1
|
D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995; 374:719-23. [PMID: 7715726 DOI: 10.1038/374719a0] [Citation(s) in RCA: 1302] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The autosomal recessive mouse mutation reeler leads to impaired motor coordination, tremors and ataxia. Neurons in affected mice fail to reach their correct locations in the developing brain, disrupting the organization of the cerebellar and cerebral cortices and other laminated regions. Here we use a previously characterized reeler allele (rl(tg)) to close a gene, reelin, deleted in two reeler alleles. Normal but not mutant mice express reelin in embryonic and postnatal neurons during periods of neuronal migration. The encoded protein resembles extracellular matrix proteins involved in cell adhesion. The reeler phenotype thus seems to reflect a failure of early events associated with brain lamination which are normally controlled by reelin.
Collapse
|
|
30 |
1302 |
2
|
D'Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T. Reelin is a ligand for lipoprotein receptors. Neuron 1999; 24:471-9. [PMID: 10571240 DOI: 10.1016/s0896-6273(00)80860-0] [Citation(s) in RCA: 628] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A signaling pathway involving the extracellular protein Reelin and the intracellular adaptor protein Disabled-1 (Dab1) controls cell positioning during mammalian brain development. Here, we demonstrate that Reelin binds directly to lipoprotein receptors, preferably the very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2). Binding requires calcium, and it is inhibited in the presence of apoE. Furthermore, the CR-50 monoclonal antibody, which inhibits Reelin function, blocks the association of Reelin with VLDLR. After binding to VLDLR on the cell surface, Reelin is internalized into vesicles. In dissociated neurons, apoE reduces the level of Reelin-induced tyrosine phosphorylation of Dab1. These data suggest that Reelin directs neuronal migration by binding to VLDLR and ApoER2.
Collapse
|
|
26 |
628 |
3
|
Thomas SM, DeMarco M, D'Arcangelo G, Halegoua S, Brugge JS. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 1992; 68:1031-40. [PMID: 1312392 DOI: 10.1016/0092-8674(92)90075-n] [Citation(s) in RCA: 605] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Treatment of PC12 cells with nerve growth factor (NGF) induces a rapid increase in tyrosine phosphorylation of multiple cellular proteins. Expression of a dominant inhibitory Ras mutant specifically blocked NGF- and TPA-induced tyrosine phosphorylation of two proteins of approximately 42 and 44 kd. Conversely, expression of an oncogenic variant of Ras induced tyrosine phosphorylation of the same 42 and 44 kd proteins. The 44 kd protein was immunoprecipitated with an antibody directed against extracellular signal-regulated kinase 1/mitogen-activated protein kinase (MAPK) and the 42 kd protein comigrated with a 42 kd MAPK, indicating that at least one and probably both Ras-regulated phosphoproteins are MAPKs. In addition, MAPK activation, as measured by in vitro phosphorylation of myelin basic protein, was also regulated by Ras. Ras was not required for NGF-induced activation of Trk or tyrosine phosphorylation of PLC-gamma 1. Thus, NGF-induced tyrosine phosphorylation occurs both prior to and following Ras action, and Ras plays a critical role in the NGF- and TPA-induced tyrosine phosphorylation of MAPKs.
Collapse
|
|
33 |
605 |
4
|
Sheldon M, Rice DS, D'Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 1997; 389:730-3. [PMID: 9338784 DOI: 10.1038/39601] [Citation(s) in RCA: 491] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Formation of the mammalian brain requires choreographed migration of neurons to generate highly ordered laminar structures such as those in the cortices of the forebrain and the cerebellum. These processes are severely disrupted by mutations in reelin which cause widespread misplacement of neurons and associated ataxia in reeler mice. Reelin is a large extracellular protein secreted by pioneer neurons that coordinates cell positioning during neurodevelopment. Two new autosomal recessive mouse mutations, scramble and yotari have been described that exhibit a phenotype identical to reeler. Here we report that scrambler and yotari arise from mutations in mdab1, a mouse gene related to the Drosophila gene disabled (dab). Both scrambler and yotari mice express mutated forms of mdab1 messenger RNA and little or no mDab1 protein. mDab1 is a phosphoprotein that appears to function as an intracellular adaptor in protein kinase pathways. Expression analysis indicates that mdab1 is expressed in neuronal populations exposed to Reelin. The similar phenotypes of reeler, scrambler, yotari and mdab1 null mice indicate that Reelin and mDab1 function as signalling molecules that regulate cell positioning in the developing brain.
