveals that the predominantly chitin material is assembled in the wing scale to form a structure whose geometry bears a remarkable correspondence to the srs net, well-known in solid state chemistry and soft materials science. The porous solid is bounded to an excellent approximation by a parallel surface to the Gyroid, a three-periodic minimal surface with cubic crystallographic symmetry I4₁32, as foreshadowed by Stavenga and Michielson. The scale of the structure is commensurate with the wavelength of visible light, with an edge of the conventional cubic unit cell of the parallel-Gyroid of approximately 310 nm. The genesis of this structure is discussed, and we suggest it affords a remarkable example of templating of a chiral material via soft matter, analogous to the formation of mesoporous silica via surfactant assemblies in solution. In the butterfly, the templating is achieved by the lipid-protein membranes within the smooth endoplasmic reticulum (while it remains in the chrysalis), that likely form cubic membranes, folded according to the form of the Gyroid. The subsequent formation of the chiral hard chitin framework is suggested to be driven by the gradual polymerisation of the chitin precursors, whose inherent chiral assembly in solution (during growth) promotes the formation of a single enantiomer.
Collapse
|
Journal Article |
14 |
73 |
6
|
Kimber RGE, Walker AB, Schröder-Turk GE, Cleaver DJ. Bicontinuous minimal surface nanostructures for polymer blend solar cells. Phys Chem Chem Phys 2010; 12:844-51. [DOI: 10.1039/b916340a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
15 |
58 |
7
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
|
Review |
2 |
52 |
8
|
Schröder-Turk GE, Mickel W, Kapfer SC, Klatt MA, Schaller FM, Hoffmann MJF, Kleppmann N, Armstrong P, Inayat A, Hug D, Reichelsdorfer M, Peukert W, Schwieger W, Mecke K. Minkowski tensor shape analysis of cellular, granular and porous structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:2535-2553. [PMID: 21681830 DOI: 10.1002/adma.201100562] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Predicting physical properties of materials with spatially complex structures is one of the most challenging problems in material science. One key to a better understanding of such materials is the geometric characterization of their spatial structure. Minkowski tensors are tensorial shape indices that allow quantitative characterization of the anisotropy of complex materials and are particularly well suited for developing structure-property relationships for tensor-valued or orientation-dependent physical properties. They are fundamental shape indices, in some sense being the simplest generalization of the concepts of volume, surface and integral curvatures to tensor-valued quantities. Minkowski tensors are based on a solid mathematical foundation provided by integral and stochastic geometry, and are endowed with strong robustness and completeness theorems. The versatile definition of Minkowski tensors applies widely to different types of morphologies, including ordered and disordered structures. Fast linear-time algorithms are available for their computation. This article provides a practical overview of the different uses of Minkowski tensors to extract quantitative physically-relevant spatial structure information from experimental and simulated data, both in 2D and 3D. Applications are presented that quantify (a) alignment of co-polymer films by an electric field imaged by surface force microscopy; (b) local cell anisotropy of spherical bead pack models for granular matter and of closed-cell liquid foam models; (c) surface orientation in open-cell solid foams studied by X-ray tomography; and (d) defect densities and locations in molecular dynamics simulations of crystalline copper.
Collapse
|
|
14 |
52 |
9
|
Saba M, Wilts BD, Hielscher J, Schröder-Turk GE. Absence of Circular Polarisation in Reflections of Butterfly Wing Scales with Chiral Gyroid Structure. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.matpr.2014.09.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
|
11 |
43 |
10
|
Kapfer SC, Mickel W, Mecke K, Schröder-Turk GE. Jammed spheres: Minkowski tensors reveal onset of local crystallinity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:030301. [PMID: 22587029 DOI: 10.1103/physreve.85.030301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/26/2012] [Indexed: 05/31/2023]
Abstract
The local structure of disordered jammed packings of monodisperse spheres without friction, generated by the Lubachevsky-Stillinger algorithm, is studied for packing fractions above and below 64%. The structural similarity of the particle environments to fcc or hcp crystalline packings (local crystallinity) is quantified by order metrics based on rank-four Minkowski tensors. We find a critical packing fraction φ(c)≈0.649, distinctly higher than previously reported values for the contested random close packing limit. At φ(c), the probability of finding local crystalline configurations first becomes finite and, for larger packing fractions, increases by several orders of magnitude. This provides quantitative evidence of an abrupt onset of local crystallinity at φ(c). We demonstrate that the identification of local crystallinity by the frequently used local bond-orientational order metric q(6) produces false positives and thus conceals the abrupt onset of local crystallinity. Since the critical packing fraction is significantly above results from mean-field analysis of the mechanical contacts for frictionless spheres, it is suggested that dynamic arrest due to isostaticity and the alleged geometric phase transition in the Edwards framework may be disconnected phenomena.
