1
|
Jauregui LA, Joe AY, Pistunova K, Wild DS, High AA, Zhou Y, Scuri G, De Greve K, Sushko A, Yu CH, Taniguchi T, Watanabe K, Needleman DJ, Lukin MD, Park H, Kim P. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 2019; 366:870-875. [DOI: 10.1126/science.aaw4194] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/18/2019] [Indexed: 12/15/2022]
Abstract
A van der Waals heterostructure built from atomically thin semiconducting transition metal dichalcogenides (TMDs) enables the formation of excitons from electrons and holes in distinct layers, producing interlayer excitons with large binding energy and a long lifetime. By employing heterostructures of monolayer TMDs, we realize optical and electrical generation of long-lived neutral and charged interlayer excitons. We demonstrate that neutral interlayer excitons can propagate across the entire sample and that their propagation can be controlled by excitation power and gate electrodes. We also use devices with ohmic contacts to facilitate the drift motion of charged interlayer excitons. The electrical generation and control of excitons provide a route for achieving quantum manipulation of bosonic composite particles with complete electrical tunability.
Collapse
|
|
6 |
156 |
2
|
Zhou Y, Scuri G, Wild DS, High AA, Dibos A, Jauregui LA, Shu C, De Greve K, Pistunova K, Joe AY, Taniguchi T, Watanabe K, Kim P, Lukin MD, Park H. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. NATURE NANOTECHNOLOGY 2017; 12:856-860. [PMID: 28650440 DOI: 10.1038/nnano.2017.106] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/26/2017] [Indexed: 05/20/2023]
Abstract
Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication.
Collapse
|
|
8 |
150 |
3
|
Scuri G, Zhou Y, High AA, Wild DS, Shu C, De Greve K, Jauregui LA, Taniguchi T, Watanabe K, Kim P, Lukin MD, Park H. Large Excitonic Reflectivity of Monolayer MoSe_{2} Encapsulated in Hexagonal Boron Nitride. PHYSICAL REVIEW LETTERS 2018; 120:037402. [PMID: 29400519 DOI: 10.1103/physrevlett.120.037402] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 05/13/2023]
Abstract
We demonstrate that a single layer of MoSe_{2} encapsulated by hexagonal boron nitride can act as an electrically switchable mirror at cryogenic temperatures, reflecting up to 85% of incident light at the excitonic resonance. This high reflectance is a direct consequence of the excellent coherence properties of excitons in this atomically thin semiconductor. We show that the MoSe_{2} monolayer exhibits power-and wavelength-dependent nonlinearities that stem from exciton-based lattice heating in the case of continuous-wave excitation and exciton-exciton interactions when fast, pulsed laser excitation is used.
Collapse
|
|
7 |
92 |
4
|
Andersen TI, Scuri G, Sushko A, De Greve K, Sung J, Zhou Y, Wild DS, Gelly RJ, Heo H, Bérubé D, Joe AY, Jauregui LA, Watanabe K, Taniguchi T, Kim P, Park H, Lukin MD. Excitons in a reconstructed moiré potential in twisted WSe 2/WSe 2 homobilayers. NATURE MATERIALS 2021; 20:480-487. [PMID: 33398121 DOI: 10.1038/s41563-020-00873-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Moiré superlattices in twisted van der Waals materials have recently emerged as a promising platform for engineering electronic and optical properties. A major obstacle to fully understanding these systems and harnessing their potential is the limited ability to correlate direct imaging of the moiré structure with optical and electronic properties. Here we develop a secondary electron microscope technique to directly image stacking domains in fully functional van der Waals heterostructure devices. After demonstrating the imaging of AB/BA and ABA/ABC domains in multilayer graphene, we employ this technique to investigate reconstructed moiré patterns in twisted WSe2/WSe2 bilayers and directly correlate the increasing moiré periodicity with the emergence of two distinct exciton species in photoluminescence measurements. These states can be tuned individually through electrostatic gating and feature different valley coherence properties. We attribute our observations to the formation of an array of two intralayer exciton species that reside in alternating locations in the superlattice, and open up new avenues to realize tunable exciton arrays in twisted van der Waals heterostructures, with applications in quantum optoelectronics and explorations of novel many-body systems.
