1
|
Hely MA, Reid WGJ, Adena MA, Halliday GM, Morris JGL. The Sydney multicenter study of Parkinson's disease: The inevitability of dementia at 20 years. Mov Disord 2008; 23:837-44. [PMID: 18307261 DOI: 10.1002/mds.21956] [Citation(s) in RCA: 1508] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
|
17 |
1508 |
2
|
Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT. Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. ACTA ACUST UNITED AC 2013; 136:2419-31. [PMID: 23884810 DOI: 10.1093/brain/awt192] [Citation(s) in RCA: 879] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The pace of nigrostriatal degeneration, both with regards to striatal denervation and loss of melanin and tyrosine hydroxylase-positive neurons, is poorly understood especially early in the Parkinson's disease process. This study investigated the extent of nigrostriatal degeneration in patients with Parkinson's disease at different disease durations from time of diagnosis. Brains of patients with Parkinson's disease (n=28) with post-diagnostic intervals of 1-27 years and normal elderly control subjects (n=9) were examined. Sections of the post-commissural putamen and substantia nigra pars compacta were processed for tyrosine hydroxylase and dopamine transporter immunohistochemistry. The post-commissural putamen was selected due to tissue availability and the fact that dopamine loss in this region is associated with motor disability in Parkinson's disease. Quantitative assessments of putaminal dopaminergic fibre density and stereological estimates of the number of melanin-containing and tyrosine hydroxylase-immunoreactive neurons in the substantia nigra pars compacta (both in total and in subregions) were performed by blinded investigators in cases where suitable material was available (n=17). Dopaminergic markers in the dorsal putamen showed a modest loss at 1 year after diagnosis in the single case available for study. There was variable (moderate to marked) loss, at 3 years. At 4 years post-diagnosis and thereafter, there was virtually complete loss of staining in the dorsal putamen with only an occasional abnormal dopaminergic fibre detected. In the substantia nigra pars compacta, there was a 50-90% loss of tyrosine hydroxylase-positive neurons from the earliest time points studied with only marginal additional loss thereafter. There was only a ∼10% loss of melanized neurons in the one case evaluated 1 year post-diagnosis, and variable (30 to 60%) loss during the first several years post-diagnosis with more gradual and subtle loss in the second decade. At all time points, there were more melanin-containing than tyrosine hydroxylase-positive cells. Loss of dopaminergic markers in the dorsal putamen occurs rapidly and is virtually complete by 4 years post-diagnosis. Loss of melanized nigral neurons lags behind the loss of dopamine markers. These findings have important implications for understanding the nature of Parkinson's disease neurodegeneration and for studies of putative neuroprotective/restorative therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
879 |
3
|
Abstract
The VTA contains the A10 group of DA containing neurons. These neurons have been grouped into nuclei to be found on the floor of the midbrain tegmentum--Npn, Nif, Npbp and Nln rostralis and caudalis. The VTA is traversed by many blood vessels and nerve fibers. Close to its poorly defined borders are found DA (A8, A9, A11) and 5-HT containing neurons (B8). Efferent projections of the VTA can be divided into 5 subsystems. The mesorhombencephalic projects to other monoaminergic nuclei, the cerebellum and a fine projection descends to other tegmental nuclei as far as the inferior olive. Fibers to the spinal cord have not been demonstrated. The mesodiencephalic path projects to several thalamic and hypothalamic nuclei and possibly the median eminence. Functionally important examples are the anterior hypothalamic-preoptic area, N. medialis dorsalis and reuniens thalami. These two subsystems are largely non-dopaminergic. A minor mesostriatal projection is overshadowed by the large mesolimbic projection to the accumbens, tuberculum olfactorium, septum lateralis and n. interstitialis stria terminalis. There are also mesolimbic connections with several amygdaloid nuclei (especially centralis and basolateralis), the olfactory nuclei and entorhinal cortex. A minor projection to the hippocampus has been detected. The mesocortical pathway projects to sensory (e.g. visual), motor, limbic (e.g. retrosplenial) and polysensory association cortices (e.g. prefrontal). Prefrontal, orbitofrontal (insular) and cingulate cortices receive the most marked innervation from the VTA. A more widespread presence of DA in other cortices of rodents becomes progressively more evident in carnivores and primates. Most but not all projections are unilateral. Some neurons project to more than one area in mesodiencephalic, limbic and cortical systems. The majority of these fibers ascend in the MFB. Most areas receiving a projection from the VTA (DA or non-DA) project back to the VTA. The septohippocampal complex in particular and the limbic system in general provide quantitatively much less feedback than other areas. The role of the VTA as a mediator of dialogue with the frontostriatal and limbic/extrapyramidal system is discussed under the theme of circuit systems. The large convergence of afferents to certain VTA projection areas (prefrontal, entorhinal cortices, lateral septum, central amygdala, habenula and accumbens) is discussed under the theme of convergence systems.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
Review |
38 |
727 |
4
|
Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 2017; 18:101-113. [PMID: 28104909 DOI: 10.1038/nrn.2016.178] [Citation(s) in RCA: 686] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular α-synuclein (α-syn)-rich protein aggregates called Lewy pathology (LP) and neuronal death are commonly found in the brains of patients with clinical Parkinson disease (cPD). It is widely believed that LP appears early in the disease and spreads in synaptically coupled brain networks, driving neuronal dysfunction and death. However, post-mortem analysis of human brains and connectome-mapping studies show that the pattern of LP in cPD is not consistent with this simple model, arguing that, if LP propagates in cPD, it must be gated by cell- or region-autonomous mechanisms. Moreover, the correlation between LP and neuronal death is weak. In this Review, we briefly discuss the evidence for and against the spreading LP model, as well as evidence that cell-autonomous factors govern both α-syn pathology and neuronal death.
