1
|
Gaete-Argel A, Márquez CL, Barriga GP, Soto-Rifo R, Valiente-Echeverría F. Strategies for Success. Viral Infections and Membraneless Organelles. Front Cell Infect Microbiol 2019; 9:336. [PMID: 31681621 PMCID: PMC6797609 DOI: 10.3389/fcimb.2019.00336] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of RNA homeostasis or “RNAstasis” is a central step in eukaryotic gene expression. From transcription to decay, cellular messenger RNAs (mRNAs) associate with specific proteins in order to regulate their entire cycle, including mRNA localization, translation and degradation, among others. The best characterized of such RNA-protein complexes, today named membraneless organelles, are Stress Granules (SGs) and Processing Bodies (PBs) which are involved in RNA storage and RNA decay/storage, respectively. Given that SGs and PBs are generally associated with repression of gene expression, viruses have evolved different mechanisms to counteract their assembly or to use them in their favor to successfully replicate within the host environment. In this review we summarize the current knowledge about the viral regulation of SGs and PBs, which could be a potential novel target for the development of broad-spectrum antiviral therapies.
Collapse
|
Review |
6 |
41 |
2
|
Neira V, Tapia R, Verdugo C, Barriga G, Mor S, Ng TFF, García V, Del Río J, Rodrigues P, Briceño C, Medina RA, González-Acuña D. Novel Avulaviruses in Penguins, Antarctica. Emerg Infect Dis 2018. [PMID: 28628443 PMCID: PMC5512496 DOI: 10.3201/eid2307.170054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We identified 3 novel and distinct avulaviruses from Gentoo penguins sampled in Antarctica. We isolated these viruses and sequenced their complete genomes; serologic assays demonstrated that the viruses do not have cross-reactivity between them. Our findings suggest that these 3 new viruses represent members of 3 novel avulavirus species.
Collapse
|
Journal Article |
7 |
25 |
3
|
Barriga GP, Villalón-Letelier F, Márquez CL, Bignon EA, Acuña R, Ross BH, Monasterio O, Mardones GA, Vidal SE, Tischler ND. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc. PLoS Negl Trop Dis 2016; 10:e0004799. [PMID: 27414047 PMCID: PMC4945073 DOI: 10.1371/journal.pntd.0004799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses. The infection of cells by enveloped viruses involves the fusion of membranes between viruses and cells. This process is mediated by viral fusion proteins that have been grouped into at least three structural classes. Membrane-enveloped hantaviruses are worldwide spread pathogens that can cause human disease with mortality rates reaching up to 50%, however, neither a therapeutic drug nor preventive measures are currently available. Here we show that the entrance of Andes hantavirus into target cells can be blocked by fragments derived from the Gc fusion protein that are analogous to inhibitory fragments of class II fusion proteins. The Gc fragments acted directly over the viral fusion process, preventing its late stages. Together, our data demonstrate that the hantavirus Gc protein shares not only structural, but also mechanistic similarity with class II fusion proteins, suggesting its evolution from a common or related ancestral fusion protein. Furthermore, the results outline novel approaches for therapeutic intervention.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
21 |
4
|
Beltrán-Pavez C, Riquelme-Barrios S, Oyarzún-Arrau A, Gaete-Argel A, González-Stegmaier R, Cereceda-Solis K, Aguirre A, Travisany D, Palma-Vejares R, Barriga GP, Gaggero A, Martínez-Valdebenito C, Corre NL, Ferrés M, Balcells ME, Fernandez J, Ramírez E, Villarroel F, Valiente-Echeverría F, Soto-Rifo R. Insights into neutralizing antibody responses in individuals exposed to SARS-CoV-2 in Chile. SCIENCE ADVANCES 2021; 7:eabe6855. [PMID: 33579701 PMCID: PMC7880587 DOI: 10.1126/sciadv.abe6855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 05/08/2023]
Abstract
Chile has one of the worst numbers worldwide in terms of SARS-CoV-2 positive cases and COVID-19-related deaths per million inhabitants; thus, characterization of neutralizing antibody (NAb) responses in the general population is critical to understanding of immunity at the local level. Given our inability to perform massive classical neutralization assays due to the scarce availability of BSL-3 facilities in the country, we developed and fully characterized an HIV-based SARS-CoV-2 pseudotype, which was used in a 96-well plate format to investigate NAb responses in samples from individuals exposed to SARS-CoV-2 or treated with convalescent plasma. We also identified samples with decreased or enhanced neutralization activity against the D614G spike variant compared with the wild type, indicating the relevance of this variant in host immunity. The data presented here represent the first insights into NAb responses in individuals from Chile, serving as a guide for future studies in the country.