Collapse
|
|
4 |
75 |
5
|
Sung J, Zhou Y, Scuri G, Zólyomi V, Andersen TI, Yoo H, Wild DS, Joe AY, Gelly RJ, Heo H, Magorrian SJ, Bérubé D, Valdivia AMM, Taniguchi T, Watanabe K, Lukin MD, Kim P, Fal'ko VI, Park H. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe 2/MoSe 2 bilayers. NATURE NANOTECHNOLOGY 2020; 15:750-754. [PMID: 32661373 DOI: 10.1038/s41565-020-0728-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/03/2020] [Indexed: 05/27/2023]
Abstract
Van der Waals heterostructures obtained via stacking and twisting have been used to create moiré superlattices1, enabling new optical and electronic properties in solid-state systems. Moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) result in exciton trapping2-5, host Mott insulating and superconducting states6 and act as unique Hubbard systems7-9 whose correlated electronic states can be detected and manipulated optically. Structurally, these twisted heterostructures feature atomic reconstruction and domain formation10-14. However, due to the nanoscale size of moiré domains, the effects of atomic reconstruction on the electronic and excitonic properties have not been systematically investigated. Here we use near-0°-twist-angle MoSe2/MoSe2 bilayers with large rhombohedral AB/BA domains15 to directly probe the excitonic properties of individual domains with far-field optics. We show that this system features broken mirror/inversion symmetry, with the AB and BA domains supporting interlayer excitons with out-of-plane electric dipole moments in opposite directions. The dipole orientation of ground-state Γ-K interlayer excitons can be flipped with electric fields, while higher-energy K-K interlayer excitons undergo field-asymmetric hybridization with intralayer K-K excitons. Our study reveals the impact of crystal symmetry on TMD excitons and points to new avenues for realizing topologically non-trivial systems16,17, exotic metasurfaces18, collective excitonic phases19 and quantum emitter arrays20,21 via domain-pattern engineering.
Collapse
|
|
5 |
70 |
6
|
Wang K, De Greve K, Jauregui LA, Sushko A, High A, Zhou Y, Scuri G, Taniguchi T, Watanabe K, Lukin MD, Park H, Kim P. Electrical control of charged carriers and excitons in atomically thin materials. NATURE NANOTECHNOLOGY 2018; 13:128-132. [PMID: 29335564 DOI: 10.1038/s41565-017-0030-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Electrical confinement and manipulation of charge carriers in semiconducting nanostructures are essential for realizing functional quantum electronic devices1-3. The unique band structure4-7 of atomically thin transition metal dichalcogenides (TMDs) offers a new route towards realizing novel 2D quantum electronic devices, such as valleytronic devices and valley-spin qubits 8 . 2D TMDs also provide a platform for novel quantum optoelectronic devices9-11 due to their large exciton binding energy12,13. However, controlled confinement and manipulation of electronic and excitonic excitations in TMD nanostructures have been technically challenging due to the prevailing disorder in the material, preventing accurate experimental control of local confinement and tunnel couplings14-16. Here we demonstrate a novel method for creating high-quality heterostructures composed of atomically thin materials that allows for efficient electrical control of excitations. Specifically, we demonstrate quantum transport in the gate-defined, quantum-confined region, observing spin-valley locked quantized conductance in quantum point contacts. We also realize gate-controlled Coulomb blockade associated with confinement of electrons and demonstrate electrical control over charged excitons with tunable local confinement potentials and tunnel couplings. Our work provides a basis for novel quantum opto-electronic devices based on manipulation of charged carriers and excitons.
Collapse
|
|
7 |
56 |
7
|
Scuri G, Andersen TI, Zhou Y, Wild DS, Sung J, Gelly RJ, Bérubé D, Heo H, Shao L, Joe AY, Mier Valdivia AM, Taniguchi T, Watanabe K, Lončar M, Kim P, Lukin MD, Park H. Electrically Tunable Valley Dynamics in Twisted WSe_{2}/WSe_{2} Bilayers. PHYSICAL REVIEW LETTERS 2020; 124:217403. [PMID: 32530686 DOI: 10.1103/physrevlett.124.217403] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/06/2020] [Indexed: 05/25/2023]
Abstract
The twist degree of freedom provides a powerful new tool for engineering the electrical and optical properties of van der Waals heterostructures. Here, we show that the twist angle can be used to control the spin-valley properties of transition metal dichalcogenide bilayers by changing the momentum alignment of the valleys in the two layers. Specifically, we observe that the interlayer excitons in twisted WSe_{2}/WSe_{2} bilayers exhibit a high (>60%) degree of circular polarization (DOCP) and long valley lifetimes (>40 ns) at zero electric and magnetic fields. The valley lifetime can be tuned by more than 3 orders of magnitude via electrostatic doping, enabling switching of the DOCP from ∼80% in the n-doped regime to <5% in the p-doped regime. These results open up new avenues for tunable chiral light-matter interactions, enabling novel device schemes that exploit the valley degree of freedom.