Collapse
|
Review |
8 |
686 |
5
|
Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, Weintraub D. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers 2021; 7:47. [PMID: 34210995 DOI: 10.1038/s41572-021-00280-3] [Citation(s) in RCA: 540] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder, affecting >1% of the population ≥65 years of age and with a prevalence set to double by 2030. In addition to the defining motor symptoms of PD, multiple non-motor symptoms occur; among them, cognitive impairment is common and can potentially occur at any disease stage. Cognitive decline is usually slow and insidious, but rapid in some cases. Recently, the focus has been on the early cognitive changes, where executive and visuospatial impairments are typical and can be accompanied by memory impairment, increasing the risk for early progression to dementia. Other risk factors for early progression to dementia include visual hallucinations, older age and biomarker changes such as cortical atrophy, as well as Alzheimer-type changes on functional imaging and in cerebrospinal fluid, and slowing and frequency variation on EEG. However, the mechanisms underlying cognitive decline in PD remain largely unclear. Cortical involvement of Lewy body and Alzheimer-type pathologies are key features, but multiple mechanisms are likely involved. Cholinesterase inhibition is the only high-level evidence-based treatment available, but other pharmacological and non-pharmacological strategies are being tested. Challenges include the identification of disease-modifying therapies as well as finding biomarkers to better predict cognitive decline and identify patients at high risk for early and rapid cognitive impairment.
Collapse
|
Review |
4 |
540 |
6
|
Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, Geschwind DH, Glidden DV, Halliday GM, Middleton LT, Gentleman SM, Grinberg LT, Giles K. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 2015; 112:E5308-17. [PMID: 26324905 PMCID: PMC4586853 DOI: 10.1073/pnas.1514475112] [Citation(s) in RCA: 540] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prions are proteins that adopt alternative conformations that become self-propagating; the PrP(Sc) prion causes the rare human disorder Creutzfeldt-Jakob disease (CJD). We report here that multiple system atrophy (MSA) is caused by a different human prion composed of the α-synuclein protein. MSA is a slowly evolving disorder characterized by progressive loss of autonomic nervous system function and often signs of parkinsonism; the neuropathological hallmark of MSA is glial cytoplasmic inclusions consisting of filaments of α-synuclein. To determine whether human α-synuclein forms prions, we examined 14 human brain homogenates for transmission to cultured human embryonic kidney (HEK) cells expressing full-length, mutant human α-synuclein fused to yellow fluorescent protein (α-syn140*A53T-YFP) and TgM83(+/-) mice expressing α-synuclein (A53T). The TgM83(+/-) mice that were hemizygous for the mutant transgene did not develop spontaneous illness; in contrast, the TgM83(+/+) mice that were homozygous developed neurological dysfunction. Brain extracts from 14 MSA cases all transmitted neurodegeneration to TgM83(+/-) mice after incubation periods of ∼120 d, which was accompanied by deposition of α-synuclein within neuronal cell bodies and axons. All of the MSA extracts also induced aggregation of α-syn*A53T-YFP in cultured cells, whereas none of six Parkinson's disease (PD) extracts or a control sample did so. Our findings argue that MSA is caused by a unique strain of α-synuclein prions, which is different from the putative prions causing PD and from those causing spontaneous neurodegeneration in TgM83(+/+) mice. Remarkably, α-synuclein is the first new human prion to be identified, to our knowledge, since the discovery a half century ago that CJD was transmissible.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
540 |
7
|
Van Deerlin VM, Sleiman PMA, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR, Dickson DW, Rademakers R, Boeve BF, Grossman M, Arnold SE, Mann DMA, Pickering-Brown SM, Seelaar H, Heutink P, van Swieten JC, Murrell JR, Ghetti B, Spina S, Grafman J, Hodges J, Spillantini MG, Gilman S, Lieberman AP, Kaye JA, Woltjer RL, Bigio EH, Mesulam M, Al-Sarraj S, Troakes C, Rosenberg RN, White CL, Ferrer I, Lladó A, Neumann M, Kretzschmar HA, Hulette CM, Welsh-Bohmer KA, Miller BL, Alzualde A, Lopez de Munain A, McKee AC, Gearing M, Levey AI, Lah JJ, Hardy J, Rohrer JD, Lashley T, Mackenzie IRA, Feldman HH, Hamilton RL, Dekosky ST, van der Zee J, Kumar-Singh S, Van Broeckhoven C, Mayeux R, Vonsattel JPG, Troncoso JC, Kril JJ, Kwok JBJ, Halliday GM, Bird TD, Ince PG, Shaw PJ, Cairns NJ, Morris JC, McLean CA, DeCarli C, Ellis WG, Freeman SH, Frosch MP, Growdon JH, Perl DP, Sano M, Bennett DA, Schneider JA, Beach TG, Reiman EM, Woodruff BK, Cummings J, Vinters HV, Miller CA, Chui HC, Alafuzoff I, Hartikainen P, Seilhean D, Galasko D, Masliah E, Cotman CW, Tuñón MT, Martínez MCC, Munoz DG, Carroll SL, Marson D, Riederer PF, Bogdanovic N, Schellenberg GD, Hakonarson H, Trojanowski JQ, Lee VMY. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 2010; 42:234-9. [PMID: 20154673 PMCID: PMC2828525 DOI: 10.1038/ng.536] [Citation(s) in RCA: 442] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/21/2010] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA binding protein (TDP-43) inclusions (FTLD-TDP)1. FTLD-TDP is frequently familial resulting from progranulin (GRN) mutations. We assembled an international collaboration to identify susceptibility loci for FTLD-TDP, using genome-wide association (GWA). We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium (LD) block on 7p21 that contains TMEM106B in a GWA study (GWAS) on 515 FTLD-TDP cases. Three SNPs retained genome-wide significance following Bonferroni correction; top SNP rs1990622 (P=1.08×10−11; odds ratio (OR) minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P=2×10−4). TMEM106B variants may confer risk by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in patients with GRN mutations. Our data implicate TMEM106B as a strong risk factor for FTLD-TDP suggesting an underlying pathogenic mechanism.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
442 |
8
|