Collapse
|
Clinical Trial |
4 |
19 |
5
|
Barriga GP, Boric-Bargetto D, San Martin MC, Neira V, van Bakel H, Thompsom M, Tapia R, Toro-Ascuy D, Moreno L, Vasquez Y, Sallaberry M, Torres-Pérez F, González-Acuña D, Medina RA. Avian Influenza Virus H5 Strain with North American and Eurasian Lineage Genes in an Antarctic Penguin. Emerg Infect Dis 2016; 22:2221-2223. [PMID: 27662612 PMCID: PMC5189164 DOI: 10.3201/eid2212.161076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
Research Support, Non-U.S. Gov't |
9 |
17 |
6
|
Beltrán-Pavez C, Alonso-Palomares LA, Valiente-Echeverría F, Gaggero A, Soto-Rifo R, Barriga GP. Accuracy of a RT-qPCR SARS-CoV-2 detection assay without prior RNA extraction. J Virol Methods 2020; 287:113969. [PMID: 32918932 PMCID: PMC7480275 DOI: 10.1016/j.jviromet.2020.113969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/07/2023]
Abstract
The current COVID‐19 pandemic constitutes a threat to the population worldwide with over 21 million infected people. There is an urgent need for the development of rapid and massive detection tools as well as the identification and isolation of infected individuals. we sought to evaluate different RT-qPCR kits and protocols to evaluate the best approach to be used omitting an RNA extraction step. We have investigated the sensitivity and performance of different commercially available RT-qPCR kits in detecting SARS-CoV-2 using 80 extracted RNA and NSS from COVID-19 diagnosed patients. We evaluated the ability of each kit to detect viral RNA from both kit-extracted or directly from a pre-boiled NSS observing that direct RNA detection is possible when Ct values are lower than 30 with the three kits tested. Since SARS-CoV-2 testing in most locations occurs once COVID-19 symptoms are evident and, therefore, viral loads are expected to be high, our protocol will be useful in supporting SARS-CoV-2 diagnosis, especially in America where COVID-19 cases have exploded in the recent weeks as well as in low- and middle-income countries, which would not have massive access to kit-based diagnosis. The information provided in this work paves the way for the development of more efficient SARS-CoV-2 detection approaches avoiding an RNA extraction step.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
15 |
7
|
Ferreri LM, Ortiz L, Geiger G, Barriga GP, Poulson R, Gonzalez-Reiche AS, Crum JA, Stallknecht D, Moran D, Cordon-Rosales C, Rajao D, Perez DR. Improved detection of influenza A virus from blue-winged teals by sequencing directly from swab material. Ecol Evol 2019; 9:6534-6546. [PMID: 31236242 PMCID: PMC6580304 DOI: 10.1002/ece3.5232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract The greatest diversity of influenza A virus (IAV) is found in wild aquatic birds of the orders Anseriformes and Charadriiformes. In these birds, IAV replication occurs mostly in the intestinal tract. Fecal, cloacal, and/or tracheal swabs are typically collected and tested by real-time RT-PCR (rRT-PCR) and/or by virus isolation in embryonated chicken eggs in order to determine the presence of IAV. Virus isolation may impose bottlenecks that select variant populations that are different from those circulating in nature, and such bottlenecks may result in artifactual representation of subtype diversity and/or underrepresented mixed infections. The advent of next-generation sequencing (NGS) technologies provides an opportunity to explore to what extent IAV subtype diversity is affected by virus isolation in eggs. In the present work, we evaluated the advantage of sequencing by NGS directly from swab material of IAV rRT-PCR-positive swabs collected during the 2013-14 surveillance season in Guatemala and compared to results from NGS after virus isolation. The results highlight the benefit of sequencing IAV genomes directly from swabs to better understand subtype diversity and detection of alternative amino acid motifs that could otherwise escape detection using traditional methods of virus isolation. In addition, NGS sequencing data from swabs revealed reduced presence of defective interfering particles compared to virus isolates. We propose an alternative workflow in which original swab samples positive for IAV by rRT-PCR are first subjected to NGS before attempting viral isolation. This approach should speed the processing of samples and better capture natural IAV diversity. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.3h2n106.
