1
|
Schuller G, Pollak G. Disproportionate frequency representation in the inferior colliculus of doppler-compensating Greater Horseshoe bats: Evidence for an acoustic fovea. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1979. [DOI: 10.1007/bf00617731] [Citation(s) in RCA: 149] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
46 |
149 |
2
|
Schuller G, Beuter K, Schnitzler HU. Response to frequency shifted artificial echoes in the batRhinolophus ferrumequinum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1974. [DOI: 10.1007/bf00696191] [Citation(s) in RCA: 114] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
51 |
114 |
3
|
Schuller G, Radtke-Schuller S, Betz M. A stereotaxic method for small animals using experimentally determined reference profiles. J Neurosci Methods 1986; 18:339-50. [PMID: 3540473 DOI: 10.1016/0165-0270(86)90022-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In bats conventional stereotaxic methods do not yield sufficient positional accuracy to allow reliable recordings and tracer injections in subnuclei of the auditory system. In a newly developed stereotaxic system experimentally measured patterns of skull profile lines are used to define the animal's brain position with an accuracy of +/- 100 microns. By combining the neurophysiological stereotaxic procedure with a standardization of the neuroanatomical processing of the brains, the location of recordings, stimulations or injections can be readily transformed into brain atlas coordinates. This facilitates the compilation and comparison of data within and among animals. The system is not restricted to use in bats and can be readily adapted to other experimental animals.
Collapse
|
|
39 |
106 |
4
|
Radtke-Schuller S, Schuller G, Angenstein F, Grosser OS, Goldschmidt J, Budinger E. Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates. Brain Struct Funct 2016; 221 Suppl 1:1-272. [PMID: 27507296 PMCID: PMC5005445 DOI: 10.1007/s00429-016-1259-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
A new stereotaxic brain atlas of the Mongolian gerbil (Meriones unguiculatus), an important animal model in neurosciences, is presented. It combines high-quality histological material for identification of brain structures with reliable stereotaxic coordinates. The atlas consists of high-resolution images of frontal sections alternately stained for cell bodies (Nissl) and myelinated fibers (Gallyas) of 62 rostro-caudal levels at intervals of 350 μm. Brain structures were named according to the Paxinos nomenclature for rodents. The accuracy of the stereotaxic coordinate system was improved substantially by comparing and matching the series of histological sections to in vivo brain images of the gerbil obtained by magnetic resonance imaging (MRI). The skull outlines corresponding to the MR images were acquired using X-ray computerized tomography (CT) and were used to establish the relationship between coordinates of brain structures and skull. Landmarks such as lambda, bregma, ear canals and occipital crest can be used to line up skull and brain in standard atlas coordinates. An easily reproducible protocol allows sectioning of experimental brains in the standard frontal plane of the atlas.
Collapse
|
research-article |
9 |
75 |
5
|
Schuller G, O'Neill WE, Radtke-Schuller S. Facilitation and Delay Sensitivity of Auditory Cortex Neurons in CF - FM Bats, Rhinolophus rouxi and Pteronotus p.parnellii. Eur J Neurosci 1991; 3:1165-1181. [PMID: 12106246 DOI: 10.1111/j.1460-9568.1991.tb00051.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Responses of auditory neurons to complex stimuli were recorded in the dorsal belt region of the auditory cortex of two taxonomically unrelated bat species, Rhinolophus rouxi and Pteronotus parnellii parnellii, both showing Doppler shift compensation behaviour. As in P.p.parnellii (Suga et al., J. Neurophysiol., 49, 1573 - 1626, 1983), cortical neurons of R.rouxi show facilitated responses to pairs of pure tones or frequency modulations. Best frequencies for the two components lie near the first and second harmonic of the echolocation call but are in most cases not harmonically related. Neurons facilitated by pairs of pure tones show little dependence on the delay between the stimuli, whereas pairs of frequency modulations evoke best facilitated responses at distinct best delays between 1 and 10 ms. Facilitated neurons are found in distinct portions of the dorsal cortical belt region, with a segregation of facilitated neurons responding to pure tones and to frequency modulations. Non-facilitated neurons are found throughout the field. Neurons are topographically aligned with increasing best delays along a rostrocaudal axis. The best delays between 2 and 4 ms are largely overrepresented numerically, and occupy approximately 56% of the cortical area containing facilitated neurons. A functional interpretation of the large overrepresentation of best delays approximately 3 ms is proposed. Facilitated neurons are located almost entirely within layer V of the dorsal field.
