1
|
Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, Chen W, Knapp W, Zlabinger GJ. A microplate assay for the detection of oxidative products using 2',7'-dichlorofluorescin-diacetate. J Immunol Methods 1992; 156:39-45. [PMID: 1431161 DOI: 10.1016/0022-1759(92)90008-h] [Citation(s) in RCA: 429] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A fluorometric microplate assay was established for the detection of respiratory burst activity in phagocytic cells by assessing oxidation of 2',7'-dichlorofluorescin-diacetate (DCFH-DA). This method is based on flow cytometric studies by Bass et al. (J. Immunol. 130 (1983) p. 1910) describing intracellular detection of DCFH oxidation due to the presence of hydrogen peroxides. In the present study we have adapted the assay for use in microtiter plates to determine the amount of extracellular reactive oxidative products. DCFH-DA, granulocytes and stimuli (phorbol myristate acetate, n-formyl-methionyl-leucylphenylalanine, concanavalin A) were added to microtiter plates and after incubation at 37 degrees C, the development of fluorescence intensity was read in a fluorescence concentration analyzer (FCA, Baxter). Calibration of fluorescence units recorded by the FCA was achieved by comparison with defined amounts of fluorescent DCF. The change in measured fluorescence was linear with cell density over the range of 2 x 10(5)-1 x 10(6) cells/well. Cumulative DCF generation in individual wells could be recorded non-destructively at frequent intervals for time course measurements. Results from FCA measurements correlated perfectly with the FACS analysis of the same samples (r = 0.99). In conclusion, this assay can be useful for screening monoclonal antibodies recognizing cell surface structures possibly involved in signal transduction as well as for testing phagocytes for their capacity to release reactive oxidative intermediates.
Collapse
|
|
33 |
429 |
2
|
Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Györi G, Zlabinger GJ, Stulnig TM. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond) 2007; 31:1420-8. [PMID: 17593905 DOI: 10.1038/sj.ijo.0803632] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Obesity is associated with a chronic low-grade inflammation and an increased abundance of macrophages in adipose tissue. Adipose tissue macrophages (ATMs) are assumed to interfere with adipocyte function leading to insulin resistance, thereby contributing to the pathogenesis of type 2 diabetes mellitus. Macrophages exist in separate types of differentiation, but the nature of ATMs is largely unknown. DESIGN AND MEASUREMENTS Stromal vascular cells (SVCs) and ATMs were isolated from human adipose tissues from different locations. We characterized ATMs phenotypically and functionally by flow cytometry, endocytosis assay and determination of secreted cytokines. For comparison, we used macrophages of the 'classical' (M1) and the 'alternative', anti-inflammatory (M2) type differentiated in vitro from peripheral blood monocytes. RESULTS Like prototypic M2 macrophages, ATMs expressed considerable amounts of mannose receptor, haemoglobin scavenger receptor CD163 and integrin alphavbeta5. The number of cells expressing these molecules correlated significantly with the donors' body mass indices (BMIs). Notably, SVCs positive for the common monocyte/macrophage marker CD14 contained a considerable fraction of blood monocytes, the abundance of which did not correlate with the BMIs, pointing to the requirement of the surface markers identified here for the identification of ATMs. ATMs showed endocytic activities similar to M2 macrophages and accordingly secreted high amounts of IL-10 and IL-1 receptor antagonist. However, basal and induced secretion of pro-inflammatory mediators TNF-alpha, IL-6, IL-1, MCP-1 and MIP-1alpha was even higher in ATMs than in pro-inflammatory M1 macrophages. CONCLUSION ATMs comprise a particular macrophage type that is M2-like by surface marker expression, but they are competent to produce extensive amounts of inflammatory cytokines, which could considerably contribute to the development of insulin resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
372 |
3
|
Säemann MD, Böhmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, Stöckl J, Hörl WH, Zlabinger GJ. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J 2000; 14:2380-2. [PMID: 11024006 DOI: 10.1096/fj.00-0359fje] [Citation(s) in RCA: 337] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytokines are critical in regulating unresponsiveness versus immunity towards enteric antigens derived from the intestinal flora and ingested food. There is increasing evidence that butyrate, a major metabolite of intestinal bacteria and crucial energy source for gut epithelial cells, also possesses anti-inflammatory properties. Its influence on cytokine production, however, is not established. Here, we report that butyrate strongly inhibits interleukin-12 (IL-12) production by suppression of both IL-12p35 and IL-12p40 mRNA accumulation, but massively enhances IL-10 secretion in Staphylococcus aureus cell-stimulated human monocytes. The effect of butyrate on IL-12 production was irreversible upon the addition of neutralizing antibodies to IL-10 or transforming growth factor b1 and of indomethacin. In anti-CD3-stimulated peripheral blood mononuclear cells, butyrate enhanced IL-10 and IL-4 secretion but reduced the release of IL-2 and interferon-g. The latter effect was in part a result of suppressed IL-12 production but also a result of inhibition of IL-12 receptor expression on T cells. These data demonstrate a novel anti-inflammatory property of butyrate that may have broad implications for the regulation of immune responses in vivo and could be exploited as new therapeutic approach in inflammatory conditions.