Hodges JR, Davies RR, Xuereb JH, Casey B, Broe M, Bak TH, Kril JJ, Halliday GM. Clinicopathological correlates in frontotemporal dementia. Ann Neurol 2004; 56:399-406. [PMID: 15349867 DOI: 10.1002/ana.20203] [Citation(s) in RCA: 394] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The term frontotemporal dementia (FTD) encompasses a range of clinical syndromes that are believed not to map reliably onto the spectrum of recognized pathologies. This study reexamines the relationships between clinical and pathological subtypes of FTD in a large series from two centers (n = 61). Clinical subtypes defined were behavioral variant FTD (n = 26), language variants (semantic dementia, n = 9; and progressive nonfluent aphasia, n = 8), and motor variants (corticobasal degeneration, n = 9; and motor neuron disease, n = 9), although most cases presented with a combination of behavioral and language problems. Unexpectedly, some behavioral cases (n = 5) had marked amnesia at presentation. The pathological subtypes were those with tau-immunopositive inclusions (with Pick bodies, n = 20; or without, n = 11), those with ubiquitin immunopositive inclusions (n = 16), and those lacking distinctive histology (n = 14). Behavioral symptoms and semantic dementia were associated with a range of pathologies. In contrast, other clinical phenotypes had relatively uniform underlying pathologies: motor neuron disease predicted ubiquitinated inclusions, parkinsonism and apraxia predicted corticobasal pathology, and nonfluent aphasia predicted Pick bodies. Therefore, the pathological substrate can be predicted in a significant proportion of FTD patients, which has important implications for studies targeting mechanistic treatments.
Collapse
|
|
21 |
394 |
9
|
Murphy KE, Gysbers AM, Abbott SK, Tayebi N, Kim WS, Sidransky E, Cooper A, Garner B, Halliday GM. Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson's disease. ACTA ACUST UNITED AC 2014; 137:834-48. [PMID: 24477431 DOI: 10.1093/brain/awt367] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heterozygous mutations in GBA1, the gene encoding lysosomal glucocerebrosidase, are the most frequent known genetic risk factor for Parkinson's disease. Reduced glucocerebrosidase and α-synuclein accumulation are directly related in cell models of Parkinson's disease. We investigated relationships between Parkinson's disease-specific glucocerebrosidase deficits, glucocerebrosidase-related pathways, and α-synuclein levels in brain tissue from subjects with sporadic Parkinson's disease without GBA1 mutations. Brain regions with and without a Parkinson's disease-related increase in α-synuclein levels were assessed in autopsy samples from subjects with sporadic Parkinson's disease (n = 19) and age- and post-mortem delay-matched controls (n = 10). Levels of glucocerebrosidase, α-synuclein and related lysosomal and autophagic proteins were assessed by western blotting. Glucocerebrosidase enzyme activity was measured using a fluorimetric assay, and glucocerebrosidase and α-synuclein messenger RNA expression determined by quantitative polymerase chain reaction. Related sphingolipids were analysed by mass spectrometry. Multivariate statistical analyses were performed to identify differences between disease groups and regions, with non-parametric correlations used to identify relationships between variables. Glucocerebrosidase protein levels and enzyme activity were selectively reduced in the early stages of Parkinson's disease in regions with increased α-synuclein levels although limited inclusion formation, whereas GBA1 messenger RNA expression was non-selectively reduced in Parkinson's disease. The selective loss of lysosomal glucocerebrosidase was directly related to reduced lysosomal chaperone-mediated autophagy, increased α-synuclein and decreased ceramide. Glucocerebrosidase deficits in sporadic Parkinson's disease are related to the abnormal accumulation of α-synuclein and are associated with substantial alterations in lysosomal chaperone-mediated autophagy pathways and lipid metabolism. Our data suggest that the early selective Parkinson's disease changes are likely a result of the redistribution of cellular membrane proteins leading to a chronic reduction in lysosome function in brain regions vulnerable to Parkinson's disease pathology.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
379 |
10
|
Kovacs GG, Ferrer I, Grinberg LT, Alafuzoff I, Attems J, Budka H, Cairns NJ, Crary JF, Duyckaerts C, Ghetti B, Halliday GM, Ironside JW, Love S, Mackenzie IR, Munoz DG, Murray ME, Nelson PT, Takahashi H, Trojanowski JQ, Ansorge O, Arzberger T, Baborie A, Beach TG, Bieniek KF, Bigio EH, Bodi I, Dugger BN, Feany M, Gelpi E, Gentleman SM, Giaccone G, Hatanpaa KJ, Heale R, Hof PR, Hofer M, Hortobágyi T, Jellinger K, Jicha GA, Ince P, Kofler J, Kövari E, Kril JJ, Mann DM, Matej R, McKee AC, McLean C, Milenkovic I, Montine TJ, Murayama S, Lee EB, Rahimi J, Rodriguez RD, Rozemüller A, Schneider JA, Schultz C, Seeley W, Seilhean D, Smith C, Tagliavini F, Takao M, Thal DR, Toledo JB, Tolnay M, Troncoso JC, Vinters HV, Weis S, Wharton SB, White CL, Wisniewski T, Woulfe JM, Yamada M, Dickson DW. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol 2016; 131:87-102. [PMID: 26659578 DOI: 10.1007/s00401-015-1509-x] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/14/2015] [Accepted: 11/14/2015] [Indexed: 12/14/2022]
Abstract
Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
378 |
11
|
Harding AJ, Broe GA, Halliday GM. Visual hallucinations in Lewy body disease relate to Lewy bodies in the temporal lobe. Brain 2002; 125:391-403. [PMID: 11844739 DOI: 10.1093/brain/awf033] [Citation(s) in RCA: 366] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Consensus opinion characterizes dementia with Lewy bodies (DLB) as a progressive dementing illness, with significant fluctuations in cognition, visual hallucinations and/or parkinsonism. When parkinsonism is an early dominant feature, consensus opinion recommends that dementia within the first year is necessary for a diagnosis of DLB. If dementia occurs later, a diagnosis of Parkinson's disease with dementia (PDD) is recommended. While many previous studies have correlated the neuropathology in DLB with dementia and parkinsonism, few have analysed the relationship between fluctuating cognition and/or well-formed visual hallucinations and the underlying neuropathology in DLB and PDD. The aim of the present study was to determine any relationship between these less-studied core clinical features of DLB, and the distribution and density of cortical Lewy bodies (LB). The brains of 63 cases with LB were obtained over 6 years following population-based studies of dementia and parkinsonian syndromes. Annual, internationally standardized, clinical assessment batteries were reviewed to determine the presence and onset of the core clinical features of DLB. The maximal density of LB, plaques and tangles in the