Collapse
|
|
34 |
69 |
6
|
Schuller G. Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of 'CF-FM' bat, Rhinolophus ferrumequinum. Exp Brain Res 1979; 34:117-32. [PMID: 759220 DOI: 10.1007/bf00238345] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Single neurons in the inferior colliculus of the Greater Horseshoe bat, Rhinolophus ferrumequinum, showed two broad categories of response patterns to sinusoidally frequency (SFM) or amplitude (SAM) modulated stimuli. Tonic responding cells (best excitatory frequency (BEF) between 10 and 90 kHz) showed a rough sinusoidal modulation of the discharge pattern to SFM. Transient responding neurons generally showing on- or off-responses to pure tones, (BEF between 65 and 88 kHz), displayed highly synchronized discharge patterns to SFM-cycles (Fig. 1). Modulation rates between 20 and 100 Hz were most effective and some neurons encoded modulation rates up to 350 Hz (Figs. 2 and 3). The SFM responses were best synchronized to the modulation envelope for center frequencies in the upper portion of the tuning curve (Figs. 4 and 5). Sharply tuned neurons with BEF around 80 kHz had the lowest threshold for modulation depth (+/- 10 Hz or 0.025%) (Fig. 6). In general, SAMs evoked the same type of response patterns and were encoded down to modulation index of 3% (Fig. 7). The fine frequency and amplitude discriminations for periodical modulations by collicular neurons is discussed as related to the detection and discrimination performance of bats, when preying on flying insects in clustered surroundings.
Collapse
|
|
46 |
66 |
7
|
Holt SE, Schuller G, Wilson VG. DNA binding specificity of the bovine papillomavirus E1 protein is determined by sequences contained within an 18-base-pair inverted repeat element at the origin of replication. J Virol 1994; 68:1094-102. [PMID: 8289339 PMCID: PMC236548 DOI: 10.1128/jvi.68.2.1094-1102.1994] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bovine papillomavirus type 1 (BPV-1) DNA replicates episomally and requires two virally expressed proteins, E1 and E2, for this process. Both proteins bind to the BPV-1 genome in the region that functions as the origin of replication. The binding sequences for the E2 protein have been characterized previously, but little is known about critical sequence requirements for E1 binding. Using a bacterially expressed E1 fusion protein, we examined binding of the BPV-1 E1 protein to the origin region. E1 strongly protected a 28-bp segment of the origin (nucleotides 7932 to 15) from both DNase I and exonuclease III digestion. Additional exonuclease III protection was observed beyond the core region on both the 5' and 3' sides, suggesting that E1 interacted with more distal sequences as well. Within the 28-bp protected core, there were two overlapping imperfect inverted repeats (IR), one of 27 bp and one of 18 bp. We show that sequences within the smaller, 18-bp IR element were sufficient for specific recognition of DNA by E1 and that additional BPV-1 sequences beyond the 18-bp IR element did not significantly increase origin binding by E1 protein. While the 18-bp IR element contained sequences sufficient for specific binding by E1, E1 did not form a stable complex with just the isolated 18-bp element. Formation of a detectable E1-DNA complex required that the 18-bp IR be flanked by additional DNA sequences. Furthermore, binding of E1 to DNA containing the 18-bp IR increased as a function of overall increasing fragment length. We conclude that E1-DNA interactions outside the boundaries of the 18-bp IR are important for thermodynamic stabilization of the E1-DNA complex. However, since the flanking sequences need not be derived from BPV-1, these distal E1-DNA interactions are not sequence specific. Comparison of the 18-bp IR from BPV-1 with the corresponding region from other papillomaviruses revealed a symmetric conserved consensus sequence, T-RY--TTAA--RY-A, that may reflect the specific nucleotides critical for E1-DNA recognition.