Collapse
|
|
25 |
337 |
4
|
Huber J, Kiefer FW, Zeyda M, Ludvik B, Silberhumer GR, Prager G, Zlabinger GJ, Stulnig TM. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab 2008; 93:3215-21. [PMID: 18492752 DOI: 10.1210/jc.2007-2630] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS Obesity is associated with a low-grade inflammation, insulin resistance, and macrophage infiltration of adipose tissue. The role of CC chemokines and their respective receptors in human adipose tissue inflammation remains to be determined. METHODS sc and visceral adipose tissue of obese patients (body mass index 53.1 +/- 11.3 kg/m(2)) compared with lean controls (body mass index 25.9 +/- 3.8 kg/m(2)) was analyzed for alterations in inflammatory gene expression. RESULTS Macrophage infiltration was increased in sc and visceral adipose tissue of obese patients as determined by increased mRNA expression of a macrophage-specific marker (CD68) and by elevated macrophage infiltration. Gene expression of CC chemokines involved in monocyte chemotaxis (CCL2, CCL3, CCL5, CCL7, CCL8, and CCL11) and their receptors (CCR1, CCR2, CCR3, and CCR5) was higher in sc and visceral adipose tissue of obese patients. Serum concentrations of the inflammatory marker IL-6 and C-reactive protein were elevated in obese patients compared with lean controls. Obese patients revealed increased insulin resistance as assessed by the homeostasis model assessment of insulin resistance index and reduced plasma adiponectin concentrations. Adipose tissue expression of many CC chemokines and their receptors in the obese group positively correlated with CD68 expression. CONCLUSION Up-regulation of the CC chemokines and their respective receptors in adipose tissue occurs in human obesity and is associated with increased systemic inflammation.
Collapse
|
|
17 |
244 |
5
|
Regele H, Exner M, Watschinger B, Wenter C, Wahrmann M, Osterreicher C, Säemann MD, Mersich N, Hörl WH, Zlabinger GJ, Böhmig GA. Endothelial C4d deposition is associated with inferior kidney allograft outcome independently of cellular rejection. Nephrol Dial Transplant 2001; 16:2058-66. [PMID: 11572897 DOI: 10.1093/ndt/16.10.2058] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Capillary deposition of complement split product C4d has been suggested to be a valuable marker for humoral rejection. In this retrospective study we evaluated the clinical impact of C4d deposition in renal allografts with special emphasis on associations between C4d staining patterns and histological features of acute rejection. METHODS One hundred and two allograft biopsies obtained from 61 kidney transplants (1-532 days after transplantation; median 14 days) were examined by immunohistochemistry on routine paraffin sections using a novel anti-C4d polyclonal antibody (C4dpAb). RESULTS Fourty-two of 102 biopsies showed endothelial C4d deposits in peritubular capillaries (PTC). Histopathological analysis revealed a significantly lower frequency of positive C4d staining in biopsies with rather than in those without acute cellular rejection defined by the Banff grading schema (P<0.01). For clinical evaluation, patients were classified according to C4d staining in allografts (C4d(PTC) positive in at least one biopsy, n=31 vs C4d(PTC) negative in all biopsies, n=30). C4d(PTC) positive patients had significantly higher serum creatinine levels than C4d negative patients. Even in the absence of morphological evidence for rejection, differences in serum creatinine levels between C4d(PTC) positive and negative recipients were significant (6 months: 2.01+/-0.75 vs 1.41+/-0.27 mg/dl; 12 months: 1.95+/-0.60 vs 1.36+/- 0.34 mg/dl; 18 months: 1.98+/-0.50 vs 1.47+/-0.31 mg/dl; P<0.05). All patients with rejection resistant to conventional therapy (n=4) were in the C4d(PTC) positive subgroup. All recipients with panel reactive antibodies (PRA) >50% (n=8) were C4d(PTC) positive. CONCLUSIONS Our data indicate that endothelial C4d deposition is associated with inferior graft outcome. We provide evidence that this immunohistochemical finding and its clinical impact are not associated with morphological signs of cellular rejection.