Collapse
|
|
28 |
491 |
5
|
Rice DS, Sheldon M, D'Arcangelo G, Nakajima K, Goldowitz D, Curran T. Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 1998; 125:3719-29. [PMID: 9716537 DOI: 10.1242/dev.125.18.3719] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutation of either reelin (Reln) or disabled-1 (Dab1) results in widespread abnormalities in laminar structures throughout the brain and ataxia in reeler and scrambler mice. Both exhibit the same neuroanatomical defects, including cerebellar hypoplasia with Purkinje cell ectopia and disruption of neuronal layers in the cerebral cortex and hippocampus. Despite these phenotypic similarities, Reln and Dab1 have distinct molecular properties. Reln is a large extracellular protein secreted by Cajal-Retzius cells in the forebrain and by granule neurons in the cerebellum. In contrast, Dab1 is a cytoplasmic protein which has properties of an adapter protein that functions in phosphorylation-dependent intracellular signal transduction. Here, we show that Dab1 participates in the same developmental process as Reln. In scrambler mice, neuronal precursors are unable to invade the preplate of the cerebral cortex and consequently, they do not align within the cortical plate. During development, cells expressing Dab1 are located next to those secreting Reln at critical stages of formation of the cerebral cortex, cerebellum and hippocampus, before the first abnormalities in cell position become apparent in either reeler or scrambler. In reeler, the major populations of displaced neurons contain elevated levels of Dab1 protein, although they express normal levels of Dab1 mRNA. This suggests that Dab1 accumulates in the absence of a Reln-evoked signal. Taken together, these results indicate that Dab1 functions downstream of Reln in a signaling pathway that controls cell positioning in the developing brain.
Collapse
|
|
27 |
242 |
6
|
Kremer NE, D'Arcangelo G, Thomas SM, DeMarco M, Brugge JS, Halegoua S. Signal transduction by nerve growth factor and fibroblast growth factor in PC12 cells requires a sequence of src and ras actions. J Cell Biol 1991; 115:809-19. [PMID: 1717492 PMCID: PMC2289191 DOI: 10.1083/jcb.115.3.809] [Citation(s) in RCA: 228] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have investigated the roles of pp60c-src and p21c-ras proteins in transducing the nerve growth factor (NGF) and fibroblast growth factor (FGF) signals which promote the sympathetic neuronlike phenotype in PC12 cells. Neutralizing antibodies directed against either Src or Ras proteins were microinjected into fused PC12 cells. Each antibody both prevented and reversed NGF- or FGF-induced neurite growth, a prominent morphological marker for the neuronal phenotype. These data demonstrate the involvement of both pp60c-src and p21c-ras proteins in NGF and FGF actions in PC12 cells, and establish a physiological role for the pp60c-src tyrosine kinase in signal transduction pathways initiated by receptor tyrosine kinases in these cells. Additional microinjection experiments, using PC12 transfectants containing inducible v-src or ras oncogene activities, demonstrated a specific sequence of Src and Ras actions. Microinjection of anti-Ras antibody blocked v-src-induced neurite growth, but microinjection of anti-Src antibodies had no effect on ras oncogene-induced neurite growth. We propose that a cascade of Src and Ras actions, with Src acting first, is a significant feature of the signal transduction pathways for NGF and FGF. The Src-Ras cascade may define a functional cassette in the signal transduction pathways used by growth factors and other ligands whose receptors have diverse structures and whose range of actions on various cell types include mitogenesis and differentiation.
Collapse
|
research-article |
34 |
228 |
7
|
Tancredi V, D'Arcangelo G, Grassi F, Tarroni P, Palmieri G, Santoni A, Eusebi F. Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett 1992; 146:176-8. [PMID: 1337194 DOI: 10.1016/0304-3940(92)90071-e] [Citation(s) in RCA: 219] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of human recombinant tumor necrosis factor (TNF-alpha) on the synaptic transmission were studied in rat hippocampal slices by using extracellular field potential recordings. Population spikes and/or excitatory postsynaptic potentials were extracellularly recorded in hippocampus CA1 region from stratum pyramidale and stratum radiatum, respectively, and synaptic transmission was examined in the Schaffer collateral/commissural-CA1 pathway. Basal neurotransmission slightly and promptly increased in slices acutely exposed to TNF-alpha (1-100 nM). Examination of the long-term potentiation (LTP) revealed that a brief treatment with the cytokine did not influence LTP, while a long-lasting application of TNF-alpha (50 min or more) inhibited LTP in a dose-dependent way in the range of 1-100 nM. A role for TNF-alpha as a peptide of immunological significance belonging to the family of brain neuromodulators is discussed.