Collapse
|
research-article |
31 |
56 |
8
|
Grothe B, Park TJ, Schuller G. Medial superior olive in the free-tailed bat: response to pure tones and amplitude-modulated tones. J Neurophysiol 1997; 77:1553-65. [PMID: 9084619 DOI: 10.1152/jn.1997.77.3.1553] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In mammals with good low-frequency hearing and a moderate to large interear distance, neurons in the medial superior olive (MSO) are sensitive to interaural time differences (ITDs). Most small mammals, however, do not hear low frequencies and do not experience significant ITDs, suggesting that their MSOs participate in functions other than ITD coding. In one bat species, the mustached bat, the MSO is a functionally monaural nucleus, acting as a low-pass filter for the rate of sinusoidally amplitude-modulated (SAM) stimuli. We investigated whether the more typical binaural MSO of the MExican free-tailed bat also acts as an SAM filter. We recorded from 60 MSO neurons with their best frequencies covering the entire audiogram of this bat. The majority revealed bilateral excitation and indirect evidence for inhibition (EI/EI; 55%). The remaining neurons exhibited reduced inputs, mostly lacking ipsilateral inputs (28% I/EI; 12% O/EI; 5% EI/O). Most neurons (64%) responded with a phasic discharge to pure tones; the remaining neurons exhibited an additional sustained component. For stimulation with pure tones, two thirds of the cells exhibited monotonic rate-level functions for ipsilateral, contralateral, or binaural stimulation. In contrast, nearly all neurons exhibited nonmonotonic rate-level functions when tested with SAM stimuli. Eighty-eight percent of the neurons responded with a phase-locked discharge to SAM stimuli at low modulation rates and exhibited low-pass filter characteristics in the modulation transfer function (MTF) for ipsilateral, contralateral, and binaural stimulation. The MTF for ipsilateral stimulation usually did not match that for contralateral stimulation. Introducing interaural intensity differences (IIDs) changed the MTF in unpredictable ways. We also found that responses to SAMs depended on the carrier frequency. In some neurons we measured the time course of the ipsilaterally and contralaterally evoked inhibition by presenting brief frequency-modulated sweeps at different ITDs. The duration and timing of inhibition could be related to the SAM cutoff for binaural stimulation. We conclude that the response of the MSO in the free-tailed bat is created by a complex interaction of inhibition and excitation. The different time constants of inputs create a low-pass filter for SAM stimuli. However, the MSO output is an integrated response to the temporal structure of a stimulus as well as its azimuthal position, i.e., IIDs. There are no in vivo results concerning filter characteristics in a "classical" MSO, but our data confirm an earlier speculation about this interdependence based on data accessed from a gerbil brain slice preparation.
Collapse
|
|
28 |
53 |
9
|
Pollak GD, Schuller G. Tonotopic organization and encoding features of single units in inferior colliculus of horseshoe bats: functional implications for prey identification. J Neurophysiol 1981; 45:208-26. [PMID: 7463103 DOI: 10.1152/jn.1981.45.2.208] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
|
44 |
50 |
10
|
Schuller G, Radtke-Schuller S. Neural control of vocalization in bats: mapping of brainstem areas with electrical microstimulation eliciting species-specific echolocation calls in the rufous horseshoe bat. Exp Brain Res 1990; 79:192-206. [PMID: 2311697 DOI: 10.1007/bf00228889] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. The functional role of brainstem structures in the emission of echolocation calls was investigated in the rufous horseshoe bat. Rhinolophus rouxi, with electrical low-current microstimulation procedures. 2. Vocalizations without temporal and/or spectral distortions could be consistently elicited at low threshold currents (typically below 10 microA) within three clearly circumscribed brainstem areas, namely, the deep layers and ventral parts of the intermediate layers of the superior colliculus (SC), the deep mesencephalic nucleus (NMP) in the dorsal and lateral midbrain reticular formation and in a distinct area medial to the rostral parts of the dorsal nucleus of the lateral lemniscus. The mean latencies in the three vocal areas between the start of the electrical stimulus and the elicited vocalizations were 47 msec, 38 msec and 31 msec, respectively. 3. In pontine regions and the cuneiform nucleus adjacent to these three vocal areas, thresholds for eliciting vocalizations were also low, but the vocalizations showed temporal and/or spectral distortions and were often accompanied or followed by arousal of the animal. 4. Stimulus intensity systematically influenced vocalization parameters at only a few brain sites. In the caudo-ventral portions of the deep superior colliculus the sound pressure level of the vocalizations systematically increased with stimulus intensity. Bursts of multiple vocalizations were induced at locations ventral to the rostral parts of the cuneiform nucleus. No stimulus-intensity dependent frequency changes of the emitted vocalizations were observed. 5. The respiratory cycle was synchronized to the electrical stimuli in all regions where vocalizations could be elicited as well as in more ventrally and medially adjacent areas not yielding vocalizations on stimulation. 6. The possible functional involvement of the "vocal" structures in the audio-vocal feedback system of the Dopplercompensating horseshoe bat is discussed.