Collapse
|
|
24 |
195 |
6
|
Säemann MD, Weichhart T, Zeyda M, Staffler G, Schunn M, Stuhlmeier KM, Sobanov Y, Stulnig TM, Akira S, von Gabain A, von Ahsen U, Hörl WH, Zlabinger GJ. Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4–dependent mechanism. J Clin Invest 2005. [DOI: 10.1172/jci200522720] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
|
20 |
181 |
7
|
Haidinger M, Poglitsch M, Geyeregger R, Kasturi S, Zeyda M, Zlabinger GJ, Pulendran B, Hörl WH, Säemann MD, Weichhart T. A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. THE JOURNAL OF IMMUNOLOGY 2010; 185:3919-31. [PMID: 20805416 DOI: 10.4049/jimmunol.1000296] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mammalian target of rapamycin (mTOR) regulates cell growth and survival and exists as rapamycin-sensitive mTOR complex (mTORC) 1 and as rapamycin-insensitive mTORC2. Although mTOR is a well-known regulator of diverse immune cells, its detailed role in human dendritic cell (DC) function and differentiation is only incompletely understood. In this study, we demonstrate divergent roles of mTOR during activation and differentiation of myeloid DCs (mDCs) and monocyte-derived DCs (moDCs). Inhibition of mTORC1 in mDCs activated with TLR-dependent or -independent stimuli increased proinflammatory cytokines and NF-κB, whereas IL-10 and STAT3 were blocked. Rapamycin regulated the costimulatory/surface molecules CD86, programmed death ligand-1, and CD25 on mDCs and significantly increased the T cell allostimulatory potential of mDCs. In contrast, rapamycin suppressed immunostimulatory molecules and the allostimulatory potential of LPS-stimulated moDCs by an inability to augment NF-κB signaling. In differentiating moDCs, the PI3K/Akt-dependent mTOR pathway was constitutively activated by GM-CSF to induce DC differentiation in an mTORC1-dependent manner. Inhibition of mTORC1 or mTORC1/2 during moDC differentiation decreased moDC survival and markedly hampered its immunostimulatory phenotype. Analyzing the fate of DCs in vivo, we found that kidney transplant patients treated with rapamycin displayed an increased immunostimulatory potential of mDCs compared with patients treated with calcineurin inhibitors. Furthermore, rapamycin did not interfere with mDC differentiation in these patients. Collectively, mTOR exerts divergent immunoregulatory functions during DC activation and differentiation depending on the DC type that lead to opposing T cell responses, which might be of clinical importance in transplantation, cancer, and also for novel vaccination strategies.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
178 |
8
|
Funk M, Kriechbaum K, Prager F, Benesch T, Georgopoulos M, Zlabinger GJ, Schmidt-Erfurth U. Intraocular Concentrations of Growth Factors and Cytokines in Retinal Vein Occlusion and the Effect of Therapy with Bevacizumab. ACTA ACUST UNITED AC 2009; 50:1025-32. [PMID: 19060280 DOI: 10.1167/iovs.08-2510] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
16 |
164 |
9
|
Weichhart T, Kopecky C, Kubicek M, Haidinger M, Döller D, Katholnig K, Suarna C, Eller P, Tölle M, Gerner C, Zlabinger GJ, van der Giet M, Hörl WH, Stocker R, Säemann MD. Serum amyloid A in uremic HDL promotes inflammation. J Am Soc Nephrol 2012; 23:934-47. [PMID: 22282592 DOI: 10.1681/asn.2011070668] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Uremia impairs the atheroprotective properties of HDL, but the mechanisms underlying why this occurs are unknown. Here, we observed that HDL isolated from healthy individuals inhibited the production of inflammatory cytokines by peripheral monocytes stimulated with a Toll-like receptor 2 agonist. In contrast, HDL isolated from the majority of patients with ESRD did not show this anti-inflammatory property; many HDL samples even promoted the production of inflammatory cytokines. To investigate this difference, we used shotgun proteomics to identify 49 HDL-associated proteins in a uremia-specific pattern. Proteins enriched in HDL from patients with ESRD (ESRD-HDL) included surfactant protein B (SP-B), apolipoprotein C-II, serum amyloid A (SAA), and α-1-microglobulin/bikunin precursor. In addition, we detected some ESRD-enriched proteins in earlier stages of CKD. We did not detect a difference in oxidation status between HDL isolated from uremic and healthy patients. Regarding function of these uremia-specific proteins, only SAA mimicked ESRD-HDL by promoting inflammatory cytokine production. Furthermore, SAA levels in ESRD-HDL inversely correlated with its anti-inflammatory potency. In conclusion, HDL has anti-inflammatory activities that are defective in uremic patients as a result of specific changes in its molecular composition. These data suggest a potential link between the high levels of inflammation and cardiovascular mortality in uremia.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
163 |
10
|
Mayer KA, Stöckl J, Zlabinger GJ, Gualdoni GA. Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction. Front Immunol 2019; 10:1533. [PMID: 31333664 PMCID: PMC6617997 DOI: 10.3389/fimmu.2019.01533] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Viral replication is a process that involves an extremely high turnover of cellular molecules. Since viruses depend on the host cell to obtain the macromolecules needed for their proper replication, they have evolved numerous strategies to shape cellular metabolism and the biosynthesis machinery of the host according to their specific needs. Technologies for the rigorous analysis of metabolic alterations in cells have recently become widely available and have greatly expanded our knowledge of these crucial host–pathogen interactions. We have learned that most viruses enhance specific anabolic pathways and are highly dependent on these alterations. Since uninfected cells are far more plastic in their metabolism, targeting of the virus-induced metabolic alterations is a promising strategy for specific antiviral therapy and has gained great interest recently. In this review, we summarize the current advances in our understanding of metabolic adaptations during viral infections, with a particular focus on the utilization of this information for therapeutic application.
