1
|
Zaccagnini F, De Biase D, Bovieri F, Perotto G, Quagliarini E, Bavasso I, Mangino G, Iuliano M, Calogero A, Romeo G, Singh DP, Pierini F, Caracciolo G, Petronella F, De Sio L. Multifunctional FFP2 Face Mask for White Light Disinfection and Pathogens Detection using Hybrid Nanostructures and Optical Metasurfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400531. [PMID: 38742980 DOI: 10.1002/smll.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
A new generation of an FFP2 (Filtering Face Piece of type 2) smart face mask is achieved by integrating broadband hybrid nanomaterials and a self-assembled optical metasurface. The multifunctional FFP2 face mask shows simultaneously white light-assisted on-demand disinfection properties and versatile biosensing capabilities. These properties are achieved by a powerful combination of white light thermoplasmonic responsive hybrid nanomaterials, which provide excellent photo-thermal disinfection properties, and optical metasurface-based colorimetric biosensors, with a very low limit of pathogens detection. The realized system is studied in optical, morphological, spectroscopic, and cell viability assay experiments and environmental monitoring of harmful pathogens, thus highlighting the extraordinary properties in reusability and pathogens detection of the innovative face mask.
Collapse
|
2
|
Lenzuni M, Fiorentini F, Summa M, Bertorelli R, Suarato G, Perotto G, Athanassiou A. Electrosprayed zein nanoparticles as antibacterial and anti-thrombotic coatings for ureteral stents. Int J Biol Macromol 2024; 257:128560. [PMID: 38061505 DOI: 10.1016/j.ijbiomac.2023.128560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Ureteral stents are among the most frequently used human implants, with urothelium trauma, blood clots, and bacterial colonization being their main reasons for failure. In this study, berberine-loaded zein (ZB) nanoparticles with high drug encapsulation efficiency (>90 %) were fabricated via electrospray on flat and 3D stainless steel structures. Physico-chemical characterization revealed that the ZB nanoparticles created a highly hydrophilic, antioxidant, and scratch-resistant continuous coating over the metal structure. Results showed that the drug release rate was faster at neutral pH (i.e., PBS pH 7.4) than in an artificial urine medium (pH 5.3) due to the different swelling behavior of the zein polymeric matrix. In vitro evaluation of ZB particles onto human dermal fibroblasts and blood cells demonstrated good cell proliferation and enhanced anti-thrombotic properties compared to bare stainless steel. The ability of the electrosprayed zein particles to resist bacterial adherence and proliferation was evaluated with Gram-negative (Escherichia coli) bacteria, showing high inhibition rates (-29 % and -46 % for empty and berberine-loaded particles, respectively) compared to the medical-grade metal substrates. Overall, the proposed composite coating fulfilled the requirements for ureteral applications, and can advance the development of innovative biocompatible, biodegradable, and antibacterial coatings for drug-eluting stents.
Collapse
|
3
|
Honarbari A, Cataldi P, Zych A, Merino D, Paknezhad N, Ceseracciu L, Perotto G, Crepaldi M, Athanassiou A. A Green Conformable Thermoformed Printed Circuit Board Sourced from Renewable Materials. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:5050-5060. [PMID: 37779887 PMCID: PMC10537457 DOI: 10.1021/acsaelm.3c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Printed circuit boards (PCBs) physically support and connect electronic components to the implementation of complex circuits. The most widespread insulating substrate that also acts as a mechanical support in PCBs is commercially known as FR4, and it is a glass-fiber-reinforced epoxy resin laminate. FR4 has exceptional dielectric, mechanical, and thermal properties. However, it was designed without considering sustainability and end-of-life aspects, heavily contributing to the accumulation of electronic waste in the environment. Thus, greener alternatives that can be reprocessed, reused, biodegraded, or composted at the end of their function are needed. This work presents the development and characterization of a PCB substrate based on poly(lactic acid) and cotton fabric, a compostable alternative to the conventional FR4. The substrate has been developed by compression molding, a process compatible with the polymer industry. We demonstrate that conductive silver ink can be additively printed on the substrate's surface, as its morphology and wettability are similar to those of FR4. For example, the compostable PCB's water contact angle is 72°, close to FR4's contact angle of 64°. The developed substrate can be thermoformed to curved surfaces at low temperatures while preserving the conductivity of the silver tracks. The green substrate has a dielectric constant comparable to that of the standard FR4, showing a value of 5.6 and 4.6 at 10 and 100 kHz, respectively, which is close to the constant value of 4.6 of FR4. The substrate is suitable for microdrilling, a fundamental process for integrating electronic components to the PCB. We implemented a proof-of-principle circuit to control the blinking of LEDs on top of the PCB, comprising resistors, capacitors, LEDs, and a dual in-line package circuit timer. The developed PCB substrate represents a sustainable alternative to standard FR4 and could contribute to the reduction of the overwhelming load of electronic waste in landfills.