Collapse
|
|
35 |
48 |
11
|
Henson OW, Schuller G, Vater M. A comparative study of the physiological properties of the inner ear in Doppler shift compensating bats (Rhinolophus rouxi and Pteronotus parnellii). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1985; 157:587-97. [PMID: 3837100 DOI: 10.1007/bf01351353] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cochlear microphonic (CM) and evoked neural (N-1) potentials were studied in two species of Doppler shift compensating bats with the aid of electrodes chronically implanted in the scala tympani. Potentials were recorded from animals fully recovered from the effects of anesthesia and surgery. In Pteronotus p. parnellii and Rhinolophus rouxi the CM amplitude showed a narrow band, high amplitude peak at a frequency about 200 Hz above the resting frequency of each species. In Pteronotus the peak was 25-35 dB higher in amplitude than the general CM level below or above the frequency of the amplitude peak. In Rhinolophus the amplitude peak was only a few dB above the general CM level but it was prominent because of a sharp null in a narrow band of frequencies just below the peak. The amplitude peak and the null were markedly affected by body temperature and anesthesia. In Pteronotus high amplitude CM potentials were produced by resonance, and stimulated cochlear emissions were prominent in Pteronotus but they were not observed in Rhinolophus. In Pteronotus the resonance was indicated by a CM afterpotential that occurred after brief tone pulses. The resonance was not affected by the addition of a terminal FM to the stimulus and when the ear was stimulated with broadband noise it resulted in a continual state of resonance. Rapid, 180 degree phase shifts in the CM were observed when the stimulus frequency swept through the frequency of the CM amplitude peak in Pteronotus and the frequency of the CM null in Rhinolophus. These data indicate marked differences in the physiological properties of the cochlea and in the mechanisms responsible for sharp tuning in these two species of bats.
Collapse
|
Comparative Study |
40 |
47 |
12
|
Schuller G, Covey E, Casseday JH. Auditory Pontine Grey: Connections and Response Properties in the Horseshoe Bat. Eur J Neurosci 1991; 3:648-662. [PMID: 12106473 DOI: 10.1111/j.1460-9568.1991.tb00851.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigates the role of the pontine grey as a link between the auditory system and the cerebellum in the bat, Rhinolophus rouxi. We recorded response properties of single neurons in the pontine grey and, in the same preparation, injected wheat germ agglutinin - horseradish peroxidase (WGA - HRP) in areas responsive to sound. Thus the functional evidence was correlated with retrograde and anterograde transport. The main results are: (i) all auditory neurons in the pontine grey are tuned within one of two harmonically related frequency ranges of the echolocation call. The upper range corresponds to the constant frequency and frequency modulated components of the second harmonic, but the lower range corresponds only to the frequency modulated component of the first harmonic. There is no systematic tonotopic organization; (ii) discharge patterns are extremely variable, latencies cover a wide range, and about half of the neurons are binaurally responsive with excitation from both ears; (iii) most pontine auditory neurons respond preferentially to frequency modulated stimuli; (iv) there is massive input to the pontine grey from the central nucleus of the inferior colliculus; (v) cortical input to the pontine grey does not originate in tonotopically organized auditory cortex. The input is from a dorsal belt area that is specialized for processing combinations of sounds with specific frequency ratios and delays; (vi) projections from the auditory region of the pontine grey are widespread within the cerebellar cortex. The data suggest that the pontine grey transmits to the cerebellum information contained in specific components of the bat's biosonar signal.