Collapse
|
|
33 |
219 |
8
|
Curran T, D'Arcangelo G. Role of reelin in the control of brain development. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:285-94. [PMID: 9651544 DOI: 10.1016/s0165-0173(97)00035-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reeler is an autosomal recessive mutation in mice that results in widespread disruption of laminated regions of the brain. We isolated a gene, reelin, that is mutated in reeler mice. The protein product of reelin has features of extracellular matrix components and it is expressed in a temporal and spatial pattern during embryonic and postnatal development consistent with the phenotypic defects in reeler mice. To understand the molecular basis of the function of Reelin, we constructed a full length reelin clone and used it to direct Reelin expression. Using this clone we found that Reelin is a secreted glycoprotein and that a highly charged C-terminal region is essential for secretion. Furthermore, we demonstrated that an amino acid sequence present in the N-terminal region of Reelin contains an epitope that is recognized by the CR-50 monoclonal antibody. CR-50 was raised against an antigen expressed in normal mouse brain that is absent in reeler mice. The interaction of CR-50 with its epitope has been shown to disrupt neuronal migration in vitro and in vivo. We used CR-50 to precipitate p385 Reelin from reticulocyte extracts programmed with reelin mRNA, from cells transfected with reelin clones and from cerebellar explants. Reelin appears to function as an instructive signal in the regulation of cell patterning during development.
Collapse
|
Review |
27 |
183 |
9
|
Tancredi V, D'Antuono M, Cafè C, Giovedì S, Buè MC, D'Arcangelo G, Onofri F, Benfenati F. The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK. J Neurochem 2000; 75:634-43. [PMID: 10899938 DOI: 10.1046/j.1471-4159.2000.0750634.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several cytokines have short-term effects on synaptic transmission and plasticity that are thought to be mediated by the activation of intracellular protein kinases. We have studied the effects of interleukin-6 (IL-6) on the expression of paired pulse facilitation (PPF), posttetanic potentiation (PTP), and long-term potentiation (LTP) in the CA1 region of the hippocampus as well as on the activation of the signal transducer and activator of transcription-3 (STAT3), the mitogen-activated protein kinase ERK (MAPK/ERK), and the stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK). IL-6 induced a marked and dose-dependent decrease in the expression of PTP and LTP that could be counteracted by the simultaneous treatment with the tyrosine kinase inhibitor lavendustin A (LavA) but did not significantly affect PPF. The IL-6-induced inhibition of PTP and LTP was accompanied by a simulation of STAT3 tyrosine phosphorylation and an inhibition of MAPK/ERK dual phosphorylation, in the absence of changes in the state of activation of SAPK/JNK. Both effects of IL-6 on STAT3 and MAPK/ERK activation were effectively counteracted by LavA treatment. The results indicate the tyrosine kinases and MAPK/ERK are involved in hippocampal synaptic plasticity and may represent preferential intracellular targets for the actions of IL-6 in the adult nervous system.
Collapse
|
|
25 |
183 |
10
|
Wood KW, Qi H, D'Arcangelo G, Armstrong RC, Roberts TM, Halegoua S. The cytoplasmic raf oncogene induces a neuronal phenotype in PC12 cells: a potential role for cellular raf kinases in neuronal growth factor signal transduction. Proc Natl Acad Sci U S A 1993; 90:5016-20. [PMID: 8389463 PMCID: PMC46644 DOI: 10.1073/pnas.90.11.5016] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The neuron-like differentiation of PC12 cells is induced by nerve growth factor (NGF) through stimulation of a membrane-bound protooncoprotein signaling pathway containing the NGF receptor Trk, the tyrosine kinase Src, and the GTP-binding protein Ras. The Raf-1 and B-raf protooncogenes encode cytoplasmic serine/threonine kinases that are stimulated by NGF in a Ras-dependent manner. To investigate the possible roles of cytoplasmic Raf kinases in eliciting neuronal differentiation, we have expressed the activated Raf-1 oncogene in PC12 cells. Expression of the raf oncogene results in the elaboration of a neuron-like phenotype, including neurite growth and the induction of the NGF-responsive genes NGFI-A and transin. The actions of activated Raf-1 and NGF are not additive. Furthermore, activated Raf-1 oncoprotein can prime cells for transcription-independent neurite growth by NGF and can elicit rapid neurite growth from NGF-primed cells. Our data indicate that the pathways utilized by NGF and activated raf to effect PC12 differentiation overlap and lead to the suggestion that cellular raf kinase activities play significant roles in transducing the differentiating signals of neuronal growth factors.