Collapse
|
Review |
6 |
116 |
11
|
De Sousa Linhares A, Battin C, Jutz S, Leitner J, Hafner C, Tobias J, Wiedermann U, Kundi M, Zlabinger GJ, Grabmeier-Pfistershammer K, Steinberger P. Therapeutic PD-L1 antibodies are more effective than PD-1 antibodies in blocking PD-1/PD-L1 signaling. Sci Rep 2019; 9:11472. [PMID: 31391510 PMCID: PMC6685986 DOI: 10.1038/s41598-019-47910-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
Inhibitors of PD-1 signaling have revolutionized cancer therapy. PD-1 and PD-L1 antibodies have been approved for the treatment of cancer. To date, therapeutic PD-1 inhibitors have not been compared in a functional assay. We used an efficient T cell reporter platform to evaluate the efficacy of five clinically used PD-1 inhibitors to block PD-1 signaling. The half maximal effective concentrations (EC50) for nivolumab and pembrolizumab were 76.17 ng/ml (95% CI 64.95-89.34 ng/ml) and 39.90 ng/ml (34.01-46.80 ng/ml), respectively. The EC50 values of the PD-L1 inhibitors were 6.46 ng/ml (5.48-7.61 ng/ml), 6.15 ng/ml (5.24-7.21 ng/ml) and 7.64 ng/ml (6.52-8.96 ng/ml) for atezolizumab, avelumab, and durvalumab, respectively. In conclusion, a functional assay evaluating antibodies targeting PD-1 inhibition in vitro revealed that pembrolizumab is a slightly more effective PD-1 blocker than nivolumab, and that PD-L1 antibodies are superior to PD-1 antibodies in reverting PD-1 signaling.
Collapse
|
research-article |
6 |
116 |
12
|
Funk M, Karl D, Georgopoulos M, Benesch T, Sacu S, Polak K, Zlabinger GJ, Schmidt-Erfurth U. Neovascular age-related macular degeneration: intraocular cytokines and growth factors and the influence of therapy with ranibizumab. Ophthalmology 2009; 116:2393-9. [PMID: 19815292 DOI: 10.1016/j.ophtha.2009.05.039] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To investigate concentrations of growth factors and inflammatory cytokines in eyes with neovascular age-related macular degeneration (AMD) before and during therapy with intravitreal ranibizumab and to identify associations with disease activity. DESIGN Prospective clinical trial. PARTICIPANTS AND CONTROLS Twenty-eight eyes of patients with neovascular AMD were compared with 28 eyes of age-matched patients with cataract as control. METHODS Ranibizumab was administered intravitreously once at baseline, and retreatments were given at monthly visits if optical coherence tomography (OCT) revealed macular edema or vision loss had occurred. Aqueous humor samples were taken each time intravitreal interventions were performed. Follow-up was 12 months. Luminex (Luminex Inc., Austin, TX) multiplex assays were used for measurement of 29 different growth factors and cytokines, including vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). MAIN OUTCOME MEASURES Differences in the concentrations of growth factors and inflammatory cytokines in eyes with neovascular AMD compared with control eyes and the influence of therapy with intravitreal ranibizumab. RESULTS A significantly increased expression of VEGF (P = 0.033) and a significantly decreased expression of PDGF (P = 0.038) were measured in the aqueous humor of eyes with neovascular AMD. Furthermore, a significant decrease of VEGF (P<0.001) was observed after intravitreal injection of ranibizumab along with significant changes in visual acuity and central retinal thickness (P = 0.039 and P<0.001). During follow-up with a flexible regimen, a correlation was identified between increased VEGF levels and persistent or recurrent macular edema. Changes in PDGF levels were strongly associated with alterations in VEGF concentration. CONCLUSIONS Vascular endothelial growth factor and PDGF-AA seemed to be associated with disease activity of neovascular AMD. Intravitreal anti-angiogenic treatment with ranibizumab resulted in significantly decreased intraocular VEGF expression below physiologic levels compared with controls. This effect was measurable as long as 4 weeks after each injection and was prolonged by consecutive retreatment. With recurrence after discontinuation of treatment, VEGF levels increased again.