Collapse
|
4
|
Bono N, Saroglia G, Marcuzzo S, Giagnorio E, Lauria G, Rosini E, De Nardo L, Athanassiou A, Candiani G, Perotto G. Silk fibroin microgels as a platform for cell microencapsulation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:3. [PMID: 36586059 PMCID: PMC9805413 DOI: 10.1007/s10856-022-06706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Cell microencapsulation has been utilized for years as a means of cell shielding from the external environment while facilitating the transport of gases, general metabolites, and secretory bioactive molecules at once. In this light, hydrogels may support the structural integrity and functionality of encapsulated biologics whereas ensuring cell viability and function and releasing potential therapeutic factors once in situ. In this work, we describe a straightforward strategy to fabricate silk fibroin (SF) microgels (µgels) and encapsulate cells into them. SF µgels (size ≈ 200 µm) were obtained through ultrasonication-induced gelation of SF in a water-oil emulsion phase. A thorough physicochemical (SEM analysis, and FT-IR) and mechanical (microindentation tests) characterization of SF µgels were carried out to assess their nanostructure, porosity, and stiffness. SF µgels were used to encapsulate and culture L929 and primary myoblasts. Interestingly, SF µgels showed a selective release of relatively small proteins (e.g., VEGF, molecular weight, MW = 40 kDa) by the encapsulated primary myoblasts, while bigger (macro)molecules (MW = 160 kDa) were hampered to diffusing through the µgels. This article provided the groundwork to expand the use of SF hydrogels into a versatile platform for encapsulating relevant cells able to release paracrine factors potentially regulating tissue and/or organ functions, thus promoting their regeneration.
Collapse
|
5
|
Trojanowska D, Suarato G, Braccia C, Armirotti A, Fiorentini F, Athanassiou A, Perotto G. Wool Keratin Nanoparticle-Based Micropatterns for Cellular Guidance Applications. ACS APPLIED NANO MATERIALS 2022; 5:15272-15287. [PMID: 36338329 PMCID: PMC9624257 DOI: 10.1021/acsanm.2c03116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The waste stream of low-grade wool is an underutilized source of keratin-rich materials with appropriate methods for upcycling into high value-added products still being an open challenge. In the present work, keratins were precipitated from their water solution to produce hierarchical keratin particles via isoelectric precipitation. Matrix-assisted laser desorption/ionization coupled with time-of-flight tandem mass spectrometry analysis (MALDI-TOF/TOF MS/MS) showed the presence of the amino acid sequence leucine-aspartic acid-valine (LDV) in the extracted keratin. This well-known cell adhesion motif is recognized by the cell adhesion molecule α4β1 integrin. We showed that keratin particles had this tripeptide exposed on the surface and that it could be leveraged, via patterns obtained with microcontact printing, to support and facilitate dermal fibroblast cell adhesion and direct their growth orientation. The zeta potential, isoelectric point, morphological structures, chemical composition, and biocompatibility of keratin particles and the influence of the surfactant sodium dodecyl sulfate (SDS) were investigated. An appropriate ink for microcontact printing of the keratin particles was developed and micron-sized patterns were obtained. Cells adhered preferentially to the patterns, showing how this strategy could be used to functionalize biointerfaces.