Collapse
|
research-article |
32 |
142 |
11
|
Abstract
Neurological mouse mutants provide an opportunity to dissect the complex mechanisms that underlie vertebrate brain development. Advances in genetic technologies have permitted the identification of genes disrupted in many mutants, allowing a molecular interpretation of the phenotypes. For several decades, the spontaneous mutant mouse reeler has been used as a model for the analysis of the development of laminated brain structures. In this ataxic mutant, the migration of many neurons is aberrant, resulting in disrupted cellular organization. Recently, reelin, the gene disrupted in the reeler mouse, has been identified, reelin encodes a novel extracellular molecule that controls neural cell positioning through mechanisms that are not yet completely understood. Analysis of the expression pattern and the properties of the reelin gene product (Reelin) suggests models for its function during brain development. Furthermore, the recent identification of genes that may function in the Reelin signaling pathway advances our knowledge of the molecular basis of neuronal migration.
Collapse
|
Review |
27 |
111 |
12
|
DeSilva U, D'Arcangelo G, Braden VV, Chen J, Miao GG, Curran T, Green ED. The human reelin gene: isolation, sequencing, and mapping on chromosome 7. Genome Res 1997; 7:157-64. [PMID: 9049633 DOI: 10.1101/gr.7.2.157] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mouse reelin gene (Reln) encodes a novel protein that, when mutated, results in the characteristic reeler phenotype. A key component of this phenotype is the extensive disruption of the organization of many brain structures. Reelin is believed to be an extracellular protein that controls neural cell positioning during brain development. The reelin gene is conserved in many vertebrate species, including humans. To study the role of the reelin homolog in human brain development, we have isolated and characterized the human gene (RELN). Like its murine counterpart, RELN is large, encoding an mRNA of approximately 12 kb. Overlapping cDNA clones containing the entire open reading frame were isolated and sequenced, revealing that the predicted mouse and human proteins are similar in size (388 kD) and that the amino acid and nucleotide sequences are 94.2% and 87.2% identical, respectively. Northern hybridization analyses revealed that RELN is expressed in fetal and postnatal brain as well as liver. The expression of RELN in postnatal human brain was high in the cerebellum. RELN was mapped to human chromosome 7q22, based on both fluorescence in situ hybridization studies and localization within a well-positioned yeast artificial chromosome (YAC) contig. The YAC contig also contains a number of gentic markers. Together, these studies provide the sequence information and genetic tools for performing more detailed analyses of RELN in an attempt to define its role in human brain development and possibly in human disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Brain/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 7
- Cloning, Molecular
- DNA, Complementary/genetics
- Extracellular Matrix Proteins/genetics
- Fetus/metabolism
- Gene Expression Regulation, Developmental
- Genetic Markers
- Humans
- In Situ Hybridization, Fluorescence
- Liver/metabolism
- Mice
- Microsatellite Repeats
- Molecular Sequence Data
- Nerve Tissue Proteins
- Open Reading Frames
- RNA, Messenger/analysis
- Reelin Protein
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Serine Endopeptidases
Collapse
|
Letter |
28 |
108 |
13
|
D'Arcangelo G, Paradiso K, Shepherd D, Brehm P, Halegoua S, Mandel G. Neuronal growth factor regulation of two different sodium channel types through distinct signal transduction pathways. J Biophys Biochem Cytol 1993; 122:915-21. [PMID: 8394370 PMCID: PMC2119579 DOI: 10.1083/jcb.122.4.915] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuronal growth factors regulate the expression of voltage-activated sodium current in differentiating sympathetic neurons and PC12 cells. We show that, in PC12 cells, the NGF- and FGF-induced sodium current results from increased expression of two distinct sodium channel types. Sodium current results from the rapid induction of a novel sodium channel transcript, also found in peripheral neurons, and from the long term induction of brain type II/IIA mRNA. Expression of the type II/IIA sodium channel requires activation of the cyclic AMP-dependent protein kinase (A-kinase), whereas induction of the peripheral neuron type sodium channel occurs through an A-kinase-independent signal transduction pathway. These findings suggest that the two sodium channel types act in concert to ensure the generation of action potentials during neuronal differentiation.