Collapse
|
|
5 |
45 |
8
|
Xu Q, Scuri G, Mathewson C, Kim P, Nuckolls C, Bouilly D. Single Electron Transistor with Single Aromatic Ring Molecule Covalently Connected to Graphene Nanogaps. NANO LETTERS 2017; 17:5335-5341. [PMID: 28792226 DOI: 10.1021/acs.nanolett.7b01745] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a robust approach to fabricate single-molecule transistors with covalent electrode-molecule-electrode chemical bonds, ultrashort (∼1 nm) molecular channels, and high coupling yield. We obtain nanometer-scale gaps from feedback-controlled electroburning of graphene constrictions and bridge these gaps with molecules using reaction chemistry on the oxidized graphene edges. Using these nanogaps, we are able to optimize the coupling chemistry to achieve high reconnection yield with ultrashort covalent single-molecule bridges. The length of the molecule is found to influence the fraction of covalently reconnected nanogaps. Finally, we discuss the tunneling nature of the covalent contacts using gate-dependent transport measurements, where we observe single electron transport via large energy Coulomb blockade even at room temperature. This study charts a clear path toward the assembling of ultraminiaturized electronics, sensors, and switches.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
36 |
9
|
Han T, Lu Z, Scuri G, Sung J, Wang J, Han T, Watanabe K, Taniguchi T, Park H, Ju L. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. NATURE NANOTECHNOLOGY 2024; 19:181-187. [PMID: 37798567 DOI: 10.1038/s41565-023-01520-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
Rhombohedral-stacked multilayer graphene hosts a pair of flat bands touching at zero energy, which should give rise to correlated electron phenomena that can be tuned further by an electric field. Moreover, when electron correlation breaks the isospin symmetry, the valley-dependent Berry phase at zero energy may give rise to topologically non-trivial states. Here we measure electron transport through hexagonal boron nitride-encapsulated pentalayer graphene down to 100 mK. We observed a correlated insulating state with resistance at the megaohm level or greater at charge density n = 0 and displacement field D = 0. Tight-binding calculations predict a metallic ground state under these conditions. By increasing D, we observed a Chern insulator state with C = -5 and two other states with C = -3 at a magnetic field of around 1 T. At high D and n, we observed isospin-polarized quarter- and half-metals. Hence, rhombohedral pentalayer graphene exhibits two different types of Fermi-surface instability, one driven by a pair of flat bands touching at zero energy, and one induced by the Stoner mechanism in a single flat band. Our results establish rhombohedral multilayer graphene as a suitable system for exploring intertwined electron correlation and topology phenomena in natural graphitic materials without the need for moiré superlattice engineering.
Collapse
|
|
1 |
24 |
10
|
Gelly RJ, Renaud D, Liao X, Pingault B, Bogdanovic S, Scuri G, Watanabe K, Taniguchi T, Urbaszek B, Park H, Lončar M. Probing dark exciton navigation through a local strain landscape in a WSe 2 monolayer. Nat Commun 2022; 13:232. [PMID: 35017506 PMCID: PMC8752834 DOI: 10.1038/s41467-021-27877-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
In WSe2 monolayers, strain has been used to control the energy of excitons, induce funneling, and realize single-photon sources. Here, we developed a technique for probing the dynamics of free excitons in nanoscale strain landscapes in such monolayers. A nanosculpted tapered optical fiber is used to simultaneously generate strain and probe the near-field optical response of WSe2 monolayers at 5 K. When the monolayer is pushed by the fiber, its lowest energy states shift by as much as 390 meV (>20% of the bandgap of a WSe2 monolayer). Polarization and lifetime measurements of these red-shifting peaks indicate they originate from dark excitons. We conclude free dark excitons are funneled to high-strain regions during their long lifetime and are the principal participants in drift and diffusion at cryogenic temperatures. This insight supports proposals on the origin of single-photon sources in WSe2 and demonstrates a route towards exciton traps for exciton condensation. Here, the authors use a tapered optical fibre to create a dynamic, reversible strain in a suspended WSe2 monolayer, and observe that dark excitons are funnelled to high-strain regions and are the principal participants in drift and diffusion at cryogenic temperatures.