Collapse
|
|
34 |
46 |
13
|
Grothe B, Schweizer H, Pollak GD, Schuller G, Rosemann C. Anatomy and projection patterns of the superior olivary complex in the Mexican free-tailed bat, Tadarida brasiliensis mexicana. J Comp Neurol 1994; 343:630-46. [PMID: 8034792 DOI: 10.1002/cne.903430412] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The superior olivary complex (SOC) is the first station in the ascending auditory pathway that receives binaural projections. Two of the principal nuclei, the lateral superior olive (LSO) and the medial superior olive (MSO), are major sources of ascending projections to the inferior colliculus. Whereas almost all mammals have an LSO, it has traditionally been thought that only animals that hear low frequencies have an MSO. Recent reports, however, suggest that the medial part of the SOC in bats is highly variable and that at least some bats have a well-developed MSO. Thus, the main goal of this study was to evaluate the cytoarchitecture and connections of the principal superior olivary nuclei of the Mexican free-tailed bat, with specific attention directed at the MSO. Cell and fiber stained material revealed that the LSO and the medial nucleus of the trapezoid body (MNTB) are similar to those described for other mammals. There are two medial nuclei we refer to as dorsomedial periolivary nucleus (DMPO) and MSO. Tracer experiments exhibited that the DMPO receives bilateral projections from the cochlear nucleus, and additional projections from the ipsilateral MNTB. The DMPO sends a strong projection to the ipsilateral inferior colliculus. Positive staining for acetylcholinesterase indicates that the DMPO is a part of the olivocochlear system, as it is in other animals. The MSO in the free-tailed bat meets many of the criteria that traditionally define this nucleus. These include the presence of bipolar and multipolar principal cells, bilateral innervation from the cochlear nucleus, a strong projection from the ipsilateral MNTB, and the absence of cholinergic cells. The major difference from traditional MSO features is that it projects bilaterally to the inferior colliculus. Approximately 30% of its cells provide collateral projections to the colliculi on both sides. Functional implications of the MSO for the free-tailed bat are considered in the Discussion.
Collapse
|
|
31 |
45 |
14
|
Schuller G. A cheap earphone for small animals with good frequency response in the ultrasonic frequency range. J Neurosci Methods 1997; 71:187-90. [PMID: 9128155 DOI: 10.1016/s0165-0270(96)00142-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new type of earphone for binaural stimulation in small animals is described. The characteristic features are: (1) small, 8 mm diameter, can be miniaturised further; (2) cheap, uses no expensive condenser microphone capsule, material costs less than 20 dollars; (3) frequency response flat within 6 dB between 10 kHz and 120 kHz, within 10 dB up to 200 kHz; (4) harmonic distortions at levels of the fundamental frequency below 75 dB SPL is below - 34 dB at worst case (10 kHz); and (5) due to the low price the most stable earphones optimally paired for dichotic stimulation can be selected by screening a number of individual specimen.
Collapse
|
|
28 |
35 |
15
|
Abstract
The directional dependence of sound pressure transformation of head and pinna has been measured in the phyllostomid bat Phyllostomus discolor for the frontal hemisphere using a maximum length sequence method. The azimuthal position of the axis of highest pinna gain came closer to the midsagital plane with increasing frequency. The acoustic axis of highest pinna gain was further characterized by an increase of the elevation angle with increasing frequency and a specific decrease at 55 kHz. Additionally, a spectral notch separated two regions of high and low frequency hearing at specific elevation and frequency combinations. The special influence of the tragus on the position of the pinna gain axis and the spectral notches is demonstrated. The functional implications of the spectral notch for hearing in P. discolor are discussed.
Collapse
|
|
22 |
33 |
16
|
Firzlaff U, Schuchmann M, Grunwald JE, Schuller G, Wiegrebe L. Object-oriented echo perception and cortical representation in echolocating bats. PLoS Biol 2007; 5:e100. [PMID: 17425407 PMCID: PMC1847841 DOI: 10.1371/journal.pbio.0050100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 02/09/2007] [Indexed: 11/19/2022] Open
Abstract
Echolocating bats can identify three-dimensional objects exclusively through the analysis of acoustic echoes of their ultrasonic emissions. However, objects of the same structure can differ in size, and the auditory system must achieve a size-invariant, normalized object representation for reliable object recognition. This study describes both the behavioral classification and the cortical neural representation of echoes of complex virtual objects that vary in object size. In a phantom-target playback experiment, it is shown that the bat Phyllostomus discolor spontaneously classifies most scaled versions of objects according to trained standards. This psychophysical performance is reflected in the electrophysiological responses of a population of cortical units that showed an object-size invariant response (14/109 units, 13%). These units respond preferentially to echoes from objects in which echo duration (encoding object depth) and echo amplitude (encoding object surface area) co-varies in a meaningful manner. These results indicate that at the level of the bat's auditory cortex, an object-oriented rather than a stimulus-parameter–oriented representation of echoes is achieved. Bats can orientate and hunt for prey in complete darkness using echolocation. Bats use this extraordinary ability, not only to localize objects in space, but also to identify them. The same object, however, can come in different sizes. Here, we use a combination of psychophysical phantom-target experiments and