Collapse
|
6
|
Chirivì M, Bearzi C, Rosa P, Miglietta S, Petronella F, De Falco E, Calogero A, Pani R, Petrozza V, Perotto G, Rizzi R, De Sio L. Biomimetic Keratin-Coated Gold Nanoparticles for Photo-Thermal Therapy in a 3D Bioprinted Glioblastoma Tumor Model. Int J Mol Sci 2022; 23:9528. [PMID: 36076927 PMCID: PMC9455633 DOI: 10.3390/ijms23179528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Before entering human clinical studies to evaluate their safety and effectiveness, new drugs and novel medical treatments are subject to extensive animal testing that are expensive and time-consuming. By contrast, advanced technologies enable the development of animal-free models that allow the efficacy of innovative therapies to be studied without sacrificing animals, while providing helpful information and details. We report on the powerful combination of 3D bioprinting (3DB) and photo-thermal therapy (PTT) applications. To this end, we realize a 3DB construct consisting of glioblastoma U87-MG cells in a 3D geometry, incorporating biomimetic keratin-coated gold nanoparticles (Ker-AuNPs) as a photo-thermal agent. The resulting plasmonic 3DB structures exhibit a homogeneous cell distribution throughout the entire volume while promoting the localization of Ker-AuNPs within the cells. A 3D immunofluorescence assay and transmission electron microscopy (TEM) confirm the uniform distribution of fluorescent-labeled Ker-AuNPs in the volume and their capability to enter the cells. Laser-assisted (λ = 532 nm) PTT experiments demonstrate the extraordinary ability of Ker-AuNPs to generate heating, producing the highest temperature rise of about 16 °C in less than 2 min.
Collapse
|
7
|
Fiorentini C, Bassani A, Duserm Garrido G, Merino D, Perotto G, Athanassiou A, Peräntie J, Halonen N, Spigno G. High-pressure autohydrolysis process of wheat straw for cellulose recovery and subsequent use in PBAT composites preparation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Guglielmelli A, Rosa P, Contardi M, Prato M, Mangino G, Miglietta S, Petrozza V, Pani R, Calogero A, Athanassiou A, Perotto G, De Sio L. Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine (Lond) 2021; 16:121-138. [PMID: 33426900 DOI: 10.2217/nnm-2020-0349] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To realize and characterize a new generation of keratin-coated gold nanoparticles (Ker-AuNPs) as highly efficient photosensitive nanosized therapeutics for plasmonic photothermal (PPT) therapy. Materials & methods: The chemical, physical, morphological and photothermal properties of Ker-AuNPs are investigated using dynamic light scattering, ζ-potential, UV-Visible, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, transmission electron microscopy and high-resolution thermography. In vitro experiments are performed on a human glioblastoma cell line (i.e., U87-MG), using viability assays, transmission electron microscopy, fluorescence microscopy, cytometric analyses and PPT experiments. Results: Experiments confirm the excellent biocompatibility of Ker-AuNPs, their efficient cellular uptake and localized photothermal heating capabilities. Conclusion: The reported structural and functional properties pointed out these Ker-AuNPs as a promising new tool in the field of biocompatible photothermal agents for PPT treatments against cancer-related diseases.
Collapse
|
9
|
Suarato G, Contardi M, Perotto G, Heredia-Guerrero JA, Fiorentini F, Ceseracciu L, Pignatelli C, Debellis D, Bertorelli R, Athanassiou A. From fabric to tissue: Recovered wool keratin/polyvinylpyrrolidone biocomposite fibers as artificial scaffold platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111151. [PMID: 32806258 DOI: 10.1016/j.msec.2020.111151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Keratin extracted from wool fibers has recently gained attention as an abundant source of renewable, biocompatible material for tissue engineering and drug delivery applications. However, keratin extraction and processing generally require a copious use of chemicals, not only bearing consequences for the environment but also possibly compromising the envisioned biological outcome. In this study, we present, for the first time, keratin-PVP biocomposite fibers obtained via an all-water co-electrospinning process and explored their properties modulation as a result of different thermal crosslinking treatments. The protein-based fibers featured homogenous morphologies and average diameters in the range of 170-290 nm. The thermomechanical stability and response to a wet environment can be tuned by acting on the curing time; this can be achieved without affecting the 3D fibrous network nor the intrinsic hydrophilic behavior of the material. More interestingly, our protein-based membranes treated at 170 °C for 18 h successfully sustained the attachment and growth of primary human dermal fibroblasts, a cellular model which can recapitulate more faithfully the physiological human tissue conditions. Our proposed approach can be viewed as pivotal in designing tunable protein-based scaffolds for the next generation of skin tissue growth devices.