Collapse
|
|
3 |
23 |
11
|
Zhou Y, Scuri G, Sung J, Gelly RJ, Wild DS, De Greve K, Joe AY, Taniguchi T, Watanabe K, Kim P, Lukin MD, Park H. Controlling Excitons in an Atomically Thin Membrane with a Mirror. PHYSICAL REVIEW LETTERS 2020; 124:027401. [PMID: 32004011 DOI: 10.1103/physrevlett.124.027401] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/12/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate a new approach for dynamically manipulating the optical response of an atomically thin semiconductor, a monolayer of MoSe_{2}, by suspending it over a metallic mirror. First, we show that suspended van der Waals heterostructures incorporating a MoSe_{2} monolayer host spatially homogeneous, lifetime-broadened excitons. Then, we interface this nearly ideal excitonic system with a metallic mirror and demonstrate control over the exciton-photon coupling. Specifically, by electromechanically changing the distance between the heterostructure and the mirror, thereby changing the local photonic density of states in a controllable and reversible fashion, we show that both the absorption and emission properties of the excitons can be dynamically modulated. This electromechanical control over exciton dynamics in a mechanically flexible, atomically thin semiconductor opens up new avenues in cavity quantum optomechanics, nonlinear quantum optics, and topological photonics.
Collapse
|
|
5 |
21 |
12
|
Han T, Lu Z, Scuri G, Sung J, Wang J, Han T, Watanabe K, Taniguchi T, Fu L, Park H, Ju L. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 2023; 623:41-47. [PMID: 37853117 DOI: 10.1038/s41586-023-06572-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023]
Abstract
Ferroic orders describe spontaneous polarization of spin, charge and lattice degrees of freedom in materials. Materials exhibiting multiple ferroic orders, known as multiferroics, have important parts in multifunctional electrical and magnetic device applications1-4. Two-dimensional materials with honeycomb lattices offer opportunities to engineer unconventional multiferroicity, in which the ferroic orders are driven purely by the orbital degrees of freedom and not by electron spin. These include ferro-valleytricity corresponding to the electron valley5 and ferro-orbital-magnetism6 supported by quantum geometric effects. These orbital multiferroics could offer strong valley-magnetic couplings and large responses to external fields-enabling device applications such as multiple-state memory elements and electric control of the valley and magnetic states. Here we report orbital multiferroicity in pentalayer rhombohedral graphene using low-temperature magneto-transport measurements. We observed anomalous Hall signals Rxy with an exceptionally large Hall angle (tanΘH > 0.6) and orbital magnetic hysteresis at hole doping. There are four such states with different valley polarizations and orbital magnetizations, forming a valley-magnetic quartet. By sweeping the gate electric field E, we observed a butterfly-shaped hysteresis of Rxy connecting the quartet. This hysteresis indicates a ferro-valleytronic order that couples to the composite field E · B (where B is the magnetic field), but not to the individual fields. Tuning E would switch each ferroic order independently and achieve non-volatile switching of them together. Our observations demonstrate a previously unknown type of multiferroics and point to electrically tunable ultralow-power valleytronic and magnetic devices.
Collapse
|
|
2 |
16 |
13
|
Dibos AM, Zhou Y, Jauregui LA, Scuri G, Wild DS, High AA, Taniguchi T, Watanabe K, Lukin MD, Kim P, Park H. Electrically Tunable Exciton-Plasmon Coupling in a WSe 2 Monolayer Embedded in a Plasmonic Crystal Cavity. NANO LETTERS 2019; 19:3543-3547. [PMID: 31117747 DOI: 10.1021/acs.nanolett.9b00484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We realize a new electroplasmonic switch based upon electrically tunable exciton-plasmon interactions. The device consists of a hexagonal boron nitride (hBN)-encapsulated tungsten diselenide (WSe2) monolayer on top of a single-crystalline silver substrate. The ultrasmooth silver substrate serves a dual role as the medium to support surface plasmon polaritons (SPPs) and the bottom gate electrode to tune the WSe2 exciton energy and brightness through electrostatic doping. To enhance the exciton-plasmon coupling, we implement a plasmonic crystal cavity on top of the hBN/WSe2/hBN/Ag heterostructure with a quality factor reaching 550. The tight confinement of the SPPs in the plasmonic cavity enables strong coupling between excitons and SPPs when the WSe2 exciton absorption is resonant with the cavity mode, leading to a vacuum Rabi splitting of up to 18 meV. This strong coupling can also be switched off with the application of a modest gate voltage that increases the doping density in the monolayer. This demonstration paves the way for new plasmonic modulators and a general device architecture to enhance light-matter interactions between SPPs and various embedded emitters.