Collapse
|
Journal Article |
16 |
109 |
13
|
Zeyda M, Säemann MD, Stuhlmeier KM, Mascher DG, Nowotny PN, Zlabinger GJ, Waldhäusl W, Stulnig TM. Polyunsaturated fatty acids block dendritic cell activation and function independently of NF-kappaB activation. J Biol Chem 2005; 280:14293-301. [PMID: 15684433 DOI: 10.1074/jbc.m410000200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) modulate immune responses leading to clinically significant beneficial effects in a variety of inflammatory disorders. PUFA effects on T cells have been extensively studied, but their influence on human dendritic cells (DCs), which are the most potent antigen-presenting cells and play a key role in initiating immune responses, has not been elucidated so far. Here we show that PUFAs of the n-3 and n-6 series (arachidonic and eicosapentaenoic acid) affect human monocyte-derived DC differentiation and inhibit their activation by LPS, resulting in altered DC surface molecule expression and diminished cytokine secretion. Furthermore, the potency to stimulate T cells was markedly inhibited in PUFA-treated DCs. The PUFA-mediated block in LPS-induced DC activation is reflected by diminished TNF-alpha, IL-12p40, CD40, and COX-2 mRNA levels. Strikingly, typical LPS-induced signaling events such as degradation of IkappaB and activation of NF-kappaB were not affected by PUFAs, even though DC membrane lipid composition was markedly altered. Arachidonic and eicosapentaenoic acid both altered DC prostaglandin production, but inhibitors of cyclooxygenases and lipoxygenases did not abolish PUFA effects, indicating that the observed PUFA actions on DCs were independent of autoregulation via eicosanoids. These data demonstrate a unique interference with DC activation and function that could significantly contribute to the well known anti-inflammatory effects of PUFAs.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
106 |
14
|
Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki ÖY, Platzer R, Pfajfer L, Bilic I, Ban SA, Willmann KL, Mukherjee M, Supper V, Hsu HT, Banerjee PP, Sinha P, McClanahan F, Zlabinger GJ, Pickl WF, Gribben JG, Stockinger H, Bennett KL, Huppa JB, Dupré L, Sanal Ö, Jäger U, Sixt M, Tezcan I, Orange JS, Boztug K. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol 2016; 17:1352-1360. [PMID: 27776107 PMCID: PMC6400263 DOI: 10.1038/ni.3575] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022]
Abstract
RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.
Collapse
|
Case Reports |
9 |
99 |
15
|
Blüml S, Kirchberger S, Bochkov VN, Krönke G, Stuhlmeier K, Majdic O, Zlabinger GJ, Knapp W, Binder BR, Stöckl J, Leitinger N. Oxidized phospholipids negatively regulate dendritic cell maturation induced by TLRs and CD40. THE JOURNAL OF IMMUNOLOGY 2005; 175:501-8. [PMID: 15972685 DOI: 10.4049/jimmunol.175.1.501] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maturation of dendritic cells (DCs) induced by pathogen-derived signals via TLRs is a crucial step in the initiation of an adaptive immune response and therefore has to be well controlled. In this study, we demonstrate that oxidized phospholipids (ox-PLs), which are generated during infections, apoptosis, and tissue damage, interfere with DC activation, preventing their maturation. ox-PLs blocked TLR-3- and TLR-4-mediated induction of the costimulatory molecules CD40, CD80, CD83, and CD86, the cytokines IL-12 and TNF, as well as lymphocyte stimulatory capacity. CD40 and TLR-2-mediated cytokine production was also inhibited, whereas up-regulation of costimulatory molecules via these receptors was not affected by ox-PLs. Thus, formation of ox-PLs during the course of an inflammatory response may represent a negative-feedback loop preventing excessive and sustained immune reactions through regulating DC maturation.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
99 |
16
|
Gualdoni GA, Mayer KA, Kapsch AM, Kreuzberg K, Puck A, Kienzl P, Oberndorfer F, Frühwirth K, Winkler S, Blaas D, Zlabinger GJ, Stöckl J. Rhinovirus induces an anabolic reprogramming in host cell metabolism essential for viral replication. Proc Natl Acad Sci U S A 2018; 115:E7158-E7165. [PMID: 29987044 PMCID: PMC6065033 DOI: 10.1073/pnas.1800525115] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rhinoviruses (RVs) are responsible for the majority of upper airway infections; despite their high prevalence and the resulting economic burden, effective treatment is lacking. We report here that RV induces metabolic alterations in host cells, which offer an efficient target for antiviral intervention. We show that RV-infected cells rapidly up-regulate glucose uptake in a PI3K-dependent manner. In parallel, infected cells enhance the expression of the PI3K-regulated glucose transporter GLUT1. In-depth metabolomic analysis of RV-infected cells revealed a critical role of glucose mobilization from extracellular and intracellular pools via glycogenolysis for viral replication. Infection resulted in a highly anabolic state, including enhanced nucleotide synthesis and lipogenesis. Consistently, we observed that glucose deprivation from medium and via glycolysis inhibition by 2-deoxyglucose (2-DG) potently impairs viral replication. Metabolomic analysis showed that 2-DG specifically reverts the RV-induced anabolic reprogramming. In addition, treatment with 2-DG inhibited RV infection and inflammation in a murine model. Thus, we demonstrate that the specific metabolic fingerprint of RV infection can be used to identify new targets for therapeutic intervention.