Collapse
|
10
|
Perotto G, Simonutti R, Ceseracciu L, Mauri M, Besghini D, Athanassiou A. Water-induced plasticization in vegetable-based bioplastic films: A structural and thermo-mechanical study. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Perotto G, Sandri G, Pignatelli C, Milanesi G, Athanassiou A. Water-based synthesis of keratin micro- and nanoparticles with tunable mucoadhesive properties for drug delivery. J Mater Chem B 2019. [DOI: 10.1039/c9tb00443b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A water-based synthesis to produce micro and nano particles of keratin, that can be easily loaded with drugs and showed a sustained release, is reported. The particles interaction with mucin could be altered to favor or decrease their mucoadhesion.
Collapse
|
12
|
van Uden S, Catto V, Perotto G, Athanassiou A, Redaelli ACL, Greco FG, Riboldi SA. Electrospun fibroin/polyurethane hybrid meshes: Manufacturing, characterization, and potentialities as substrates for haemodialysis arteriovenous grafts. J Biomed Mater Res B Appl Biomater 2018; 107:807-817. [PMID: 30102833 DOI: 10.1002/jbm.b.34177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/20/2018] [Accepted: 05/28/2018] [Indexed: 11/10/2022]
Abstract
Several attempts made so far to combine silk fibroin and polyurethane, in order to prepare scaffolds encompassing the bioactivity of the former with the elasticity of the latter, suffer from critical drawbacks concerning industrial and clinical applicability (e.g., separation of phases upon processing, use of solvents unaddressed by the European Pharmacopoeia, and use of degradable polyurethanes). Overcoming these limitations, in this study, we report the successful blending of regenerated silk fibroin with a medical-grade, non-degradable polyurethane using formic acid and dichloromethane, and the manufacturing of hybrid, semi-degradable electrospun tubular meshes with different ratios of the two materials. Physicochemical analyses demonstrated the maintenance of the characteristic features of fibroin and polyurethane upon solubilization, blending, electrospinning, and postprocessing with ethanol or methanol. Envisioning their possible application as semidegradable substrates for haemodialysis arteriovenous grafts, tubular meshes were further characterized, showing submicrometric fibrous morphologies, tunable mechanical properties, permeability before and after puncture in the same order of magnitude as commercial grafts currently used in the clinics. Results demonstrate the potential of this material for the development of hybrid, new-generation vascular grafts with disruptive potential in the field of in situ tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 807-817, 2019.
Collapse
|
13
|
Setti C, Suarato G, Perotto G, Athanassiou A, Bayer IS. Investigation of in vitro hydrophilic and hydrophobic dual drug release from polymeric films produced by sodium alginate-MaterBi® drying emulsions. Eur J Pharm Biopharm 2018; 130:71-82. [PMID: 29928979 DOI: 10.1016/j.ejpb.2018.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 02/02/2023]
Abstract
Emulsions are known to be effective carriers of hydrophobic drugs, and particularly injectable emulsions have been successfully implemented for in vivo controlled drug release. Recently, high internal phase emulsions have also been used to produce porous polymeric templates for pharmaceutical applications. However, emulsions containing dissolved biopolymers both in the oil and water phases are very scarce. In this study, we demonstrate such an emulsion, in which the oil phase contains a hydrophobic biodegradable polymer, MaterBi®, and the water phase is aqueous sodium alginate dispersion. The two phases were emulsified simply by ultrasonic processing without any surfactants. The emulsions were stable for several days and were dried into composite solid films with varying MaterBi®/alginate fractions. The films were loaded with two model drugs, a hydrophilic eosin-based cutaneous antiseptic and the hydrophobic curcumin. Drug release capacity of the films was investigated in detail, and controlled release of each model drug was achieved either by tuning the polymer fraction in the films during emulsification or by crosslinking sodium alginate fraction of the films by calcium salt solution immersion. The emulsions can be formulated to carry either a single model drug or both drugs depending on the desired application. Films demonstrate excellent cell biocompatibility against human dermal fibroblast, adult cells.