Collapse
|
research-article |
32 |
99 |
14
|
D'Arcangelo G, Tancredi V, Onofri F, D'Antuono M, Giovedì S, Benfenati F. Interleukin-6 inhibits neurotransmitter release and the spread of excitation in the rat cerebral cortex. Eur J Neurosci 2000; 12:1241-52. [PMID: 10762353 DOI: 10.1046/j.1460-9568.2000.00011.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cytokines are extracellular mediators that have been reported to affect neurotransmitter release and synaptic plasticity phenomena when applied in vitro. Most of these effects occur rapidly after the application of the cytokines and are presumably mediated through the activation of protein phosphorylation processes. While many cytokines have an inflammatory action, interleukin-6 (IL-6) has been found to have a neuroprotective effect against ischaemia lesions and glutamate excitotoxicity, and to increase neuronal survival in a variety of experimental conditions. In this paper, the functional effects of IL-6 on the spread of excitation visualized by dark-field/infrared videomicroscopy in rat cortical slices and on glutamate release from cortical synaptosomes were analysed and correlated with the activation of the STAT3, mitogen-activated protein kinase ERK (MAPK/ERK) and stress-activated protein kinase/cJun NH2-terminal kinase (SAPK/JNK) pathways. We have found that IL-6 depresses the spread of excitation and evoked glutamate release in the cerebral cortex, and that these effects are accompanied by a stimulation of STAT3 tyrosine phosphorylation, an inhibition of MAPK/ERK activity, a decreased phosphorylation of the presynaptic MAPK/ERK substrate synapsin I and no detectable effects on SAPK/JNK. The effects of IL-6 were effectively counteracted by treatment of the cortical slices with the tyrosine kinase inhibitor lavendustin A. The inhibitory effects of IL-6 on glutamate release and on the spread of excitation in the rat cerebral cortex indicate that the protective effect of IL-6 on neuronal survival could be mediated by a downregulation of neuronal activity, release of excitatory neurotransmitters and MAPK/ERK activity.
Collapse
|
|
25 |
90 |
15
|
Frank C, Rufini S, Tancredi V, Forcina R, Grossi D, D'Arcangelo G. Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus. Exp Neurol 2008; 212:407-14. [DOI: 10.1016/j.expneurol.2008.04.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/07/2008] [Accepted: 04/17/2008] [Indexed: 01/20/2023]
|
|
17 |
86 |
16
|
D'Arcangelo G, Miao GG, Curran T. Detection of the reelin breakpoint in reeler mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 39:234-6. [PMID: 8804731 DOI: 10.1016/0169-328x(96)00046-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Disruption of the reelin gene by partial deletion causes the neurological phenotype known as reeler. Here we report the cloning and sequencing of the reelin breakpoint region from the Jackson reeler strain (rl). Based on this sequence, we developed a polymerase chain reaction screen that allows the identification of mutant mice prior to the appearance of the phenotype. The assay also permits discrimination of heterozygous from wild-type mice. These findings provide a strategy for the characterization of the early anatomical and physiological consequences of the reeler mutation.
Collapse
|
|
29 |
80 |
17
|
Ventruti A, Kazdoba TM, Niu S, D'Arcangelo G. Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain. Neuroscience 2011; 189:32-42. [PMID: 21664258 DOI: 10.1016/j.neuroscience.2011.05.050] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 01/16/2023]
Abstract
The extracellular protein Reelin regulates radial neuronal migration in the embryonic brain, promotes dendrite outgrowth in the developing postnatal forebrain, and strengthens synaptic transmission in the adult brain. Heterozygous reeler mice expressing reduced levels of Reelin are grossly normal but exhibit behavioral and physiological abnormalities. We previously demonstrated that dendritic spine density is reduced in the developing hippocampus of these mice. In this study, we investigated the consequence of Reelin deficiency on synapse formation in adult heterozygous reeler mice using imaging and biochemical approaches. Using a reeler colony that expresses yellow fluorescent protein in selected neurons, we analyzed spine density in hippocampal area CA1 by confocal microscopy and found modest abnormalities in heterozygous reeler mice. However, biochemical analysis of synaptic composition revealed specific postsynaptic defects in scaffolding proteins, neurotransmitter receptors, and signaling proteins. Using whole brain homogenates and purified pre- and postsynaptic fractions, we found that the defects were localized to the postsynaptic compartment of heterozygous reeler synapses. Decreased levels of postsynaptic density-95 (PSD-95), the N-methyl d-aspartate (NMDA) receptor subunits NR2A and NR2B, and the phosphatase PTEN were found specifically in the postsynaptic density fraction obtained from these mice. Furthermore, we found that PSD-95, NR2A, and PTEN interact with each other at the synapse. Finally, we show that levels of NR2A are reduced in conditional Pten knock out mice, demonstrating that the PTEN phosphatase regulates NMDA receptor expression at the synapse in vivo. These studies may provide insights into the etiology of cognitive disorders associated with deficiencies in Reelin signaling and PTEN dysfunction.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