Collapse
|
research-article |
7 |
96 |
17
|
Gualdoni GA, Mayer KA, Göschl L, Boucheron N, Ellmeier W, Zlabinger GJ. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J 2016; 30:3800-3809. [PMID: 27492924 DOI: 10.1096/fj.201600522r] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
T cells must tightly regulate their metabolic processes to cope with varying bioenergetic demands depending on their state of differentiation. The metabolic sensor AMPK is activated in states of low energy supply and modulates cellular metabolism toward a catabolic state. Although this enzyme is known to be particularly active in regulatory T (Treg) cells, its impact on T helper (Th)-cell differentiation is poorly understood. We investigated the impact of several AMPK activators on Treg-cell differentiation and found that the direct activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide), but not the indirect activators metformin and 2-deoxyglucose, strongly enhanced Treg-cell induction by specifically enhancing Treg-cell expansion. Conversely, Th17 generation was impaired by the agent. Further investigation of the metabolic background of our observations revealed that AICAR enhanced both cellular mitochondrogenesis and fatty acid uptake. Consistently, increased Treg induction was entirely reversible on inhibition of fatty acid oxidation, thus confirming the dependence of AICAR's effects on metabolic pathways alterations. Translating our findings to an in vivo model, we found that the substance enhanced Treg cell generation on IL-2 complex-induced immune stimulation. We provide a previously unrecognized insight into the delicate interplay between immune cell function and metabolism and delineate a potential novel strategy for metabolism-targeting immunotherapy.-Gualdoni, G. A., Mayer, K. A., Göschl, L., Boucheron, N., Ellmeier, W., Zlabinger, G. J. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation.
Collapse
|
Journal Article |
9 |
87 |
18
|
Säemann MD, Weichhart T, Zeyda M, Staffler G, Schunn M, Stuhlmeier KM, Sobanov Y, Stulnig TM, Akira S, von Gabain A, von Ahsen U, Hörl WH, Zlabinger GJ. Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. J Clin Invest 2005; 115:468-75. [PMID: 15650774 PMCID: PMC544039 DOI: 10.1172/jci22720] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 11/10/2004] [Indexed: 01/14/2023] Open
Abstract
Tamm-Horsfall glycoprotein (THP) is expressed exclusively in the kidney and constitutes the most abundant protein in mammalian urine. A critical role for THP in antibacterial host defense and inflammatory disorders of the urogenital tract has been suggested. We demonstrate that THP activates myeloid DCs via Toll-like receptor-4 (TLR4) to acquire a fully mature DC phenotype. THP triggers typical TLR signaling, culminating in activation of NF-kappaB. Bone marrow-derived macrophages from TLR4- and MyD88-deficient mice were nonresponsive to THP in contrast to those from TLR2- and TLR9-deficient mice. In vivo THP-driven TNF-alpha production was evident in WT but not in Tlr4-/- mice. Importantly, generation of THP-specific Abs consistently detectable in urinary tract inflammation was completely blunted in Tlr4-/- mice. These data show that THP is a regulatory factor of innate and adaptive immunity and therefore could have significant impact on host immunity in the urinary tract.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
84 |
19
|
Böhmig GA, Krieger PM, Säemann MD, Wenhardt C, Pohanka E, Zlabinger GJ. n-butyrate downregulates the stimulatory function of peripheral blood-derived antigen-presenting cells: a potential mechanism for modulating T-cell responses by short-chain fatty acids. Immunol Suppl 1997; 92:234-43. [PMID: 9415032 PMCID: PMC1364064 DOI: 10.1046/j.1365-2567.1997.00337.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Modulation of proliferative T-cell responses by n-butyrate has been suggested to result from direct interference with cell cycle progression. Considering the important role of antigen-presenting cells (APC) in T-cell activation, we were particularly interested in studying the impact of n-butyrate on these cells. We demonstrated that pretreatment of human peripheral blood mononuclear cells (PBMC) or monocytes with this agent resulted in a dose- and time-dependent downregulation of their capability to stimulate T-cell responses with a similar pattern of inhibition when this agent was present throughout the culture period. Pretreatment with n-butyrate was effective in preventing both alloresponses and T-cell proliferation to immobilized anti-CD3 monoclonal antibody (mAb) suggesting alteration of costimulatory function. Flow cytometric analysis revealed that interferon-gamma (IFN-gamma)-induced upregulation of B7-1 expression on monocytes was profoundly inhibited by n-butyrate. Furthermore, this agent significantly suppressed the expression of intercellular adhesion molecule-1 (ICAM-1) or lymphocyte function-associated antigen-3 (LFA-3). In contrast, constitutive as well as cytokine-induced expression of B7-2 was enhanced by n-butyrate. Additionally, in monocytes, but not in T cells, treatment with n-butyrate led to significant alteration of membrane integrity owing to apoptotic cell death. Our findings indicate that modulation of T-cell responses by n-butyrate could also result from altered APC function, possibly as a consequence of downregulating distinct adhesion and/or costimulatory receptors as well as of inducing apoptosis. A potential clinical relevance of short-chain fatty acids for reducing T-cell-mediated immune reactions via modulating APC function is speculated.