Collapse
|
|
6 |
7 |
14
|
Joe AY, Mier Valdivia AM, Jauregui LA, Pistunova K, Ding D, Zhou Y, Scuri G, De Greve K, Sushko A, Kim B, Taniguchi T, Watanabe K, Hone JC, Lukin MD, Park H, Kim P. Controlled interlayer exciton ionization in an electrostatic trap in atomically thin heterostructures. Nat Commun 2024; 15:6743. [PMID: 39112505 PMCID: PMC11306233 DOI: 10.1038/s41467-024-51128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Atomically thin semiconductor heterostructures provide a two-dimensional (2D) device platform for creating high densities of cold, controllable excitons. Interlayer excitons (IEs), bound electrons and holes localized to separate 2D quantum well layers, have permanent out-of-plane dipole moments and long lifetimes, allowing their spatial distribution to be tuned on demand. Here, we employ electrostatic gates to trap IEs and control their density. By electrically modulating the IE Stark shift, electron-hole pair concentrations above 2 × 1012 cm-2 can be achieved. At this high IE density, we observe an exponentially increasing linewidth broadening indicative of an IE ionization transition, independent of the trap depth. This runaway threshold remains constant at low temperatures, but increases above 20 K, consistent with the quantum dissociation of a degenerate IE gas. Our demonstration of the IE ionization in a tunable electrostatic trap represents an important step towards the realization of dipolar exciton condensates in solid-state optoelectronic devices.
Collapse
|
research-article |
1 |
|
15
|
Deng B, Ahn H, Wang J, Moon G, Han C, Dongre N, Lei C, Scuri G, Sung J, Brutschea E, Watanabe K, Taniguchi T, Zhang F, Jo MH, Park H. Epitaxially Defined Luttinger Liquids on MoS_{2} Bicrystals. PHYSICAL REVIEW LETTERS 2025; 134:046301. [PMID: 39951581 DOI: 10.1103/physrevlett.134.046301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/20/2024] [Indexed: 02/16/2025]
Abstract
A mirror twin boundary (MTB) in a transition metal dichalcogenide monolayer can host one-dimensional electron liquid of a topological nature with tunable interactions. Unfortunately, electrical characterization of such boundaries has been challenging due to the paucity of samples with large enough size and high quality. Here, we report the conductance measurements of individual MTBs in epitaxially grown monolayer molybdenum disulfide bicrystals that are tens of micrometers long. These MTBs exhibit power-law behaviors of conductance as a function of temperature and bias voltage up to room temperature, consistent with electrons tunneling into a Luttinger liquid. Transport measurements of two distinct types of MTBs reveal the critical role of the atomic-scale defects. This study demonstrates that MTBs in transition metal dichalcogenide monolayers provide an exciting new platform for studying the interplay between electronic interactions and topology.
Collapse
|
|
1 |
|
16
|
Gelly RJ, White AD, Scuri G, Liao X, Ahn GH, Deng B, Watanabe K, Taniguchi T, Vučković J, Park H. An Inverse-Designed Nanophotonic Interface for Excitons in Atomically Thin Materials. NANO LETTERS 2023; 23:8779-8786. [PMID: 37695253 DOI: 10.1021/acs.nanolett.3c02931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Efficient nanophotonic devices are essential for applications in quantum networking, optical information processing, sensing, and nonlinear optics. Extensive research efforts have focused on integrating two-dimensional (2D) materials into photonic structures, but this integration is often limited by size and material quality. Here, we use hexagonal boron nitride (hBN), a benchmark choice for encapsulating atomically thin materials, as a waveguiding layer while simultaneously improving the optical quality of the embedded films. When combined with a photonic inverse design, it becomes a complete nanophotonic platform to interface with optically active 2D materials. Grating couplers and low-loss waveguides provide optical interfacing and routing, tunable cavities provide a large exciton-photon coupling to transition metal dichalcogenide (TMD) monolayers through Purcell enhancement, and metasurfaces enable the efficient detection of TMD dark excitons. This work paves the way for advanced 2D-material nanophotonic structures for classical and quantum nonlinear optics.
Collapse
|
|
2 |
|