75 |
18
|
D'Arcangelo G, Panuccio G, Tancredi V, Avoli M. Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks. Neurobiol Dis 2005; 19:119-28. [PMID: 15837567 DOI: 10.1016/j.nbd.2004.11.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 09/30/2004] [Accepted: 11/23/2004] [Indexed: 10/25/2022] Open
Abstract
Deep-brain electrical or transcranial magnetic stimulation may represent a therapeutic tool for controlling seizures in patients presenting with epileptic disorders resistant to antiepileptic drugs. In keeping with this clinical evidence, we have reported that repetitive electrical stimuli delivered at approximately 1 Hz in mouse hippocampus-entorhinal cortex (EC) slices depress the EC ability to generate ictal activity induced by the application of 4-aminopyridine (4AP) or Mg(2+)-free medium (Barbarosie, M., Avoli, M., 1997. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J. Neurosci. 17, 9308-9314.). Here, we confirmed a similar control mechanism in rat brain slices analyzed with field potential recordings during 4AP (50 microM) treatment. In addition, we used intrinsic optical signal (IOS) recordings to quantify the intensity and spatial characteristics of this inhibitory influence. IOSs reflect the changes in light transmittance throughout the entire extent of the slice, and are thus reliable markers of limbic network epileptiform synchronization. First, we found that in the presence of 4AP, the IOS increases, induced by a train of electrical stimuli (10 Hz for 1 s) or by recurrent, single-shock stimulation delivered at 0.05 Hz in the deep EC layers, are reduced in intensity and area size by low-frequency (1 Hz), repetitive stimulation of the subiculum; these effects were observed in all limbic areas contained in the slice. Second, by testing the effects induced by repetitive subicular stimulation at 0.2-10 Hz, we identified maximal efficacy when repetitive stimuli are delivered at 1 Hz. Finally, we discovered that similar, but slightly less pronounced, inhibitory effects occur when repetitive stimuli at 1 Hz are delivered in the EC, suggesting that the reduction of IOSs seen during repetitive stimulation is pathway dependent as well as activity dependent. Thus, the activation of limbic networks at low frequency reduces the intensity and spatial extent of the IOS changes that accompany ictal synchronization in an in vitro slice preparation. This conclusion supports the view that repetitive stimulation may represent a potential therapeutic tool for controlling seizures in patients with pharmaco-resistant epileptic disorders.
Collapse
|
|
20 |
68 |
19
|
Sharma N, D'Arcangelo G, Kleinlaus A, Halegoua S, Trimmer JS. Nerve growth factor regulates the abundance and distribution of K+ channels in PC12 cells. J Cell Biol 1993; 123:1835-43. [PMID: 8276901 PMCID: PMC2290858 DOI: 10.1083/jcb.123.6.1835] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We examined the effect of nerve growth factor (NGF) treatment on expression of a neuronal delayed rectifler K+ channel subtype, Kv2.1 (drk1), in PC12 cells. Anti-Kv2.1 antibodies recognized a single polypeptide population of M(r) = 132 kD in PC12 cell membranes, distinct from the more heterogeneous population found in adult rat brain. In response to NGF treatment, levels of Kv2.1 polypeptide in PC12 membranes increased fourfold. This increase in polypeptide levels could be seen within 12 h, and elevated levels were maintained for at least 6 d of continuous NGF treatment. RNase protection assays indicate that this increase in Kv2.1 protein occurs without an increase in steady state levels of Kv2.1 mRNA following NGF treatment. Immunofluorescent localization of the Kv2.1 polypeptide revealed plasma membrane-associated staining of cell bodies in both untreated and NGF-treated PC12 cells. In undifferentiated cells, intense staining is seen at sites of cell-cell and cell-substratum contact. In differentiated cells the most intense Kv2.1 staining is observed in neuritic growth cones. These studies show that in PC12 cells both the abundance and distribution of the Kv2.1 k+ channel are regulated by NGF, and suggest that PC12 cells provide a model for the selective expression of Kv2.1 in neuritic endings.