Collapse
|
|
13 |
39 |
11
|
Klatt MA, Lovrić J, Chen D, Kapfer SC, Schaller FM, Schönhöfer PWA, Gardiner BS, Smith AS, Schröder-Turk GE, Torquato S. Universal hidden order in amorphous cellular geometries. Nat Commun 2019; 10:811. [PMID: 30778054 PMCID: PMC6379405 DOI: 10.1038/s41467-019-08360-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/03/2019] [Indexed: 12/04/2022] Open
Abstract
Partitioning space into cells with certain extreme geometrical properties is a central problem in many fields of science and technology. Here we investigate the Quantizer problem, defined as the optimisation of the moment of inertia of Voronoi cells, i.e., similarly-sized ‘sphere-like’ polyhedra that tile space are preferred. We employ Lloyd’s centroidal Voronoi diagram algorithm to solve this problem and find that it converges to disordered states associated with deep local minima. These states are universal in the sense that their structure factors are characterised by a complete independence of a wide class of initial conditions they evolved from. They moreover exhibit an anomalous suppression of long-wavelength density fluctuations and quickly become effectively hyperuniform. Our findings warrant the search for novel amorphous hyperuniform phases and cellular materials with unique physical properties. Disordered hyperuniformity implies a hidden order on length scales that can be found in various amorphous materials. Klatt et al. analyse the evolution of random point patterns using Llyod’s algorithm and show that they converge to an effectively hyperuniform state regardless of the initial conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
34 |
12
|
Saba M, Thiel M, Turner MD, Hyde ST, Gu M, Grosse-Brauckmann K, Neshev DN, Mecke K, Schröder-Turk GE. Circular dichroism in biological photonic crystals and cubic chiral nets. PHYSICAL REVIEW LETTERS 2011; 106:103902. [PMID: 21469792 DOI: 10.1103/physrevlett.106.103902] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/27/2011] [Indexed: 05/12/2023]
Abstract
Nature provides impressive examples of chiral photonic crystals, with the notable example of the cubic so-called srs network (the label for the chiral degree-three network modeled on SrSi2) or gyroid structure realized in wing scales of several butterfly species. By a circular polarization analysis of the band structure of such networks, we demonstrate strong circular dichroism effects: The butterfly srs microstructure, of cubic I4(1)32 symmetry, shows significant circular dichroism for blue to ultraviolet light, that warrants a search for biological receptors sensitive to circular polarization. A derived synthetic structure based on four like-handed silicon srs nets exhibits a large circular polarization stop band of a width exceeding 30%. These findings offer design principles for chiral photonic devices.
Collapse
|
|
14 |
34 |
13
|
Schröder-Turk GE, de Campo L, Evans ME, Saba M, Kapfer SC, Varslot T, Grosse-Brauckmann K, Ramsden S, Hyde ST. Polycontinuous geometries for inverse lipid phases with more than two aqueous network domains. Faraday Discuss 2013; 161:215-47; discussion 273-303. [DOI: 10.1039/c2fd20112g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
12 |
31 |
14
|
Hyde ST, Schröder-Turk GE. Geometry of interfaces: topological complexity in biology and materials. Interface Focus 2012; 2:529-538. [PMCID: PMC3438572 DOI: 10.1098/rsfs.2012.0035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 01/25/2025] Open
|
introduction |
13 |
24 |
15
|
Mitschke H, Robins V, Mecke K, Schröder-Turk GE. Finite auxetic deformations of plane tessellations. Proc Math Phys Eng Sci 2013. [DOI: 10.1098/rspa.2012.0465] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We systematically analyse the mechanical deformation behaviour, in particular Poisson's ratio, of floppy bar-and-joint frameworks based on periodic tessellations of the plane. For frameworks with more than one deformation mode, crystallographic symmetry constraints or minimization of an angular vertex energy functional are used to lift this ambiguity. Our analysis allows for systematic searches for auxetic mechanisms in archives of tessellations; applied to the class of one- or two-uniform tessellations by regular or star polygons, we find two auxetic structures of hexagonal symmetry and demonstrate that several other tessellations become auxetic when retaining symmetries during the deformation, in some cases with large negative Poisson ratios
ν
<−1 for a specific lattice direction. We often find a transition to negative Poisson ratios at finite deformations for several tessellations, even if the undeformed tessellation is infinitesimally non-auxetic. Our numerical scheme is based on a solution of the quadratic equations enforcing constant edge lengths by a Newton method, with periodicity enforced by boundary conditions.