Collapse
|
14
|
Pignatelli C, Perotto G, Nardini M, Cancedda R, Mastrogiacomo M, Athanassiou A. Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate. Acta Biomater 2018; 73:365-376. [PMID: 29673841 DOI: 10.1016/j.actbio.2018.04.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/31/2018] [Accepted: 04/12/2018] [Indexed: 02/03/2023]
Abstract
Human platelet lysate (hPL) is a pool of growth factors and cytokines able to induce regeneration of different tissues. Despite its good potentiality as therapeutic tool for regenerative medicine applications, hPL has been only moderately exploited in this field. A more widespread adoption has been limited because of its rapid degradation at room temperature that decreases its functionality. Another limiting factor for its extensive use is the difficulty of handling the hPL gels. In this work, silk fibroin-based patches were developed to address several points: improving the handling of hPL, enabling their delivery in a controlled manner and facilitating their storage by creating a device ready to use with expanded shelf life. Patches of fibroin loaded with hPL were synthesized by electrospinning to take advantage of the fibrous morphology. The release kinetics of the material was characterized and tuned through the control of fibroin crystallinity. Cell viability assays, performed with primary human dermal fibroblasts, demonstrated that fibroin is able to preserve the hPL biological activity and prolong its shelf-life. The strategy of storing and preserving small active molecules within a naturally-derived, protein-based fibrous scaffold was successfully implemented, leading to the design of a biocompatible device, which can potentially simplify the storage and the application of the hPL on a human patient, undergoing medical procedures such as surgery and wound care. STATEMENT OF SIGNIFICANCE Human platelets lysate (hPL) is a mixture of growth factors and cytokines able to induce the regeneration of damaged tissues. This study aims at enclosing hPL in a silk fibroin electrospun matrix to expand its utilization. Silk fibroin showed the ability to preserve the hPL activity at temperature up to 60 °C and the manipulation of fibroin's crystallinity provided a tool to modulate the hPL release kinetic. This entails the possibility to fabricate the hPL silk fibroin patches in advance and store them, resulting in an easy and fast accessibility and an expanded use of hPL for wound healing.
Collapse
|
15
|
Magrì D, Caputo G, Perotto G, Scarpellini A, Colusso E, Drago F, Martucci A, Athanassiou A, Fragouli D. Titanate Fibroin Nanocomposites: A Novel Approach for the Removal of Heavy-Metal Ions from water. ACS APPLIED MATERIALS & INTERFACES 2018; 10:651-659. [PMID: 29272094 DOI: 10.1021/acsami.7b15440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we report the fabrication of nanocomposites made of titanate nanosheets immobilized in a solid matrix of regenerated silk fibroin as novel heavy-metal-ion removal systems. The capacity of these nanocomposite films to remove lead, mercury, and copper cations from water was investigated, and as shown by the elemental quantitative analysis performed, their removal capacity is 73 mmol/g for all of the ions tested. We demonstrate that the nanocomposites can efficiently retain the adsorbed ions, with no release of titanate nanosheets occurring even after several exposure cycles to ionic solutions, eliminating the risk of release of potentially hazardous nanosubstances to the environment. We also prove that the introduction of sodium ions in the nanocomposite formulation makes the materials highly selective toward the lead ions. The developed biopolymer nanocomposites can be potentially used for the efficient removal of heavy-metal-ion pollutants from water and, thanks to their physical and optical characteristics, offer the possibility to be used in sensor applications.