amygdala, parahippocampal, anterior cingulate, superior frontal, inferior temporal, inferior parietal and visual cortices were determined. Current clinicopathological diagnostic criteria were used to classify cases into DLB (n = 29), PDD (n = 18) or parkinsonism without dementia (n = 16) groups. Predictive statistics were used to ascertain whether fluctuating cognition or visual hallucinations predicted the clinicopathological group. Analysis of variance and regressions were used to identify any significant relationship(s) between the presence and severity of neuropathological and clinical features. Cognitive fluctuations and/or visual hallucinations were not good predictors of DLB in pathologically proven patients, although the absence of these features early in the disease course was highly predictive of PDD. Cases with DLB had higher LB densities in the inferior temporal cortex than cases with PDD. There was no association across groups between any neuropathological variable and the presence or absence of fluctuating cognition. However, there was a striking association between the distribution of temporal lobe LB and well-formed visual hallucinations. Cases with well-formed visual hallucinations had high densities of LB in the amygdala and parahippocampus, with early hallucinations relating to higher densities in parahippocampal and inferior temporal cortices. These temporal regions have previously been associated with visual hallucinations in other disorders. Thus, our results suggest that the distribution of temporal lobe LB is more related to the presence and duration of visual hallucinations in cases with LB than to the presence, severity or duration of dementia.
Collapse
|
|
23 |
366 |
12
|
Abstract
There is some controversy in the literature concerning whether chronic alcohol consumption damages the cerebral cortex. While decreased neuronal density in specific cortical regions is well described in chronic alcoholics, a recent study by Badsberg Jensen and Pakkenberg using unbiased stereological methods questions whether neurodegeneration occurs. In order to assess selective neurodegeneration in the cerebral cortex of chronic alcoholics, regional volumes and unbiased estimates of regional neuronal number (including neuronal identification with calcium-binding proteins) were calculated for 14 chronic alcoholics and 21 controls. Cases were carefully screened to exclude any interfering pathologies. Lifetime and maximum daily alcohol consumption was determined, and homogeneous groups were identified (four chronic alcoholics with Wernicke's encephalopathy and Korsakoff's psychosis, four chronic alcoholics with Wernicke's encephalopathy alone, six chronic alcoholics without Wernicke's encephalopathy or Korsakoff's psychosis, and 21 controls). Brain volume analysis revealed that discrete regions were significantly smaller in the chronic alcoholics compared to controls. As previously shown, white matter regions (particularly in the frontal lobe) were the most significantly reduced in volume. Alcoholics with Wernicke's encephalopathy (either alone or in combination with Korsakoff's psychosis) had significantly smaller white matter volumes than controls or alcoholics without these complications. Medial temporal lobe regions and the thalamus were also reduced in volume. Regression analyses revealed that the volume of both the white matter and thalamus negatively correlated with alcohol consumption. Consistent with the interpretation of previous neuronal density studies, selective neuronal loss was found in the superior frontal association cortex of chronic alcoholics, while no loss occurred from the motor cortex. The number of parvalbumin-, calbindin- and calretinin-immunoreactive neurons was found to be unaltered in chronic alcoholics, suggesting that the neurodegeneration is confined to the non-GABAergic pyramidal neurons. As neurodegeneration was observed in all alcoholic groups, damage to the frontal association cortex is not restricted to alcoholics with the amnesia of Korsakoff's psychosis. These results are consistent with the notion that chronic alcohol consumption is associated with selective neuronal vulnerability. The selective frontal neurodegeneration and the frontal focus of white matter atrophy are supported by neuropsychological, regional blood flow, and magnetic resonance imaging studies of frontal lobe dysfunction in chronic alcoholics and may correlate with abnormalities in working memory.
Collapse
|
|
28 |
351 |
13
|
Berg D, Postuma RB, Bloem B, Chan P, Dubois B, Gasser T, Goetz CG, Halliday GM, Hardy J, Lang AE, Litvan I, Marek K, Obeso J, Oertel W, Olanow CW, Poewe W, Stern M, Deuschl G. Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson's disease. Mov Disord 2014; 29:454-62. [PMID: 24619848 PMCID: PMC4204150 DOI: 10.1002/mds.25844] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022] Open
Abstract
With advances in knowledge disease, boundaries may change. Occasionally, these changes are of such a magnitude that they require redefinition of the disease. In recognition of the profound changes in our understanding of Parkinson's disease (PD), the International Parkinson and Movement Disorders Society (MDS) commissioned a task force to consider a redefinition of PD. This review is a discussion article, intended as the introductory statement of the task force. Several critical issues were identified that challenge current PD definitions. First, new findings challenge the central role of the classical pathologic criteria as the arbiter of diagnosis, notably genetic cases without synuclein deposition, the high prevalence of incidental Lewy body (LB) deposition, and the nonmotor prodrome of PD. It remains unclear, however, whether these challenges merit a change in the pathologic gold standard, especially considering the limitations of alternate gold standards. Second, the increasing recognition of dementia in PD challenges the distinction between diffuse LB disease and PD. Consideration might be given to removing dementia as an exclusion criterion for PD diagnosis. Third, there is increasing recognition of disease heterogeneity, suggesting that PD subtypes should be formally identified; however, current subtype classifications may not be sufficiently robust to warrant formal delineation. Fourth, the recognition of a nonmotor prodrome of PD requires that new diagnostic criteria for early-stage and prodromal PD should be created; here, essential features of these criteria are proposed. Finally, there is a need to create new MDS diagnostic criteria that take these changes in disease definition into consideration.
