Dreschke G, Papirio S, Scala A, Lens PNL, Esposito G. High rate continuous biohydrogen production by hyperthermophilic Thermotoga neapolitana.
BIORESOURCE TECHNOLOGY 2019;
293:122033. [PMID:
31472408 DOI:
10.1016/j.biortech.2019.122033]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This study focused on continuous-flow hydrogen production by Thermotoga neapolitana at a hydraulic retention time (HRT) decreasing from 24 to 5 h. At each HRT reduction, the hydrogen yield (HY) immediately dropped, but recovered during prolonged cultivation at constant HRT. The final HY in each operating period decreased from 3.4 (±0.1) to 2.0 (±0.0) mol H2/mol glucose when reducing the HRT from 24 to 7 h. Simultaneously, the hydrogen production rate (HPR) and the liquid phase hydrogen concentration (H2aq) increased from 82 (±1) to 192 (±4) mL/L/h and from 9.1 (±0.3) to 15.6 (±0.7) mL/L, respectively. Additionally, the effluent glucose concentration increased from 2.1 (±0.1) to above 10 mM. Recirculating H2-rich biogas prevented the supersaturation of H2aq reaching a value of 9.3 (±0.7) mL/L, resulting in complete glucose consumption and the highest HPR of 277 mL/L/h at an HRT of 5 h.
Collapse