Collapse
|
research-article |
32 |
67 |
20
|
Aloi M, D'Arcangelo G, Pofi F, Vassallo F, Rizzo V, Nuti F, Di Nardo G, Pierdomenico M, Viola F, Cucchiara S. Presenting features and disease course of pediatric ulcerative colitis. J Crohns Colitis 2013; 7:e509-15. [PMID: 23583691 DOI: 10.1016/j.crohns.2013.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
UNLABELLED Clinical variables and disease course of pediatric ulcerative colitis (UC) have been poorly reported. The aim of this study was to retrospectively describe the phenotype and disease course of pediatric onset UC diagnosed at a tertiary referral Center for Pediatric Gastroenterology. PATIENTS AND METHODS 110 patients with a diagnosis of UC were identified at our Department database. Records were reviewed for disease location and behavior at the diagnosis, family history for inflammatory bowel disease, pattern changes at the follow-up, need of surgery and cumulative risk for colectomy. RESULTS Thirty-five % of patients had an early-onset disease (0-7 years). At the diagnosis, 29% had proctitis, 22% left-sided colitis, 15% extensive colitis and 34% pancolitis. Fifteen % presented with a rectal sparing, while a patchy colonic inflammation was reported in 18%. Rectal sparing was significantly related to the younger age (p: <0.05). Disease extension at the follow up was reported in 29% of pts. No clinical variables at the diagnosis were related to the subsequent extension of the disease. The cumulative rates of colectomy were 9% at 2 year and 14% at 5 years. An extensive disease as well as acute severe colitis and corticosteroid therapy at the diagnosis were significantly associated with an increased risk of colectomy. CONCLUSIONS Pediatric UC is extensive and severe at the diagnosis, with an overall high rate of disease extension at the follow-up. Endoscopic atypical features are common in young children. The colectomy rate is related to the location and severity of the disease at the diagnosis.
Collapse
|
Comparative Study |
12 |
59 |
21
|
Royaux I, Lambert de Rouvroit C, D'Arcangelo G, Demirov D, Goffinet AM. Genomic organization of the mouse reelin gene. Genomics 1997; 46:240-50. [PMID: 9417911 DOI: 10.1006/geno.1997.4983] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reelin is the protein defective in reeler mice, an extensively studied model of brain development. The reelin gene (symbol Reln) codes for a protein of the extracellular matrix that contains eight successive repeats of 350 to 390 amino acids. In this work, we describe the genomic structure of the mouse reelin gene and the 5'-flanking genomic DNA sequences. The reelin gene is composed of 65 exons spread over approximately 450 kb of genomic DNA. We identified different reelin transcripts, formed by alternative splicing of a microexon as well as by use of two different polyadenylation sites. All splice sites conform to the GT-AG rule, except for the splice donor site of intron 30, which is GC instead of GT. A processed pseudogene is present in intron 42. Its nucleotide sequence is 86% identical to the sequence of the rat RDJ1 cDNA, which codes for a DnaJ-like protein of the Hsp40 family. Comparison of 8 intron positions in mouse and human reelin genes reveals a highly conserved genomic structure, suggesting a similar structure of the whole gene in both species. We identified two transcription start sites embedded within a CpG. The promoter region contains putative recognition sites for the transcription factors Sp1 and AP2 but lacks TATA and CAAT boxes. The presence of tandemly repeated regions in the Reelin protein suggests that gene duplication events occurred during evolution. By comparison of the amino acid sequences of the eight repeats and the positions of introns, we suggest a model for the evolution of the repeat coding portion of the reelin gene from a putative ancestral minigene.
Collapse
|
|
28 |
57 |
22
|
D'Arcangelo G, Grassi F, Ragozzino D, Santoni A, Tancredi V, Eusebi F. Interferon inhibits synaptic potentiation in rat hippocampus. Brain Res 1991; 564:245-8. [PMID: 1725767 DOI: 10.1016/0006-8993(91)91459-e] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of rat interferon (IFN) on the electrically-induced potentiation of the synaptic transmission were studied in rat hippocampal slices by using extracellular field potential recordings. The treatment with rat IFN (120 U/ml) reduced the size of short-term potentiation (STP) and suppressed long-term potentiation (LTP). These IFN-induced effects were dose-dependent in the range of 50-500 U/ml. In addition, IFN slightly attenuated the potentiation when applied during the maintenance of LTP. Basal synaptic transmission was affected by IFN at concentrations greater than or equal to 250 U/ml. Following an acute exposure to IFN (500-200 U/ml), cultured embryonic neurones from rat hippocampus often exhibited an attenuation of N-methyl-D-aspartate-induced currents and a variation (increase or decrease) of voltage-activated Ca2+ current amplitude. A possible role of IFN as neuromodulator in mammalian brain during immune responses is discussed.