Collapse
|
Review |
11 |
331 |
14
|
Halliday GM, Holton JL, Revesz T, Dickson DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 2011; 122:187-204. [PMID: 21720849 DOI: 10.1007/s00401-011-0852-9] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/18/2011] [Accepted: 06/20/2011] [Indexed: 01/31/2023]
Abstract
Abnormal aggregates of the synaptic protein, α-synuclein, are the dominant pathology in syndromes known as the synucleinopathies. The cellular aggregation of the protein occurs in three distinct types of inclusions in three main clinical syndromes. α-Synuclein deposits in neuronal Lewy bodies and Lewy neurites in idiopathic Parkinson's disease (PD) and dementia with Lewy bodies (DLB), as well as incidentally in a number of other conditions. In contrast, α-synuclein deposits largely in oligodendroglial cytoplasmic inclusions in multiple system atrophy (MSA). Lastly, α-synuclein also deposits in large axonal spheroids in a number of rarer neuroaxonal dystrophies. Disorders are usually defined by their most dominant pathology, but for the synucleinopathies, clinical heterogeneity within the main syndromes is well documented. MSA was originally viewed as three different clinical phenotypes due to different anatomical localization of the lesions. In PD, recent meta-analyses have identified four main clinical phenotypes, and clinicopathological correlations suggest that more severe and more rapid progression of pathology with chronological age, as well as the involvement of additional neuropathologies, differentiates these phenotypes. In DLB, recent large studies show that clinical diagnosis is too insensitive to identify the syndrome itself, although clinicopathological studies suggest variable clinical features occur in the different pathological forms of this syndrome (pure DLB, DLB with Alzheimer's disease (AD), and AD with amygdala predominant Lewy pathology). The recognition of considerable heterogeneity within the synucleinopathy syndromes is important for the identification of factors involved in changing their pathological phenotype.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
315 |
15
|
Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson's disease. Mov Disord 2011; 26:6-17. [PMID: 21322014 DOI: 10.1002/mds.23455] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Glia are traditionally known as support cells for neurons, and their role in neurodegeneration has been largely considered secondary to neuronal dysfunction. We review newer concepts on glial function and assess glial changes in Parkinson's disease (PD) at the time of disease initiation when α-synuclein is accumulating in brain tissue but there is limited neuronal loss, and also as the disease progresses and neuronal loss is evident. RESULTS Of the two main types of astrocytes, only protoplasmic astrocytes are involved in PD, where they become nonreactive and accumulate α-synuclein. Experimental evidence has shown that astrocytic α-synuclein deposition initiates the noncell autonomous killing of neurons through microglial signaling. As the disease progresses, more protoplasmic astrocytes are affected by the disease with an increasing microglial response. Although there is still controversy on the role microglia play in neurodegeneration, there is evidence that microglia are activated early in PD and possibly assist with the clearance of extracellular α-synuclein at this time. Microglia transform to phagocytes and target neurons as the disease progresses but appear to become dysfunctional with increasing amounts of ingested debris. Only nonmyelinating oligodendroglial cells are affected in PD, and only late in the disease process. CONCLUSIONS Glial cells are responsible for the progression of PD and play an important role in initiating the early tissue response. In particular, early dysfunction and α-synuclein accumulation in astrocytes causes recruitment of phagocytic microglia that attack selected neurons in restricted brain regions causing the clinical symptoms of PD.
Collapse
|
Review |
14 |
311 |
16
|
Harding AJ, Stimson E, Henderson JM, Halliday GM. Clinical correlates of selective pathology in the amygdala of patients with Parkinson's disease. Brain 2002; 125:2431-45. [PMID: 12390970 DOI: 10.1093/brain/awf251] [Citation(s) in RCA: 308] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The amygdala exhibits significant pathological changes in Parkinson's disease, including atrophy and Lewy body (LB) formation. Amygdala pathology has been suggested to contribute to some clinical features of Parkinson's disease, including deficits of olfaction and facial expression. The degree of neuronal loss in amygdala subnuclei and the relationship with LB formation in non-demented Parkinson's disease cases have not been examined previously. Using stereological methods, the volume of neurones and the number of neurones in amygdala subdivisions were estimated in 18 prospectively studied, non-demented patients with Parkinson's disease and 16 age- and sex-matched controls. Careful exclusion (all cortical disease) and inclusion (non-demented, levodopa-responsive, idiopathic Parkinson's disease or controls) criteria were applied. Seven Parkinson's disease cases experienced well-formed visual hallucinations many years after disease onset, while nine Parkinson's disease cases and three controls were treated for depression. Anatomically, the amygdala was subdivided into the lateral nucleus, the basal (basolateral and basomedial) nuclei and the corticomedial (central, medial and cortical nuclei) complex. LB and Lewy neurites were identified by immunohistochemistry for alpha-synuclein and ubiquitin and were assessed semiquantitatively. LB were found throughout the amygdala in Parkinson's disease, being present in approximately 4% of neurones. Total amygdala volume was reduced by 20% in Parkinson's disease (P = 0.02) and LB concentrated in the cortical and basolateral nuclei. Lewy neurites were present in most cases but did not correlate with any structural or functional variable. Amygdala volume loss was largely due to a 30% reduction in volume (P = 0.01) and the total estimated number of neurones (P = 0.007) in the corticomedial complex. The degree of neurone loss and the proportion of LB-containing neurones in the cortical nucleus within this complex were constant across Parkinson's disease cases and neither variable was related to disease duration (R(2 )< 0.03; P > 0.5). The cortical nucleus has major olfactory connections and its degeneration is likely to contribute to the early selective anosmia common in Parkinson's disease. There was a small reduction in neuronal density in the basolateral nucleus in all Parkinson's disease cases, but no consistent volume or cell loss within this region. However, the proportion of LB-containing neurones in the basolateral nucleus was nearly doubled in cases that exhibited visual hallucinations, suggesting that neuronal dysfunction in this nucleus contributes to this late clinical feature. Detailed quantitation of the other amygdala subdivisions failed to reveal any other substantial anomalies or any associations with depression. Thus, the impact of Parkinson's disease on the amygdala is highly selective and correlates with both early and late clinical features.