Collapse
|
|
12 |
23 |
16
|
Turner MD, Schröder-Turk GE, Gu M. Fabrication and characterization of three-dimensional biomimetic chiral composites. OPTICS EXPRESS 2011; 19:10001-10008. [PMID: 21643258 DOI: 10.1364/oe.19.010001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Here we show the fabrication and characterization of a novel class of biomimetic photonic chiral composites inspired by a recent finding in butterfly wing-scales. These three-dimensional networks have cubic symmetry, are fully interconnected, have robust mechanical strength and possess chirality which can be controlled through the composition of multiple chiral networks, providing an excellent platform for developing novel chiral materials. Using direct laser writing we have fabricated different types of chiral composites that can be engineered to form novel photonic devices. We experimentally show strong circular dichroism and compare with numerical simulations to illustrate the high quality of these three-dimensional photonic structures.
Collapse
|
|
14 |
22 |
17
|
Schaller FM, Neudecker M, Saadatfar M, Delaney GW, Schröder-Turk GE, Schröter M. Local origin of global contact numbers in frictional ellipsoid packings. PHYSICAL REVIEW LETTERS 2015; 114:158001. [PMID: 25933340 DOI: 10.1103/physrevlett.114.158001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 06/04/2023]
Abstract
In particulate soft matter systems the average number of contacts Z of a particle is an important predictor of the mechanical properties of the system. Using x-ray tomography, we analyze packings of frictional, oblate ellipsoids of various aspect ratios α, prepared at different global volume fractions ϕg. We find that Z is a monotonically increasing function of ϕg for all α. We demonstrate that this functional dependence can be explained by a local analysis where each particle is described by its local volume fraction ϕl computed from a Voronoi tessellation. Z can be expressed as an integral over all values of ϕl: Z(ϕg,α,X)=∫Zl(ϕl,α,X)P(ϕl|ϕg)dϕl. The local contact number function Zl(ϕl,α,X) describes the relevant physics in term of locally defined variables only, including possible higher order terms X. The conditional probability P(ϕl|ϕg) to find a specific value of ϕl given a global packing fraction ϕg is found to be independent of α and X. Our results demonstrate that for frictional particles a local approach is not only a theoretical requirement but also feasible.
Collapse
|
|
10 |
20 |
18
|
Spanner M, Höfling F, Kapfer SC, Mecke KR, Schröder-Turk GE, Franosch T. Splitting of the Universality Class of Anomalous Transport in Crowded Media. PHYSICAL REVIEW LETTERS 2016; 116:060601. [PMID: 26918973 DOI: 10.1103/physrevlett.116.060601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 06/05/2023]
Abstract
We investigate the emergence of subdiffusive transport by obstruction in continuum models for molecular crowding. While the underlying percolation transition for the accessible space displays universal behavior, the dynamic properties depend in a subtle nonuniversal way on the transport through narrow channels. At the same time, the different universality classes are robust with respect to introducing correlations in the obstacle matrix as we demonstrate for quenched hard-sphere liquids as underlying structures. Our results confirm that the microscopic dynamics can dominate the relaxational behavior even at long times, in striking contrast to glassy dynamics.
Collapse
|
|
9 |
20 |
19
|
Scholz C, Wirner F, Götz J, Rüde U, Schröder-Turk GE, Mecke K, Bechinger C. Permeability of porous materials determined from the Euler characteristic. PHYSICAL REVIEW LETTERS 2012; 109:264504. [PMID: 23368569 DOI: 10.1103/physrevlett.109.264504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Indexed: 06/01/2023]
Abstract
We study the permeability of quasi-two-dimensional porous structures of randomly placed overlapping monodisperse circular and elliptical grains. Measurements in microfluidic devices and lattice Boltzmann simulations demonstrate that the permeability is determined by the Euler characteristic of the conducting phase. We obtain an expression for the permeability that is independent of the percolation threshold and shows agreement with experimental and simulated data over a wide range of porosities. Our approach suggests that the permeability explicitly depends on the overlapping probability of grains rather than their shape.
Collapse
|
|
13 |
20 |
20
|
Mickel W, Schröder-Turk GE, Mecke K. Tensorial Minkowski functionals of triply periodic minimal surfaces. Interface Focus 2012; 2:623-33. [PMID: 24098847 DOI: 10.1098/rsfs.2012.0007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/04/2012] [Indexed: 11/12/2022] Open
Abstract
A fundamental understanding of the formation and properties of a complex spatial structure relies on robust quantitative tools to characterize morphology. A systematic approach to the characterization of average properties of anisotropic complex interfacial geometries is provided by integral geometry which furnishes a family of morphological descriptors known as tensorial Minkowski functionals. These functionals are curvature-weighted integrals of tensor products of position vectors and surface normal vectors over the interfacial surface. We here demonstrate their use by application to non-cubic triply periodic minimal surface model geometries, whose Weierstrass parametrizations allow for accurate numerical computation of the Minkowski tensors.