Collapse
|
Journal Article |
6 |
14 |
8
|
Barriga GP, Cifuentes-Muñoz N, Rivera PA, Gutierrez M, Shmaryahu A, Valenzuela PDT, Engel EA. First detection and complete genome sequence of Deformed wing virus in Chilean honeybees. Virus Genes 2012; 45:606-9. [PMID: 22836560 DOI: 10.1007/s11262-012-0791-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/16/2012] [Indexed: 11/28/2022]
Abstract
Deformed wing virus (DWV) is one of the most common viruses affecting honey bee specimens. Although the presence of DWV has been reported in many countries, there is no data of the current situation in Chile. In this report, we detected the presence of DWV in apiaries from two different locations in central Chile. Furthermore, the genome of a Chilean DWV isolate was completely sequenced. This is the first report of the presence of a honey bee virus in Chile.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
9 |
9
|
Olivares F, Tapia R, Gálvez C, Meza F, Barriga GP, Borras-Chavez R, Mena-Vasquez J, Medina RA, Neira V. Novel penguin Avian avulaviruses 17, 18 and 19 are widely distributed in the Antarctic Peninsula. Transbound Emerg Dis 2019; 66:2227-2232. [PMID: 31355981 PMCID: PMC8628254 DOI: 10.1111/tbed.13309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Accepted: 07/14/2019] [Indexed: 11/30/2022]
Abstract
Three novel Avian avulavirus species were discovered and isolated during 2017 from Gentoo penguins (Pygoscelis papua) at Kopaitic island in the Northwestern region of the Antarctic Peninsula. The viruses were officially named as Avian avulavirus 17 (AAV17), Avian avulavirus 18 (AAV18) and Avian avulavirus 19 (AAV19), collectively referred to as penguin avulaviruses (PAVs). To determine whether these viruses are capable of infecting the three species of Pygoscelis spp. penguins (Gentoo, Adelie and Chinstrap) and assess its geographical distribution, serum samples were collected from seven locations across the Antarctic Peninsula and Southern Shetland Islands. The samples were tested by Hemagglutination inhibition assay using reference viruses for AAV17, AAV18 and AAV19. A total of 498 sera were tested, and 40 were positive for antibodies against AAV17, 20 for AAV18 and 45 for AAV19. Positive sera were obtained for the penguin's species for each virus; however, antibodies against AAV18 were not identified in Adelie penguins. Positive penguins were identified in all regions studied. Positive locations include Ardley Island and Cape Shirreff at Livingston Island (Southern Shetland Region); Anvers Island, Doumer Island and Paradise Bay in the Central Western region; and Avian Island at Southwestern region of the Antarctic Peninsula. The lowest occurrence was observed at the Southwestern region at Lagotellerie Island, where all samples were negative. On the other hand, Cape Shirreff and Paradise Bay showed the highest antibody titres. Field samples did not evidence cross-reactivity between viruses, and detection was significantly higher for AAV19 and lower for AAV18. This is the first serologic study on the prevalence of the novel Avian avulaviruses including different locations in the white continent. The results indicate that these novel viruses can infect the three Pygoscelis spp. penguins, which extend across large distances of the Antarctic Peninsula.