Collapse
|
|
34 |
45 |
23
|
Merlo D, Mollinari C, Inaba Y, Cardinale A, Rinaldi AM, D'Antuono M, D'Arcangelo G, Tancredi V, Ragsdale D, Avoli M. Reduced GABAB receptor subunit expression and paired-pulse depression in a genetic model of absence seizures. Neurobiol Dis 2007; 25:631-41. [PMID: 17207629 DOI: 10.1016/j.nbd.2006.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 10/17/2006] [Accepted: 11/05/2006] [Indexed: 10/23/2022] Open
Abstract
Neocortical networks play a major role in the genesis of generalized spike-and-wave (SW) discharges associated with absence seizures in humans and in animal models, including genetically predisposed WAG/Rij rats. Here, we tested the hypothesis that alterations in GABA(B) receptors contribute to neocortical hyperexcitability in these animals. By using Real-Time PCR we found that mRNA levels for most GABA(B(1)) subunits are diminished in epileptic WAG/Rij neocortex as compared with age-matched non-epileptic controls (NEC), whereas GABA(B(2)) mRNA is unchanged. Next, we investigated the cellular distribution of GABA(B(1)) and GABA(B(2)) subunits by confocal microscopy and discovered that GABA(B(1)) subunits fail to localize in the distal dendrites of WAG/Rij neocortical pyramidal cells. Intracellular recordings from neocortical cells in an in vitro slice preparation demonstrated reduced paired-pulse depression of pharmacologically isolated excitatory and inhibitory responses in epileptic WAG/Rij rats as compared with NECs; moreover, paired-pulse depression in NEC slices was diminished by a GABA(B) receptor antagonist to a greater extent than in WAG/Rij rats further suggesting GABA(B) receptor dysfunction. In conclusion, our data identify changes in GABA(B) receptor subunit expression and distribution along with decreased paired-pulse depression in epileptic WAG/Rij rat neocortex. We propose that these alterations may contribute to neocortical hyperexcitability and thus to SW generation in absence epilepsy.
Collapse
|
|
18 |
44 |
24
|
Miao GG, Smeyne RJ, D'Arcangelo G, Copeland NG, Jenkins NA, Morgan JI, Curran T. Isolation of an allele of reeler by insertional mutagenesis. Proc Natl Acad Sci U S A 1994; 91:11050-4. [PMID: 7972007 PMCID: PMC45164 DOI: 10.1073/pnas.91.23.11050] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reeler (rl) is an autosomal recessive mutation that affects migration of postmitotic neurons in the mouse central nervous system. The reeler (rl/rl) mouse displays a disruption of laminar structures in both the cerebellum and the forebrain and it exhibits tremors, dystonia, and ataxia. The molecular basis of the reeler phenotype is unknown because the gene involved has not yet been identified. We report here the isolation and characterization of an allele of rl, reelertransgene (rltg). This allele was generated by the fortuitous insertion of a transgene, supfos (sf), into the mouse rl locus. Crosses between rl/+ and rltg/+ mice yielded offspring that exhibited the reeler phenotype, indicating that rl and rltg are allelic. We cloned the genomic sequences flanking the transgene insertion site from the rltg/rltg mouse genome. Chromosomal mapping studies revealed that the 5' flanking cellular sequence maps to a locus, D5Gmr1, that lies in a region of mouse chromosome 5 that also contains the rl locus. Southern blot analysis using a probe derived from the D5Gmr1 locus revealed no gross structural rearrangement in the rl locus. Thus, unlike the two rl alleles described previously, rltg provides a molecular probe that can now be used to identify and isolate the rl gene.
Collapse
|
research-article |
31 |
43 |
25
|
Tancredi V, D'Arcangelo G, Zona C, Siniscalchi A, Avoli M. Induction of epileptiform activity by temperature elevation in hippocampal slices from young rats: an in vitro model for febrile seizures? Epilepsia 1992; 33:228-34. [PMID: 1547752 DOI: 10.1111/j.1528-1157.1992.tb02311.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Extracellular field potential recordings were performed in the CA1 subfield of hippocampal slices obtained from Wistar rats aged 2-38 days. When the brain tissue was maintained at 35 degrees-36 degrees C (values obtained in the tissue chamber well), single-shock orthodromic stimuli elicited a response in the stratum pyramidale that consisted of a single population spike. In contrast, when the temperature in the well was increased to levels greater than 38.2 degrees C for periods of 5-15 min, the same type of stimuli elicited an epileptiform response characterized by a 250- to 600-ms-long, positive-going field potential with superimposed, multiple, negative-going population spikes. This potential resembled the epileptiform response recorded in the hippocampal slice in the presence of convulsants such as penicillin or bicuculline. Once the temperature was restored to control values (i.e., 35 degrees-36 degrees C) after induction of epileptiform activity, the abnormal response could be observed for less than or equal to 2 h. In some experiments (approximately one third of the successful trials), spontaneous epileptiform discharges appeared during and persisted after the increase in temperature. The ability of the hyperthermic period to induce epileptiform changes was age dependent: Epileptiform activity outlasting the period of temperature elevation was not observed in slices obtained from rats aged less than 4 days or greater than 28 days. Our data show that epileptiform activity can be induced by a transient increase in temperature and that the age of the animals from which slices are obtained plays an important role in the appearance of this phenomenon.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
33 |
40 |