Collapse
|
16
|
Genovese ME, Caputo G, Nanni G, Setti C, Bustreo M, Perotto G, Athanassiou A, Fragouli D. Light Responsive Silk Nanofibers: An Optochemical Platform for Environmental Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40707-40715. [PMID: 29120601 DOI: 10.1021/acsami.7b13372] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Photochromic spiropyran-doped silk fibroin poly(ethylene oxide) nanofibers which combine the attractive properties and biocompatibility of silk with the photocontrollable and reversible optical, mechanical, and chemical response of the spiropyran dopants are herein presented. As proved, the reversible variation of the absorption and emission signals of the mats and of their Young's modulus upon alternate UV and visible light irradiation is ascribed to the reversible photoconversion of the spiropyran form to its polar merocyanine counterpart. Most importantly, the interactions of the merocyanine molecules with acidic vapors as well as with heavy metal ions dispersed in solution produce analyte-specific spectral changes in the emission profile of the composite, accompanied by a characteristic chromic variation. Because of the high surface-to-volume ratio of the nanofibrous network, such interactions are fast, thus enabling both an optical and a visual detection in a 30-60 s time scale. The sensing platform can be easily regenerated for more than 20 and 3 cycles upon acid or ion depletion, respectively. Overall, the photocontrolled properties of the silk composites combined with a straightforward preparation method render them suitable as porous materials and scaffolds with tunable compliance and reusable nanoprobes for real time optical detection in biomedical, environmental, and industrial applications.
Collapse
|
17
|
Palermo G, Barberi L, Perotto G, Caputo R, De Sio L, Umeton C, Omenetto FG. Conformal Silk-Azobenzene Composite for Optically Switchable Diffractive Structures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30951-30957. [PMID: 28820237 DOI: 10.1021/acsami.7b09986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of biomaterials as optical components has recently attracted attention because of their ease of functionalization and fabrication, along with their potential use when integrated with biological materials. We present here an observation of the optical properties of a silk-azobenzene material (Azosilk) and demonstrate the operation of an Azosilk/PDMS composite structure that serves as a conformable and switchable optical diffractive structure. Characterization of thermal and isomeric properties of the device, along with its overall performance, is presented in terms of diffractive characteristics and response times. The ease of manufacturing and functionalization opens a promising avenue for rapid device prototyping and interfaces of expanded utility.
Collapse
|
18
|
Contardi M, Heredia-Guerrero JA, Perotto G, Valentini P, Pompa PP, Spanò R, Goldoni L, Bertorelli R, Athanassiou A, Bayer IS. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur J Pharm Sci 2017; 104:133-144. [PMID: 28366652 DOI: 10.1016/j.ejps.2017.03.044] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 12/11/2022]
|
19
|
Marelli B, Patel N, Duggan T, Perotto G, Shirman E, Li C, Kaplan DL, Omenetto FG. Programming function into mechanical forms by directed assembly of silk bulk materials. Proc Natl Acad Sci U S A 2017; 114:451-456. [PMID: 28028213 PMCID: PMC5255612 DOI: 10.1073/pnas.1612063114] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report simple, water-based fabrication methods based on protein self-assembly to generate 3D silk fibroin bulk materials that can be easily hybridized with water-soluble molecules to obtain multiple solid formats with predesigned functions. Controlling self-assembly leads to robust, machinable formats that exhibit thermoplastic behavior consenting material reshaping at the nanoscale, microscale, and macroscale. We illustrate the versatility of the approach by realizing demonstrator devices where large silk monoliths can be generated, polished, and reshaped into functional mechanical components that can be nanopatterned, embed optical function, heated on demand in response to infrared light, or can visualize mechanical failure through colorimetric chemistries embedded in the assembled (bulk) protein matrix. Finally, we show an enzyme-loaded solid mechanical part, illustrating the ability to incorporate biological function within the bulk material with possible utility for sustained release in robust, programmably shapeable mechanical formats.
Collapse
|
20
|
Mitropoulos AN, Marelli B, Perotto G, Amsden J, Kaplan DL, Omenetto FG. Towards the fabrication of biohybrid silk fibroin materials: entrapment and preservation of chloroplast organelles in silk fibroin films. RSC Adv 2016. [DOI: 10.1039/c6ra13228f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chloroplasts extracted from spinach leaves were entrapped in B. mori silk fibroin films to investigate the maintenance of their photosynthetic activity in a dry environment.