Collapse
|
|
23 |
308 |
17
|
Caine D, Halliday GM, Kril JJ, Harper CG. Operational criteria for the classification of chronic alcoholics: identification of Wernicke's encephalopathy. J Neurol Neurosurg Psychiatry 1997; 62:51-60. [PMID: 9010400 PMCID: PMC486695 DOI: 10.1136/jnnp.62.1.51] [Citation(s) in RCA: 294] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To establish better operational criteria for the diagnosis of Wernicke's encephalopathy. Current criteria for diagnosing Wernicke's encephalopathy require the presence of three clinical signs (oculomotor abnormalities, cerebellar dysfunction, and an altered mental state), although it has often been reported that most patients do not fulfil all these criteria. METHODS The clinical histories of 28 alcoholics with neurological and neuropsychological assessments and definitive neuropathological diagnoses were examined to determine clinical signs for use in a screening schedule. Operational criteria were then proposed for differentiating patients with Wernicke's encephalopathy alone or in combination with Korsakoff's psychosis or hepatic encephalopathy. The new criteria for Wernicke's encephalopathy require two of the following four signs; (1) dietary deficiencies, (2) oculomotor abnormalities, (3) cerebellar dysfunction, and (4) either an altered mental state or mild memory impairment. Reproducibility and validity testing of these criteria were performed on 106 alcoholics screened from a large necropsy sample. RESULTS Despite rater variability with regard to specific symptoms, within and between rater reliability for diagnostic classification using the criteria retrospectively on patient records was 100% for three independent raters. Validity testing showed that Wernicke's encephalopathy was underrecognized only when occurring with hepatic encephalopathy (50% sensitivity). CONCLUSIONS By contrast with current criteria, the proposed operational criteria show that the antemortem identification of Wernicke's encephalopathy can be achieved with a high degree of specificity.
Collapse
|
research-article |
28 |
294 |
18
|
Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM. A possible role for humoral immunity in the pathogenesis of Parkinson's disease. ACTA ACUST UNITED AC 2005; 128:2665-74. [PMID: 16219675 DOI: 10.1093/brain/awh625] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The pathogenesis of idiopathic Parkinson's disease is unknown, but nigral degeneration and depigmentation are associated with microglial inflammation and anti-inflammatory medications appear to protect against the disease. The possibility that humoral immunity may play a role in initiating or regulating the inflammation has been suggested by experimental studies triggering dopamine cell death using a variety of transfer strategies and the observation of CD8+ T lymphocytes and complement in the nigra in Parkinson's disease. We analysed the association between degeneration and humoral immune markers in brain tissue of patients with idiopathic (n = 13) or genetic (n = 2 with alpha-synuclein and n = 1 with parkin mutations) Parkinson's disease and controls without neurological disease (n = 12) to determine the humoral immune involvement in Parkinson's disease. Formalin-fixed tissue samples from the substantia nigra and primary visual cortex for comparison were stained for alpha-synuclein, major histocompatibility complex II (HLA), immunoglobulin M (IgM), immunoglobulin G (IgG), IgG subclasses 1-4 and IgG receptors FcgammaR I-III. Antigen retrieval and both single immunoperoxidase and double immunofluorescence procedures were employed to determine the cell types involved and their pattern and semiquantitative densities. Significant dopamine neuron loss occurred in all patients with Parkinson's disease, negatively correlating with disease duration (r = -0.76, P = 0.002). Although all patients had increased inflammatory HLA immunopositive microglia, the degree of inflammation was similar throughout the disease (r = 0.08, P = 0.82). All patients with Parkinson's disease had IgG binding on dopamine neurons but not IgM binding. Lewy bodies were strongly immunolabelled with IgG. A mean 30 +/- 12% of dopamine nigral neurons were immunoreactive for IgG in Parkinson's disease with the proportion of IgG immunopositive neurons negatively correlating with the degree of cell loss in the substantia nigra (r = -0.67, P < 0.0001) and positively correlating with the number of HLA immunopositive microglia (r = 0.51, P = 0.01). Most neuronal IgG was the IgG1 subclass with some IgG3 and less IgG2 also found in the damaged substantia nigra. The high affinity activating IgG receptor, FcgammaRI, was expressed on nearby activated microglia. The low affinity activating IgG receptor, FcgammaRIII was expressed on cells morphologically resembling lymphocytes, whereas immunoreactivity for the inhibitory IgG receptor FcgammaRII was absent in all cases. This pattern of humoral immune reactivity is consistent with an immune activation of microglia leading to the targeting of dopamine nigral neurons for destruction in both idiopathic and genetic cases of Parkinson's disease.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
273 |
19
|
Abstract
α-Synucleinopathies are neurodegenerative diseases characterised by the abnormal accumulation of α-synuclein aggregates in neurons, nerve fibres or glial cells. While small amounts of these α-synuclein pathologies can occur in some neurologically normal individuals who do not have associated neurodegeneration, the absence of neurodegeneration in such individuals precludes them from having a degenerative α-synucleinopathy, and it has yet to be established whether such individuals have a form of preclinical disease. There are three main types of α-synucleinopathy, Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), with other rare disorders also having α-synuclein pathologies, such as various neuroaxonal dystrophies. Multiple clinical phenotypes exist for each of the three main α-synucleinopathies, with these phenotypes differing in the dynamic distribution of their underlying neuropathologies. Identifying the factors involved in causing different α-synuclein phenotypes may ultimately lead to more targeted therapeutics as well as more accurate clinical prognosis.