electrophysiological recordings to investigate how echolocating bats perceive objects of different sizes, and how the echoes reflected from these objects are represented in the bat auditory cortex. We trained the neotropical bat Phyllostomus discolor to identify virtual objects, and found that these bats spontaneously associated scaled versions of these objects with the corresponding trained object. Interestingly, we identified neurons in the bat auditory cortex that respond to specific objects irrespective of object size. These findings highlight the sensory capabilities and sophisticated neural processes underlying bat echolocation. This suggests that like the visual system, echolocation meets an important requirement of an effective object-recognition system in that it allows the identification of objects independent of object size. Auditory cortical neurons in echolocating bats fire selectively to objects despite changes in object size.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
32 |
17
|
Kempter V, Mecklenbrauck W, Menzinger M, Schuller G, Herschbach D, Schlier C. Electronic excitation of K atoms in collisions with diatomic molecules: Thresholds and energy dependence from 1–5 eV. Chem Phys Lett 1970. [DOI: 10.1016/0009-2614(70)80142-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
55 |
32 |
18
|
Fenzl T, Schuller G. Periaqueductal gray and the region of the paralemniscal area have different functions in the control of vocalization in the neotropical bat, Phyllostomus discolor. Eur J Neurosci 2002; 16:1974-86. [PMID: 12453061 DOI: 10.1046/j.1460-9568.2002.02261.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The periaqueductal gray matter and the region of the paralemniscal area were neuroanatomically delineated in the brain of the neotropical bat Phyllostomus discolor[Wagner (1843) Arch. Naturgesch., 9, 365-368] and were probed with electrical microstimulation for eliciting vocalizations. In a well-delimited rostral portion of the periaqueductal gray exclusively, communication calls could be triggered at low stimulation currents. Communication calls as well as echolocation calls could be elicited at the dorsal and ventral edges of this area. Pharmacological stimulation with microdialysed kainic acid in this particular periaqueductal gray area demonstrated that neurons and not fibres of passage are activated for triggering vocalization. Solely echolocation calls were emitted upon electrical microstimulation or with microdialysed kainic acid in the region of the paralemniscal area. The periaqueductal gray appears to be involved in vocal pathways that control both communication calls and echolocation calls, while the region of the paralemniscal area seems to be specialized for control of echolocation calls only. Respiration is similarly influenced by stimulation in the periaqueductal gray and the region of the paralemniscal area. Periaqueductal gray and paralemniscal area interact differently with the final common pathway for vocalization, and may represent different functional organization in the vocal controlling pathways for communication calls and echolocation calls.
Collapse
|
|
23 |
32 |
19
|
Firzlaff U, Schörnich S, Hoffmann S, Schuller G, Wiegrebe L. A neural correlate of stochastic echo imaging. J Neurosci 2006; 26:785-91. [PMID: 16421298 PMCID: PMC6675356 DOI: 10.1523/jneurosci.3478-05.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bats quickly navigate through a highly structured environment relying on echolocation. Large natural objects in the environment, like bushes or trees, produce complex stochastic echoes, which can be characterized by the echo roughness. Previous work has shown that bats can use echo roughness to classify the stochastic properties of natural objects. This study provides both psychophysical and electrophysiological data to identify a neural correlate of statistical echo analysis in the bat Phyllostomus discolor. Psychophysical results show that the bats require a fixed minimum roughness of 2.5 (in units of base 10 logarithm of the stimulus fourth moment) for roughness discrimination. Electrophysiological results reveal a subpopulation of 15 of 94 recorded cortical units, located in an anterior region of auditory cortex, whose rate responses changed significantly with echo roughness. It is shown that the behavioral ability to discriminate differences in the statistics of complex echoes can be quantitatively predicted by the neural responses of this subpopulation of auditory-cortical neurons.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
31 |
20
|
Schuller G. Echo delay and overlap with emitted orientation sounds and doppler-shift compensation in the bat,Rhinolophus ferrumequinum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1977. [DOI: 10.1007/bf00656811] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
48 |
30 |
21
|
Hoffmann S, Firzlaff U, Radtke-Schuller S, Schwellnus B, Schuller G. The auditory cortex of the bat Phyllostomus discolor: Localization and organization of basic response properties. BMC Neurosci 2008; 9:65. [PMID: 18625034 PMCID: PMC2483289 DOI: 10.1186/1471-2202-9-65] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mammalian auditory cortex can be subdivided into various fields characterized by neurophysiological and neuroarchitectural properties and by connections with different nuclei of the thalamus. Besides the primary auditory cortex, echolocating bats have cortical fields for the processing of temporal and spectral features of the echolocation pulses. This paper reports on location, neuroarchitecture and basic functional organization of the auditory cortex of the microchiropteran bat Phyllostomus discolor (family: Phyllostomidae). RESULTS The auditory cortical area of P. discolor is located at parieto-temporal portions of the neocortex. It covers a rostro-caudal range of about 4800 mum and a medio-lateral distance of about 7000 mum on the flattened cortical surface. The auditory