Collapse
|
research-article |
6 |
6 |
10
|
Fitzgibbons D, Barriga G, Seymour E, Stramer S. HIV antibody EIA and western blot assay results on paired serum and saliva specimens. Ann N Y Acad Sci 1993; 694:314-6. [PMID: 8215076 DOI: 10.1111/j.1749-6632.1993.tb18375.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
|
32 |
4 |
11
|
Ariyama N, Tapia R, Godoy C, Agüero B, Valdés V, Berrios F, García Borboroglu P, Pütz K, Alegria R, Barriga GP, Medina R, Neira V. Avian orthoavulavirus 1 (Newcastle Disease virus) antibodies in five penguin species, Antarctic peninsula and Southern Patagonia. Transbound Emerg Dis 2021; 68:3096-3102. [PMID: 33587778 DOI: 10.1111/tbed.14037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
Abstract
Avian orthoavulavirus 1 (AOaV-1) causes Newcastle disease, one of the most important and contagious infections in poultry, where migratory birds can play a key role as a reservoir. Seven hundred and seven serum samples were collected from five penguin species (King, Magellanic, Gentoo, Chinstrap and Adelie penguins) in the Antarctic and Sub-Antarctic zones. Using a competitive ELISA to detect antibodies against AOaV-1, we identified positive individuals in all penguin species. The Magellanic penguin showed the highest seropositivity rate (30.3%), suggesting it could be a natural reservoir of this virus. At the Antarctic zones, Chinstrap penguin showed the highest occurrence (7.5%). Interesting, positive sera was only obtained in Sub-Antarctic and Northern zones at the Antarctic peninsula, no seroreactivity was observed in Southern locations. Further studies are needed to establish the role of these penguin species in the epidemiology of the AOaV-1 and determine the effects of this virus in these populations.
Collapse
|
Journal Article |
4 |
2 |
12
|
Zamora G, Aguilar Pierlé S, Loncopan J, Araos L, Verdugo F, Rojas-Fuentes C, Krüger L, Gaggero A, Barriga GP. Scavengers as Prospective Sentinels of Viral Diversity: the Snowy Sheathbill Virome as a Potential Tool for Monitoring Virus Circulation, Lessons from Two Antarctic Expeditions. Microbiol Spectr 2023; 11:e0330222. [PMID: 37227283 PMCID: PMC10269608 DOI: 10.1128/spectrum.03302-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/29/2023] [Indexed: 05/26/2023] Open
Abstract
Antarctica is a unique environment due to its extreme meteorological and geological conditions. In addition to this, its relative isolation from human influences has kept it undisturbed. This renders our limited understanding of its fauna and its associated microbial and viral communities a relevant knowledge gap to fill. This includes members of the order Charadriiformes such as snowy sheathbills. They are opportunistic predator/scavenger birds distributed on Antarctic and sub-Antarctic islands that are in frequent contact with other bird and mammal species. This makes them an interesting species for surveillance studies due to their high potential for the acquisition and transport of viruses. In this study, we performed whole-virome and targeted viral surveillance for coronaviruses, paramyxoviruses, and influenza viruses in snowy sheathbills from two locations, the Antarctic Peninsula and South Shetland. Our results suggest the potential role of this species as a sentinel for this region. We highlight the discovery of two human viruses, a member of the genus Sapovirus GII and a gammaherpesvirus, and a virus previously described in marine mammals. Here, we provide insight into a complex ecological picture. These data highlight the surveillance opportunities provided by Antarctic scavenger birds. IMPORTANCE This article describes whole-virome and targeted viral surveillance for coronaviruses, paramyxoviruses, and influenza viruses in snowy sheathbills from the Antarctic Peninsula and South Shetland. Our results suggest an important role of this species as a sentinel for this region. This species' RNA virome showcased a diversity of viruses likely tied to its interactions with assorted Antarctic fauna. We highlight the discovery of two viruses of likely human origin, one with an intestinal impact and another with oncogenic potential. Analysis of this data set detected a variety of viruses tied to various sources (from crustaceans to nonhuman mammals), depicting a complex viral landscape for this scavenger species.