Collapse
|
research-article |
28 |
77 |
20
|
Zeyda M, Poglitsch M, Geyeregger R, Smolen JS, Zlabinger GJ, Hörl WH, Waldhäusl W, Stulnig TM, Säemann MD. Disruption of the interaction of T cells with antigen-presenting cells by the active leflunomide metabolite teriflunomide: involvement of impaired integrin activation and immunologic synapse formation. ACTA ACUST UNITED AC 2005; 52:2730-9. [PMID: 16142756 DOI: 10.1002/art.21255] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Leflunomide, a potent disease-modifying antirheumatic drug of the isoxazole class, exhibits antiinflammatory, antiproliferative, and immunosuppressive effects by largely unknown mechanisms, although alterations of pyrimidine synthesis have been proposed. Successful immune responsiveness requires T cell activation by interaction with antigen-presenting cells (APCs), and integrin activation and formation of an immunologic synapse (IS). In this study, we evaluated the impact of the active leflunomide metabolite teriflunomide on T cell integrin activation, evolution of the IS, and antigen-specific formation of stable T cell/APC conjugates. METHODS Effects of pharmacologic concentrations of teriflunomide on CD3/CD28- and lymphocyte function-associated antigen 1-induced signal transduction and activation of primary human T cells were investigated. Furthermore, T cells were stimulated with superantigen- and antigen-pulsed APCs to study relocalization of molecules to the IS and T cell/APC conjugate formation. RESULTS Teriflunomide inhibited T cell receptor (TCR)/CD3-mediated calcium mobilization, but other critical T cell signaling events, including activation of MAPK and NF-kappaB, remained unaltered. In contrast, inhibition of TCR/CD3-triggered beta1,2 integrin avidity and integrin-mediated costimulation (outside-in signaling) by teriflunomide revealed a striking interference with integrin function that was independent of altered pyrimidine synthesis. Moreover, teriflunomide abolished molecule relocalization to the IS and induction of T cell/APC conjugates. CONCLUSION These data show that the active metabolite of leflunomide prevents the interaction of T cells with APCs to form an IS. Since IS formation is crucial for eliciting an immune response, this novel mechanism could underlie the beneficial effects of leflunomide in immune-mediated disorders such as rheumatoid arthritis.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
75 |
21
|
Zeyda M, Szekeres AB, Säemann MD, Geyeregger R, Stockinger H, Zlabinger GJ, Waldhäusl W, Stulnig TM. Suppression of T cell signaling by polyunsaturated fatty acids: selectivity in inhibition of mitogen-activated protein kinase and nuclear factor activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6033-9. [PMID: 12794131 DOI: 10.4049/jimmunol.170.12.6033] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are known to suppress inflammatory and autoimmune responses and, therefore, clinical applications of PUFAs as immunomodulatory substances are extensively studied. PUFAs are known to inhibit T cell responses, but with respect to TCR/CD3-mediated signal transduction only a block in CD3-induced phospholipase Cgamma1/calcium signaling has been shown so far. In this study, we investigated PUFA-mediated changes in downstream T cell signal transduction. We show that among the mitogen-activated protein kinase families activation of c-Jun NH(2)-terminal kinase, but not phosphorylation of extracellular signal-regulated kinase-1/-2 or p38 is inhibited. CD3/CD28-induced activity of NF-AT was markedly reduced by PUFA treatment, while activation of other nuclear receptors (AP-1 and NF-kappaB) remained unaltered. Furthermore, IL-2 promoter activity, IL-2 and IL-13 mRNA levels, IL-2 secretion, and IL-2R alpha-chain expression were significantly diminished by PUFA treatment, whereas the expression of IFN-gamma, IL-4, IL-10, and CD69 remained essentially unaffected by PUFAs. In conclusion, PUFA treatment of T cells inhibits selectively c-Jun NH(2)-terminal kinase and NF-AT activation, resulting in diminished production of IL-2 and IL-13.
Collapse
|
|
22 |
74 |
22
|
Leitner J, Herndler-Brandstetter D, Zlabinger GJ, Grubeck-Loebenstein B, Steinberger P. CD58/CD2 Is the Primary Costimulatory Pathway in Human CD28-CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:477-87. [PMID: 26041540 DOI: 10.4049/jimmunol.1401917] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 05/05/2015] [Indexed: 12/28/2022]
Abstract
A substantial proportion of CD8(+) T cells in adults lack the expression of the CD28 molecule, and the aging of the immune system is associated with a steady expansion of this T cell subset. CD28(-)CD8(+) T cells are characterized by potent effector functions but impaired responses to antigenic challenge. CD28 acts as the primary T cell costimulatory receptor, but there are numerous additional receptors that can costimulate the activation of T cells. In this study, we have examined such alternative costimulatory pathways regarding their functional role in CD28(-)CD8(+) T cells. Our study showed that most costimulatory molecules have a low capacity to activate CD28-deficient T cells, whereas the engagement of the CD2 molecule by its ligand CD58 clearly costimulated proliferation, cytokine production, and effector function in this T cell subset. CD58 is broadly expressed on APCs including dendritic cells. Blocking CD58 mAb greatly reduced the response of human CD28(-)CD8(+) T cells to allogeneic dendritic cells, as well as to viral Ags. Our results clearly identify the CD58/CD2 axis as the primary costimulatory pathway for CD8 T cells that lack CD28. Moreover, we show that engagement of CD2 amplifies TCR signals in CD28(-)CD8(+) T cells, demonstrating that the CD2-CD58 interaction has a genuine costimulatory effect on this T cell subset. CD2 signals might promote the control of viral infection by CD28(-)CD8(+) T cells, but they might also contribute to the continuous expansion of CD28(-)CD8(+) T cells during chronic stimulation by persistent Ag.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