Collapse
|
Journal Article |
13 |
18 |
21
|
Nachtrab S, Kapfer SC, Arns CH, Madadi M, Mecke K, Schröder-Turk GE. Morphology and linear-elastic moduli of random network solids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:2633-7. [PMID: 21681832 DOI: 10.1002/adma.201004094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process.
Collapse
|
|
14 |
18 |
22
|
Hyde ST, Schröder-Turk GE. Tangled (up in) cubes. Acta Crystallogr A 2007; 63:186-97. [PMID: 17301480 DOI: 10.1107/s0108767306052421] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 12/04/2006] [Indexed: 11/11/2022] Open
Abstract
The 'simplest' entanglements of the graph of edges of the cube are enumerated, forming two-cell {6, 3} (hexagonal mesh) complexes on the genus-one two-dimensional torus. Five chiral pairs of knotted graphs are found. The examples contain non-trivial knotted and/or linked subgraphs [(2, 2), (2, 4) torus links and (3, 2), (4, 3) torus knots].
Collapse
|
|
18 |
13 |
23
|
Klatt MA, Schröder-Turk GE, Mecke K. Mean-intercept anisotropy analysis of porous media. II. Conceptual shortcomings of the MIL tensor definition and Minkowski tensors as an alternative. Med Phys 2017; 44:3663-3675. [DOI: 10.1002/mp.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/05/2017] [Accepted: 04/03/2017] [Indexed: 11/08/2022] Open
|
|
8 |
12 |
24
|
Kelley JL, Tatarnic NJ, Schröder-Turk GE, Endler JA, Wilts BD. A Dynamic Optical Signal in a Nocturnal Moth. Curr Biol 2019; 29:2919-2925.e2. [PMID: 31402306 DOI: 10.1016/j.cub.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/28/2019] [Accepted: 07/01/2019] [Indexed: 11/28/2022]
Abstract
The wings of butterflies and moths generate some of the most spectacular visual displays observed in nature [1-3]. Particularly striking effects are seen when light interferes with nanostructure materials in the wing scales, generating bright, directional colors that often serve as dynamic visual signals [4]. Structural coloration is not known in night-flying Lepidoptera, yet here we show a highly unusual form of wing coloration in a nocturnal, sexually dimorphic moth, Eudocima materna (Noctuidae). Males feature three dark wing patches on the dorsal forewings, and the apparent size of these patches strongly varies depending on the angle of the wing to the viewer. These optical special effects are generated using specialized wing scales that are tilted on the wing and behave like mirrors. At near-normal incidence of light, these "mirror scales" act as thin-film reflectors to produce a sparkly effect, but when light is incident at ∼20°-30° from normal, the reflectance spectrum is dominated by the diffuse scattering of the underlying, black melanin-containing scales, causing a shape-shifting effect. The strong sexual dimorphism in the arrangement and architecture of the scale nanostructures suggests that these patterns might function for sexual signaling. Flickering of the male's wings would yield a flashing, supernormal visual stimulus [5] to a viewer located 20°-30° away from the vertical, while being invisible to a viewer directly above the animal. Our findings reveal a novel use of structural coloration in nature that yields a dynamic, time-dependent achromatic optical signal that may be optimized for visual signaling in dim light.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
11 |
25
|
Scholz C, Wirner F, Klatt MA, Hirneise D, Schröder-Turk GE, Mecke K, Bechinger C. Direct relations between morphology and transport in Boolean models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:043023. [PMID: 26565348 DOI: 10.1103/physreve.92.043023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 06/05/2023]
Abstract
We study the relation of permeability and morphology for porous structures composed of randomly placed overlapping circular or elliptical grains, so-called Boolean models. Microfluidic experiments and lattice Boltzmann simulations allow us to evaluate a power-law relation between the Euler characteristic of the conducting phase and its permeability. Moreover, this relation is so far only directly applicable to structures composed of overlapping grains where the grain density is known a priori. We develop a generalization to arbitrary structures modeled by Boolean models and characterized by Minkowski functionals. This generalization works well for the permeability of the void phase in systems with overlapping grains, but systematic deviations are found if the grain phase is transporting the fluid. In the latter case our analysis reveals a significant dependence on the spatial discretization of the porous structure, in particular the occurrence of single isolated pixels. To link the results to percolation theory we performed Monte Carlo simulations of the Euler characteristic of the open cluster, which reveals different regimes of applicability for our permeability-morphology relations close to and far away from the percolation threshold.
Collapse
|
|
10 |
11 |