Collapse
|
Review |
11 |
271 |
20
|
Halliday GM, Li YW, Blumbergs PC, Joh TH, Cotton RG, Howe PR, Blessing WW, Geffen LB. Neuropathology of immunohistochemically identified brainstem neurons in Parkinson's disease. Ann Neurol 1990; 27:373-85. [PMID: 1972319 DOI: 10.1002/ana.410270405] [Citation(s) in RCA: 270] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regional loss of immunohistochemically identified neurons in serial sections through the brainstem of 4 patients with idiopathic Parkinson's disease was compared with equivalent sections from 4 age-matched control subjects. In the Parkinson brains, the catecholamine cell groups of the midbrain, pons, and medulla showed variable neuropathological changes. All dopaminergic nuclei were variably affected, but were most severely affected in the caudal, central substantia nigra. The pontine noradrenergic locus ceruleus showed variable degrees of degeneration. There was also a substantial loss of substance P-containing neurons in the pedunculopontine tegmental nucleus. However, the most severely affected cell group in the pons was the serotonin-synthesizing neurons in the median raphe. In the medulla, substantial neuronal loss was found in several diverse cell groups including the adrenaline-synthesizing and neuropeptide Y-containing neurons in the rostral ventrolateral medulla, the serotonin-synthesizing neurons in the raphe obscurus nucleus, the substance P-containing neurons in the lateral reticular formation, as well as the substance P-containing neurons in the dorsal motor vagal nucleus. Lewy bodies were present in immunohistochemically identified neurons in many of these regions, indicating that they were affected directly by the disease process. These widespread but region- and transmitter-specific changes help account for the diversity of motor, cognitive, and autonomic manifestations of Parkinson's disease.
Collapse
|
|
35 |
270 |
21
|
Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, Kwok JBJ, Dobson-Stone C, Brooks WS, Schofield PR, Halliday GM, Hodges JR, Piguet O, Bartley L, Thompson E, Haan E, Hernández I, Ruiz A, Boada M, Borroni B, Padovani A, Cruchaga C, Cairns NJ, Benussi L, Binetti G, Ghidoni R, Forloni G, Galimberti D, Fenoglio C, Serpente M, Scarpini E, Clarimón J, Lleó A, Blesa R, Waldö ML, Nilsson K, Nilsson C, Mackenzie IRA, Hsiung GYR, Mann DMA, Grafman J, Morris CM, Attems J, Griffiths TD, McKeith IG, Thomas AJ, Pietrini P, Huey ED, Wassermann EM, Baborie A, Jaros E, Tierney MC, Pastor P, Razquin C, Ortega-Cubero S, Alonso E, Perneczky R, Diehl-Schmid J, Alexopoulos P, Kurz A, Rainero I, Rubino E, Pinessi L, Rogaeva E, St George-Hyslop P, Rossi G, Tagliavini F, Giaccone G, Rowe JB, Schlachetzki JCM, Uphill J, Collinge J, Mead S, Danek A, Van Deerlin VM, Grossman M, Trojanowski JQ, van der Zee J, Deschamps W, Van Langenhove T, Cruts M, Van Broeckhoven C, Cappa SF, Le Ber I, Hannequin D, Golfier V, Vercelletto M, Brice A, Nacmias B, Sorbi S, Bagnoli S, Piaceri I, Nielsen JE, Hjermind LE, Riemenschneider M, Mayhaus M, Ibach B, Gasparoni G, Pichler S, Gu W, Rossor MN, Fox NC, Warren JD, Spillantini MG, Morris HR, Rizzu P, Heutink P, Snowden JS, Rollinson S, Richardson A, Gerhard A, Bruni AC, Maletta R, Frangipane F, Cupidi C, Bernardi L, Anfossi M, Gallo M, Conidi ME, Smirne N, Rademakers R, Baker M, Dickson DW, Graff-Radford NR, Petersen RC, Knopman D, Josephs KA, Boeve BF, Parisi JE, Seeley WW, Miller BL, Karydas AM, Rosen H, van Swieten JC, Dopper EGP, Seelaar H, Pijnenburg YAL, Scheltens P, Logroscino G, Capozzo R, Novelli V, Puca AA, Franceschi M, Postiglione A, Milan G, Sorrentino P, Kristiansen M, Chiang HH, Graff C, Pasquier F, Rollin A, Deramecourt V, Lebert F, Kapogiannis D, Ferrucci L, Pickering-Brown S, Singleton AB, Hardy J, Momeni P. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 2014; 13:686-99. [PMID: 24943344 PMCID: PMC4112126 DOI: 10.1016/s1474-4422(14)70065-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72--have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. METHODS We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with FTD and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with FTD and 4308 controls), we did separate association analyses for each FTD subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and FTD overlapping with motor neuron disease [FTD-MND]), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10(-8)) single-nucleotide polymorphisms. FINDINGS We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10(-8)). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, HLA locus (immune system), for rs9268877 (p=1·05 × 10(-8); odds ratio=1·204 [95% CI 1·11-1·30]), rs9268856 (p=5·51 × 10(-9); 0·809 [0·76-0·86]) and rs1980493 (p value=1·57 × 10(-8), 0·775 [0·69-0·86]) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural FTD subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10(-7); 0·814 [0·71-0·92]). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. INTERPRETATION Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. FUNDING The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center.