cortices of ten adult P. discolor were electrophysiologically mapped in detail. Responses of 849 units (single neurons and neuronal clusters up to three neurons) to pure tone stimulation were recorded extracellularly. Cortical units were characterized and classified depending on their response properties such as best frequency, auditory threshold, first spike latency, response duration, width and shape of the frequency response area and binaural interactions. Based on neurophysiological and neuroanatomical criteria, the auditory cortex of P. discolor could be subdivided into anterior and posterior ventral fields and anterior and posterior dorsal fields. The representation of response properties within the different auditory cortical fields was analyzed in detail. The two ventral fields were distinguished by their tonotopic organization with opposing frequency gradients. The dorsal cortical fields were not tonotopically organized but contained neurons that were responsive to high frequencies only. CONCLUSION The auditory cortex of P. discolor resembles the auditory cortex of other phyllostomid bats in size and basic functional organization. The tonotopically organized posterior ventral field might represent the primary auditory cortex and the tonotopically organized anterior ventral field seems to be similar to the anterior auditory field of other mammals. As most energy of the echolocation pulse of P. discolor is contained in the high-frequency range, the non-tonotopically organized high-frequency dorsal region seems to be particularly important for echolocation.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
30 |
22
|
Fenzl T, Schuller G. Echolocation calls and communication calls are controlled differentially in the brainstem of the bat Phyllostomus discolor. BMC Biol 2005; 3:17. [PMID: 16053533 PMCID: PMC1190161 DOI: 10.1186/1741-7007-3-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 08/01/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Echolocating bats emit vocalizations that can be classified either as echolocation calls or communication calls. Neural control of both types of calls must govern the same pool of motoneurons responsible for vocalizations. Electrical microstimulation in the periaqueductal gray matter (PAG) elicits both communication and echolocation calls, whereas stimulation of the paralemniscal area (PLA) induces only echolocation calls. In both the PAG and the PLA, the current thresholds for triggering natural vocalizations do not habituate to stimuli and remain low even for long stimulation periods, indicating that these structures have relative direct access to the final common pathway for vocalization. This study intended to clarify whether echolocation calls and communication calls are controlled differentially below the level of the PAG via separate vocal pathways before converging on the motoneurons used in vocalization. RESULTS Both structures were probed simultaneously in a single experimental approach. Two stimulation electrodes were chronically implanted within the PAG in order to elicit either echolocation or communication calls. Blockade of the ipsilateral PLA site with iontophoretically application of the glutamate antagonist kynurenic acid did not impede either echolocation or communication calls elicited from the PAG. However, blockade of the contralateral PLA suppresses PAG-elicited echolocation calls but not communication calls. In both cases the blockade was reversible. CONCLUSION The neural control of echolocation and communication calls seems to be differentially organized below the level of the PAG. The PLA is an essential functional unit for echolocation call control before the descending pathways share again the final common pathway for vocalization.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
29 |
23
|
Schuller G, Fischer S, Schweizer H. Significance of the paralemniscal tegmental area for audio-motor control in the moustached bat, Pteronotus p. parnellii: the afferent off efferent connections of the paralemniscal area. Eur J Neurosci 1997; 9:342-55. [PMID: 9058054 DOI: 10.1111/j.1460-9568.1997.tb01404.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The paralemniscal tegmental area has been determined in the brain of the New World moustached bat, Pteronotus p. parnellii, by electrical microstimulation eliciting echolocation calls and pinna movements. It is located in the dorsal tegmentum rostral and medial to the dorsal nucleus of the lateral lemniscus and is characterized by medium sized and large neurons. Tracer injections (WGA-HRP) showed that the most intense input to the paralemniscal tegmental area originates in the intermediate and deep layers of the homolateral superior colliculus. The strong projections from the ipsi- and contralateral nucleus praepositus hypoglossus most probably contributes vestibular information. Further inputs in descending order of intensity are from the substantia nigra, the contralateral paralemniscal tegmental area, the putamen, the ventral reticular formation in its lateral portions, the medial cerebellar nucleus and the dorsal reticular formation. Efferent projections of the paralemniscal tegmental area reach the putamen bilaterally, the nucleus accumbens and other parts of the basal ganglia, the pretectal area, the substantia nigra, the intermediate and deep layers of the superior colliculus bilaterally and the tegmental area ventral to it. Connections to the dorsal part of the periaqueductal grey, the cuneiform nucleus and the parabrachial region are important in the context of vocal control, whereas projections to the medial portion of the contralateral facial nucleus may interfere with the control of pinna movement. The findings suggest that the paralemniscal tegmental area is involved in audio-motor control of vocalization and pinna movements in bats; connectional and functional similarities and disparities to tegmental regions described in other mammals are discussed.