Collapse
|
research-article |
2 |
1 |
13
|
González-Aravena M, Galbán-Malagón C, Castro-Nallar E, Barriga GP, Neira V, Krüger L, Adell AD, Olivares-Pacheco J. Detection of SARS-CoV-2 in Wastewater Associated with Scientific Stations in Antarctica and Possible Risk for Wildlife. Microorganisms 2024; 12:743. [PMID: 38674687 PMCID: PMC11051888 DOI: 10.3390/microorganisms12040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Before December 2020, Antarctica had remained free of COVID-19 cases. The main concern during the pandemic was the limited health facilities available at Antarctic stations to deal with the disease as well as the potential impact of SARS-CoV-2 on Antarctic wildlife through reverse zoonosis. In December 2020, 60 cases emerged in Chilean Antarctic stations, disrupting the summer campaign with ongoing isolation needs. The SARS-CoV-2 RNA was detected in the wastewater of several scientific stations. In Antarctica, treated wastewater is discharged directly into the seawater. No studies currently address the recovery of infectious virus particles from treated wastewater, but their presence raises the risk of infecting wildlife and initiating new replication cycles. This study highlights the initial virus detection in wastewater from Antarctic stations, identifying viral RNA via RT-qPCR targeting various genomic regions. The virus's RNA was found in effluent from two wastewater plants at Maxwell Bay and O'Higgins Station on King George Island and the Antarctic Peninsula, respectively. This study explores the potential for the reverse zoonotic transmission of SARS-CoV-2 from humans to Antarctic wildlife due to the direct release of viral particles into seawater. The implications of such transmission underscore the need for continued vigilance and research.
Collapse
|
research-article |
1 |
|
14
|
Giono S, García Padilla ME, Barriga G. [Pyocin typing of Pseudomonas aeruginosa isolated from the General Hospital of the La Raza Medical Center, Mexican Social Security Institute]. REVISTA LATINOAMERICANA DE MICROBIOLOGIA 1982; 24:69-76. [PMID: 6821178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
|
43 |
|
15
|
Mena J, Tapia R, Verdugo C, Avendaño L, Parra-Castro P, Medina RA, Barriga G, Neira V. Circulation patterns of human seasonal Influenza A viruses in Chile before H1N1pdm09 pandemic. Sci Rep 2021; 11:21469. [PMID: 34728687 PMCID: PMC8564531 DOI: 10.1038/s41598-021-00795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding the diversity and circulation dynamics of seasonal influenza viruses is key to public health decision-making. The limited genetic information of pre-pandemic seasonal IAVs in Chile has made it difficult to accurately reconstruct the phylogenetic relationships of these viruses within the country. The objective of this study was to determine the genetic diversity of pre-pandemic human seasonal IAVs in Chile. We sequenced the complete genome of 42 historic IAV obtained between 1996 and 2007. The phylogeny was determined using HA sequences and complemented using other segments. Time-scale phylogenetic analyses revealed that the diversity of pre-pandemic human seasonal IAVs in Chile was influenced by continuous introductions of new A/H1N1 and A/H3N2 lineages and constant viral exchange between Chile and other countries every year. These results provide important knowledge about genetic diversity and evolutionary patterns of pre-pandemic human seasonal IAVs in Chile, which can help design optimal surveillance systems and prevention strategies. However, future studies with current sequences should be conducted.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
|
16
|
Alonso‐Palomares LA, Cáceres CJ, Tapia R, Aguilera‐Cortés P, Valenzuela S, Valiente‐Echeverría F, Soto‐Rifo R, Gaggero A, Barriga GP. Surveillance of seasonal respiratory viruses among Chilean patients during the COVID-19 pandemic. Health Sci Rep 2021; 4:e433. [PMID: 34849406 PMCID: PMC8611180 DOI: 10.1002/hsr2.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
|
letter |
4 |
|
17
|
Tapia R, Brito B, Saavedra M, Mena J, García-Salum T, Rathnasinghe R, Barriga G, Tapia K, García V, Bucarey S, Jang Y, Wentworth D, Torremorell M, Neira V, Medina RA. Novel influenza A viruses in pigs with zoonotic potential, Chile. Microbiol Spectr 2024; 12:e0218123. [PMID: 38446039 PMCID: PMC10986610 DOI: 10.1128/spectrum.02181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations.
Collapse
|
research-article |
1 |
|