70 |
23
|
Geyeregger R, Zeyda M, Bauer W, Kriehuber E, Säemann MD, Zlabinger GJ, Maurer D, Stulnig TM. Liver X receptors regulate dendritic cell phenotype and function through blocked induction of the actin-bundling protein fascin. Blood 2007; 109:4288-95. [PMID: 17255360 DOI: 10.1182/blood-2006-08-043422] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Liver X receptors (LXRs) are nuclear receptors regulating lipid and cholesterol metabolism. Recent data revealed a cross talk between LXR and Toll-like receptor signaling in macrophages, indicating a role in immunity. Here, we show that LXRalpha is expressed in human myeloid dendritic cells (DCs) and induced during differentiation of monocyte-derived DCs, whereas LXRbeta is expressed constitutively at a very low level. LXR activation by 2 different LXR agonists strongly interfered with lipopolysaccharide (LPS)-induced but not with CD40L-induced DC maturation by altering DC morphology and suppressing interleukin-12-but enhancing interleukin-10-secretion. LXR activation in DCs largely blocked their T-cell stimulatory ability despite essentially unaltered expression of various antigen-presenting and costimulatory molecules. Immunologic synapse formation was significantly inhibited by LXR activation along with a complete block in LPS- but not CD40L-induced expression of the actin-bundling protein fascin. Notably, overexpression of fascin in LXR agonist-treated DCs restored immunologic synapse formation and restored their ability to activate T cells. In conclusion, our data reveal LXR as a potent modulator of DC maturation and function mediated in part by blocking the expression of fascin. Due to the central position of DCs in immunity, LXRalpha could be a potential novel target for immunomodulation.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
68 |
24
|
Säemann MD, Weichhart T, Hörl WH, Zlabinger GJ. Tamm-Horsfall protein: a multilayered defence molecule against urinary tract infection. Eur J Clin Invest 2005; 35:227-35. [PMID: 15816991 DOI: 10.1111/j.1365-2362.2005.01483.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Urinary tract infection (UTI) is the most common nonepidemic bacterial infection in humans, representing a constant danger for the host. Both innate and adaptive components of the immune system as well as stromal cells including bladder epithelium are involved in the prevention and clearance of UTI. However, the particular properties of the urogenital tract, which does not comprise typical physical barriers like a mucus or ciliated epithelium, necessitate soluble mediators with potent immunomodulatory capabilities. One candidate molecule capable of both mediating direct antimicrobial activity and alerting immune cells is the evolutionary conserved Tamm-Horsfall protein (THP). Tamm-Horsfall protein is exclusively produced by the kidney in the distal loop of Henle; however, its definite physiological function remains elusive. Mounting evidence indicates that beyond a mere direct antimicrobial activity, THP exerts potent immunoregulatory activity. Furthermore, the genetic ablation of the THP gene leads to severe infection and lethal pyelonephritis in an experimental model of UTI. Recent data are provided demonstrating that THP links the innate immune response with specific THP-directed cell-mediated immunity. In light of these novel findings we discuss the particular role of THP as a specialized defence molecule. We propose an integrated model of protective mechanisms against UTI where THP acts by two principle nonmutually exclusive mechanisms involving the capture of potentially dangerous microbes and the ability of this peculiar glycoprotein to induce robust protective immune responses against uropathogenic bacteria.
Collapse
|
Review |
20 |
66 |
25
|
Zeyda M, Gollinger K, Todoric J, Kiefer FW, Keck M, Aszmann O, Prager G, Zlabinger GJ, Petzelbauer P, Stulnig TM. Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology 2011; 152:2219-27. [PMID: 21467192 DOI: 10.1210/en.2010-1328] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Osteopontin (OPN) is highly up-regulated in adipose tissue in human and murine obesity and has been recently shown to be functionally involved in the pathogenesis of obesity-induced adipose tissue inflammation and associated insulin resistance in mice. OPN is a protein with multiple functions and acts as a chemokine and an inflammatory cytokine through a variety of different receptors (CD44, integrins). It is expressed in many cell types including adipose tissue macrophages (ATM). However, the target cells of OPN action in obese adipose tissue are still elusive. Here, we investigated expression of OPN receptors and the impact of OPN on ATM, adipocytes, and other cells of human adipose tissue. We found broad expression of OPN receptors in different adipose tissue cell types including adipocytes. OPN stimulated inflammatory signaling pathways and secretion of cytokines in model macrophages as well as isolated human ATM. Moreover, OPN impaired differentiation and insulin sensitivity of primary adipocytes as determined by peroxisomal proliferator-activated receptor-γ and adiponectin gene expression and insulin-stimulated glucose uptake. Furthermore, OPN induced inflammatory signaling in human adipocytes. In conclusion, OPN activates ATM and interferes with adipocyte function. Thus these data underline the potential of OPN as a therapeutic target for obesity-induced complications.
Collapse
|
|
14 |
62 |