Collapse
|
|
28 |
26 |
24
|
Radtke-Schuller S, Schuller G. Auditory cortex of the rufous horseshoe bat: 1. Physiological response properties to acoustic stimuli and vocalizations and the topographical distribution of neurons. Eur J Neurosci 1995; 7:570-91. [PMID: 7620609 DOI: 10.1111/j.1460-9568.1995.tb00662.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The extent and functional subdivisions of the auditory cortex in the echolocating horseshoe bat, Rhinolophus rouxi, were neurophysiologically investigated and compared to neuroarchitectural boundaries and projection fields from connectional investigations. The primary auditory field shows clear tonotopic organization with best frequencies increasing in the caudorostral direction. The frequencies near the bat's resting frequency are largely over-represented, occupying six to 12 times more neural space per kHz than in the lower frequency range. Adjacent to the rostral high-frequency portion of the primary cortical field, a second tonotopically organized field extends dorsally with decreasing best frequencies. Because of the reversed tonotopic gradient and the consistent responses of the neurons, the field is comparable to the anterior auditory field in other mammals. A third tonotopic trend for medium and low best frequencies is found dorsal to the caudal primary field. This area is considered to correspond to the dorsoposterior field in other mammals. Cortical neurons had different response properties and often preferences for distinct stimulus types. Narrowly tuned neurons (Q10dB > 20) were found in the rostral portion of the primary field, the anterior auditory field and in the posterior dorsal field. Neurons with double-peaked tuning curves were absent in the primary area, but occurred throughout the dorsal fields. Vocalization elicited most effectively neurons in the anterior auditory field. Exclusive response to pure tones was found in neurons of the rostral dorsal field. Neurons preferring sinusoidal frequency modulations were located in the primary field and the anterior and posterior dorsal fields adjacent to the primary area. Linear frequency modulations optimally activated only neurons of the dorsal part of the dorsal field. Noise-selective neurons were found in the dorsal fields bordering the primary area and the extreme caudal edge of the primary field. The data provide a survey of the functional organization of the horseshoe bat's auditory cortex in real coordinates with the support of cytoarchitectural boundaries and connectional data.
Collapse
|
|
30 |
24 |
25
|
Firzlaff U, Schuller G. Directionality of hearing in two CF/FM bats, Pteronotus parnellii and Rhinolophus rouxi. Hear Res 2005; 197:74-86. [PMID: 15504606 DOI: 10.1016/j.heares.2004.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 06/22/2004] [Indexed: 11/15/2022]
Abstract
The head-related transfer function (HRTF) has been measured in two CF/FM bats, Pteronotus parnellii and Rhinolophus rouxi from 575 positions in the frontal hemisphere. P. parnellii showed an increase of the elevation angle of the axis of highest pinna gain with increasing frequency followed by a specific decrease at 75 kHz. Such a drop of elevation angle of the acoustic axis was not seen in R. rouxi. The HRTF further showed a spectral notch dependent on elevation and frequency in P. parnellii, but not in R. rouxi. The functional implications of this difference between both bat species are discussed. Frequencies at maximum pinna gain values did not clearly match the frequencies of the harmonics of the echolocation calls whereas spatial resolution of interaural intensity differences was best in a frequency range that included the higher harmonics of the echolocation calls in both bat species. However, specializations of HRTF patterns matching the exact frequencies of the harmonics of the echolocation calls could not be observed in both bat species.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
24 |