Collapse
|
Multicenter Study |
11 |
263 |
22
|
Burrell JR, Halliday GM, Kril JJ, Ittner LM, Götz J, Kiernan MC, Hodges JR. The frontotemporal dementia-motor neuron disease continuum. Lancet 2016; 388:919-31. [PMID: 26987909 DOI: 10.1016/s0140-6736(16)00737-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early reports of cognitive and behavioural deficits in motor neuron disease might have been overlooked initially, but the concept of a frontotemporal dementia-motor neuron disease continuum has emerged during the past decade. Frontotemporal dementia-motor neuron disease is now recognised as an important dementia syndrome, which presents substantial challenges for diagnosis and management. Frontotemporal dementia, motor neuron disease, and frontotemporal dementia-motor neuron disease are characterised by overlapping patterns of TAR DNA binding protein (TDP-43) pathology, while the chromosome 9 open reading frame 72 (C9orf72) repeat expansion is common across the disease spectrum. Indeed, the C9orf72 repeat expansion provides important clues to disease pathogenesis and suggests potential therapeutic targets. Variable diagnostic criteria identify motor, cognitive, and behavioural deficits, but further refinement is needed to define the clinical syndromes encountered in frontotemporal dementia-motor neuron disease.
Collapse
|
Review |
9 |
258 |
23
|
Halliday GM, Blumbergs PC, Cotton RG, Blessing WW, Geffen LB. Loss of brainstem serotonin- and substance P-containing neurons in Parkinson's disease. Brain Res 1990; 510:104-7. [PMID: 1691042 DOI: 10.1016/0006-8993(90)90733-r] [Citation(s) in RCA: 254] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using postmortem immunohistochemical analysis, we have identified degeneration of several different neuronal cell groups in the brainstem of patients dying with idiopathic Parkinson's disease. We report the first chemically identified loss of presumed serotonin neurons in the median raphe nucleus of the pons and of substance P-containing preganglionic neurons in the dorsal motor vagal nucleus. This evidence is concordant with other evidence that the primary neuropathological process is not confined either to a single pathway or to neurons containing a particular transmitter. Rather it appears that Parkinson's disease affects several classes of neurons in localized areas of the brainstem.
Collapse
|
|
35 |
254 |
24
|
Halliday GM, Leverenz JB, Schneider JS, Adler CH. The neurobiological basis of cognitive impairment in Parkinson's disease. Mov Disord 2014; 29:634-50. [PMID: 24757112 DOI: 10.1002/mds.25857] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/08/2014] [Accepted: 02/13/2014] [Indexed: 12/13/2022] Open
Abstract
The recent formalization of clinical criteria for Parkinson's disease with dementia (PDD) codifies many studies on this topic, including those assessing biological correlates. These studies show that the emergence of PDD occurs on the background of severe dopamine deficits with, the main pathological drivers of cognitive decline being a synergistic effect between alpha-synuclein and Alzheimer's disease pathology. The presence of these pathologies correlates with a marked loss of limbic and cortically projecting dopamine, noradrenaline, serotonin, and acetylcholine neurons, although the exact timing of these relationships remains to be determined. Genetic factors, such as triplications in the α-synuclein gene, lead to a clear increased risk of PDD, whereas others, such as parkin mutations, are associated with a reduced risk of PDD. The very recent formalization of clinical criteria for PD with mild cognitive impairment (PD-MCI) allows only speculation on its biological and genetic bases. Critical assessment of animal models shows that chronic low-dose MPTP treatment in primates recapitulates PD-MCI over time, enhancing the current biological concept of PD-MCI as having enhanced dopamine deficiency in frontostriatal pathways as well as involvement of other neurotransmitter systems. Data from other animal models support multiple transmitter involvement in cognitive impairment in PD. Whereas dopamine dysfunction has been highlighted because of its obvious role in PD, the role of the other neurotransmitter systems, neurodegenerative pathologies, and genetic factors in PD-MCI remains to be fully elucidated.
Collapse
|
Review |
11 |
251 |
25
|
Abstract
OBJECTIVE White matter hyperintensities (WMH) are commonly seen on neuroimaging scans, but their underlying histopathologic substrate is unclear. The aim of this work was to establish the pathologic correlates of WMH in unselected elderly cases using two study designs. To avoid potential bias from comparisons of different anatomic regions, study 1 compared, region-by-region, the severity of WMH determined in vivo with measures of each of the major white matter (WM) components. Study 2 compared the histopathology of WMH with normal WM. METHODS Study 1: The periventricular and deep WM regions of three lobes in 23 brains with in vivo MRI scans were investigated using histologic and immunohistochemical stains. The severity of each pathologic measure was correlated with WMH severity determined using the Scheltens scale. Study 2: Lesioned and nonlesioned areas identified by postmortem MRI in the frontal WM of 20 brains were examined histologically and immunohistochemically. RESULTS No single pathologic variable correlated with the severity of WMH; however, a multiple stepwise regression analysis revealed that vascular integrity predicted total Scheltens score (beta = -0.53, p = 0.01). Comparison of lesioned and nonlesioned areas demonstrated that vascular integrity was reduced in WMH [t(18) = 3.79, p = 0.001]. Blood-brain barrier integrity was also found to be reduced in WMH [t(5) = -5.31, p = 0.003]. CONCLUSIONS White matter hyperintensities (WMH) involve a loss of vascular integrity, confirming the vascular origin of these lesions. This damage to the vasculature may in turn impair blood-brain barrier integrity and be one mechanism by which WMH evolve.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
248 |