Collapse
|
21
|
Perotto G, Cittadini M, Tao H, Kim S, Yang M, Kaplan DL, Martucci A, Omenetto FG. Fabrication of Tunable, High-Refractive-Index Titanate-Silk Nanocomposites on the Micro- and Nanoscale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:6728-6732. [PMID: 26414278 DOI: 10.1002/adma.201501704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/25/2015] [Indexed: 06/05/2023]
Abstract
The combination of water-based titanate nanosheets dispersion and silk fibroin solution allows the realization of a versatile nanocomposite. Different fabrication techniques can be easily applied on these nanocomposites to manipulate the end form of these materials on the micro- and nanoscale. Easy tunability of the refractive index from n = 1.55 up to n = 1.97 is achieved, making it attractive for flexible, biopolymer-based optical devices.
Collapse
|
22
|
Applegate MB, Perotto G, Kaplan DL, Omenetto FG. Biocompatible silk step-index optical waveguides. BIOMEDICAL OPTICS EXPRESS 2015; 6:4221-7. [PMID: 26600988 PMCID: PMC4646532 DOI: 10.1364/boe.6.004221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 05/19/2023]
Abstract
Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue.
Collapse
|
23
|
Maurizio C, Cesca T, Perotto G, Kalinic B, Michieli N, Scian C, Joly Y, Battaglin G, Mazzoldi P, Mattei G. Core-shell-like Au sub-nanometer clusters in Er-implanted silica. NANOSCALE 2015; 7:8968-8977. [PMID: 25921415 DOI: 10.1039/c5nr01564b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The very early steps of Au metal cluster formation in Er-doped silica have been investigated by high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS). A combined analysis of the near-edge and extended part of the experimental spectra shows that Au cluster nucleation starts from a few Au and O atoms covalently interconnected, likely in the presence of embryonic Au-Au correlation. The first Au clusters, characterized by a well defined Au-Au coordination distance, form upon 400 °C inert annealing. The estimated upper limit of the Gibbs free energy for the associated heterogeneous nucleation is 0.06 eV per atom, suggesting that the Au nucleation is assisted by matrix defects, most likely non-bridging oxygen atoms. The experimental results indicate that the formed subnanometer Au clusters can be applied as effective core-shell systems in which the Au atoms of the 'core' develop a metallic character, whereas the Au atoms in the 'shell' can retain a partially covalent bond with O atoms of the silica matrix. High structural disorder at the Au site is found upon neutral annealing at a moderate temperature (600 °C), likely driven by the configurational disorder of the defective silica matrix. A suitable choice of the Au concentration and annealing temperature allows tailoring of the Au cluster size in the sub-nanometer range. The interaction of the Au cluster surface with the surrounding silica matrix is likely responsible for the infrared luminescence previously reported on the same systems.
Collapse
|
24
|
Mitropoulos AN, Perotto G, Kim S, Marelli B, Kaplan DL, Omenetto FG. Synthesis of silk fibroin micro- and submicron spheres using a co-flow capillary device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1105-1110. [PMID: 24339048 DOI: 10.1002/adma.201304244] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 05/28/2023]
Abstract
A custom-made co-flow capillary device is used to synthesize monodisperse silk fibroin micro- and submicron-spheres with diameters tunable over a wide range of sizes. A model drug release is examined and control of degradation kinetics is obtained by changing sphere diameter.
Collapse
|
25
|
Jin J, Hassanzadeh P, Perotto G, Sun W, Brenckle MA, Kaplan D, Omenetto FG, Rolandi M. A biomimetic composite from solution self-assembly of chitin nanofibers in a silk fibroin matrix. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4482-7. [PMID: 23788326 DOI: 10.1002/adma.201301429] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Indexed: 05/26/2023]
Abstract
A chitin nanofiber-silk biomimetic nanocomposite with enhanced mechanical properties is self-assembled from solution to yield ultrafine chitin nanofibers embedded in a silk matrix.
Collapse
|